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1 Energy in Thermal Physics

Figure 1.1. A hot-air balloon interacts thermally, mechanically, and di⌅usively

with its environment—exchanging energy, volume, and particles. Not all of these

interactions are at equilibrium, however. Copyright c⇤2000, Addison-Wesley.



Figure 1.2. A selection of thermometers. In the center are two liquid-in-glass

thermometers, which measure the expansion of mercury (for higher temperatures)

and alcohol (for lower temperatures). The dial thermometer to the right measures

the turning of a coil of metal, while the bulb apparatus behind it measures the

pressure of a fixed volume of gas. The digital thermometer at left-rear uses a

thermocouple—a junction of two metals—which generates a small temperature-

dependent voltage. At left-front is a set of three potter’s cones, which melt and

droop at specified clay-firing temperatures. Copyright c⇤2000, Addison-Wesley.
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Figure 1.3. Data from a student experiment measuring the pressure of a fixed

volume of gas at various temperatures (using the bulb apparatus shown in Fig-

ure 1.2). The three data sets are for three di⌅erent amounts of gas (air) in the bulb.

Regardless of the amount of gas, the pressure is a linear function of temperature

that extrapolates to zero at approximately �280
⇥
C. (More precise measurements

show that the zero-point does depend slightly on the amount of gas, but has a

well-defined limit of �273.15⇥C as the density of the gas goes to zero.) Copyright

c⇤2000, Addison-Wesley.



Length = L

Piston area = A

Volume = V = LA!v

vx

Figure 1.4. A greatly sim-

plified model of an ideal gas,

with just one molecule bounc-

ing around elastically. Copy-

right c⇤2000, Addison-Wesley.



Figure 1.5. A diatomic molecule can rotate about two independent axes, per-

pendicular to each other. Rotation about the third axis, down the length of the

molecule, is not allowed. Copyright c⇤2000, Addison-Wesley.



Figure 1.6. The “bed-spring” model

of a crystalline solid. Each atom is

like a ball, joined to its neighbors by

springs. In three dimensions, there are

six degrees of freedom per atom: three

from kinetic energy and three from po-

tential energy stored in the springs.

Copyright c⇤2000, Addison-Wesley.



Figure 1.7. The total change in the energy

of a system is the sum of the heat added to it

and the work done on it. Copyright c⇤2000,

Addison-Wesley.

∆U = Q + W

W

Q



Figure 1.8. When the pis-

ton moves inward, the vol-

ume of the gas changes by

⇥V (a negative amount) and

the work done on the gas

(assuming quasistatic com-

pression) is �P⇥V . Copy-

right c⇤2000, Addison-Wesley.

Piston area = A

Force = F

∆x

∆V = −A ∆x
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Vi Vf

Area = P ·(Vf − Vi)
Area =

∫
P dV

Pressure

VolumeVi Vf

Figure 1.9. When the volume of a gas changes and its pressure is constant, the

work done on the gas is minus the area under the graph of pressure vs. volume. The

same is true even when the pressure is not constant. Copyright c⇤2000, Addison-

Wesley.
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Figure 1.10. PV diagrams for Problems 1.33 and 1.34. Copyright c⇤2000,

Addison-Wesley.
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Figure 1.11. For isothermal

compression of an ideal gas,

the PV graph is a concave-

up hyperbola, called an iso-
therm. As always, the work

done is minus the area under

the graph. Copyright c⇤2000,

Addison-Wesley.



Figure 1.12. The PV curve

for adiabatic compression (called

an adiabat) begins on a lower-

temperature isotherm and ends on

a higher-temperature isotherm.

Copyright c⇤2000, Addison-Wesley.
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Figure 1.13. Heat capacity at constant volume of one mole of hydrogen (H2) gas.

Note that the temperature scale is logarithmic. Below about 100 K only the three

translational degrees of freedom are active. Around room temperature the two

rotational degrees of freedom are active as well. Above 1000 K the two vibrational

degrees of freedom also become active. At atmospheric pressure, hydrogen liquefies

at 20 K and begins to dissociate at about 2000 K. Data from Woolley et al. (1948).

Copyright c⇤2000, Addison-Wesley.
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Figure 1.14. Measured heat capacities at constant pressure (data points) for

one mole each of three di⌅erent elemental solids. The solid curves show the heat

capacity at constant volume predicted by the model used in Section 7.5, with the

horizontal scale chosen to best fit the data for each substance. At su⇧ciently high

temperatures, CV for each material approaches the value 3R predicted by the

equipartition theorem. The discrepancies between the data and the solid curves

at high T are mostly due to the di⌅erences between CP and CV . At T = 0 all

degrees of freedom are frozen out, so both CP and CV go to zero. Data from Y. S.

Touloukian, ed., Thermophysical Properties of Matter (Plenum, New York, 1970).

Copyright c⇤2000, Addison-Wesley.



Figure 1.15. To create a rabbit out of nothing and place it on the table, the

magician must summon up not only the energy U of the rabbit, but also some

additional energy, equal to PV , to push the atmosphere out of the way to make

room. The total energy required is the enthalpy, H = U + PV . Drawing by

Karen Thurber. Copyright c⇤2000, Addison-Wesley.
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Figure 1.16. The rate of heat conduction

through a pane of glass is proportional to

its area A and inversely proportional to its

thickness ⇥x. Copyright c⇤2000, Addison-

Wesley.
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Figure 1.17. A collision between molecules occurs when their centers are sepa-

rated by twice the molecular radius r. The same would be true if one molecule

had radius 2r and the other were a point. When a sphere of radius 2r moves in a

straight line of length  , it sweeps out a cylinder whose volume is 4⌥r2 . Copyright

c⇤2000, Addison-Wesley.
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Box 1 Box 2

x

Area = A Figure 1.18. Heat conduction across

the dotted line occurs because the

molecules moving from box 1 to box 2

have a di⌅erent average energy than

the molecules moving from box 2 to

box 1. For free motion between these

boxes, each should have a width of

roughly one mean free path. Copy-

right c⇤2000, Addison-Wesley.



Figure 1.19. Thermal con-

ductivities of selected gases,

plotted vs. the square root of

the absolute temperature. The

curves are approximately lin-

ear, as predicted by equation

1.65. Data from Lide (1994).

Copyright c⇤2000, Addison-Wesley.
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ux∆z Fluid

Area = A

Figure 1.20. The simplest arrangement for demonstrating viscosity: two parallel

surfaces sliding past each other, separated by a narrow gap containing a fluid. If

the motion is slow enough and the gap narrow enough, the fluid flow is laminar:
At the macroscopic scale the fluid moves only horizontally, with no turbulence.

Copyright c⇤2000, Addison-Wesley.



Figure 1.21. When the concentration of a cer-

tain type of molecule increases from left to right,

there will be di�usion, a net flow of molecules,

from right to left. Copyright c⇤2000, Addison-

Wesley.
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2 The Second Law

Penny Nickel Dime
H H H

H H T
H T H
T H H

H T T
T H T
T T H

T T T

Table 2.1. A list of all possible “mi-

crostates” of a set of three coins (where H

is for heads and T is for tails). Copyright

c⇤2000, Addison-Wesley.
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Figure 2.1. A symbolic representation of a two-state paramagnet, in which each

elementary dipole can point either parallel or antiparallel to the externally applied

magnetic field. Copyright c⇤2000, Addison-Wesley.
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Figure 2.2. In quantum mechanics, any system with a quadratic potential energy

function has evenly spaced energy levels separated in energy by hf , where f is the

classical oscillation frequency. An Einstein solid is a collection of N such oscillators,

all with the same frequency. Copyright c⇤2000, Addison-Wesley.



Oscillator: #1 #2 #3
Energy: 0 0 0

1 0 0
0 1 0
0 0 1

2 0 0
0 2 0
0 0 2
1 1 0
1 0 1
0 1 1

Oscillator: #1 #2 #3
Energy: 3 0 0

0 3 0
0 0 3
2 1 0
2 0 1
1 2 0
0 2 1
1 0 2
0 1 2
1 1 1

Table 2.2. Microstates of a small Einstein solid consisting of only three oscillators,

containing a total of zero, one, two, or three units of energy. Copyright c⇤2000,

Addison-Wesley.



Solid A
NA, qA

Solid B
NB , qB

Energy

Figure 2.3. Two Einstein solids that can exchange energy with each other, iso-

lated from the rest of the universe. Copyright c⇤2000, Addison-Wesley.



qA ΩA qB ΩB Ωtotal = ΩAΩB

0 1 6 28 28
1 3 5 21 63
2 6 4 15 90
3 10 3 10 100
4 15 2 6 90
5 21 1 3 63
6 28 0 1 28

462 = 6+6−1
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Figure 2.4. Macrostates and multiplicities of a system of two Einstein solids,

each containing three oscillators, sharing a total of six units of energy. Copyright

c⇤2000, Addison-Wesley.



qA ΩA qB ΩB Ωtotal

0 1 100 2.8 × 1081 2.8 × 1081

1 300 99 9.3 × 1080 2.8 × 1083

2 45150 98 3.1 × 1080 1.4 × 1085

3 4545100 97 1.0 × 1080 4.6 × 1086

4 3.4 × 108 96 3.3 × 1079 1.1 × 1088

...
...

...
...

...
59 2.2 × 1068 41 3.1 × 1046 6.8 × 10114

60 1.3 × 1069 40 5.3 × 1045 6.9 × 10114

61 7.7 × 1069 39 8.8 × 1044 6.8 × 10114

...
...

...
...

...
100 1.7 × 1096 0 1 1.7 × 1096

9.3 × 10115
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Figure 2.5. Macrostates and multiplicities of a system of two Einstein solids,

with 300 and 200 oscillators respectively, sharing a total of 100 units of energy.

Copyright c⇤2000, Addison-Wesley.
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Figure 2.6. Typical multiplicity graphs for two interacting Einstein solids, con-

taining a few hundred oscillators and energy units (left) and a few thousand (right).

As the size of the system increases, the peak becomes very narrow relative to the

full horizontal scale. For N ⌅ q ⌅ 10
20

, the peak is much too sharp to draw.

Copyright c⇤2000, Addison-Wesley.



N N ! NNe�N
⇧

2�N Error lnN ! N lnN �N Error
1 1 .922 7.7% 0 �1 ⌅

10 3628800 3598696 .83% 15.1 13.0 13.8%
100 9⇥ 10157 9⇥ 10157 .083% 364 360 .89%

Table 2.3. Comparison of Stirling’s approximation (equations 2.14 and 2.16) to

exact values for N = 1, 10, and 100. Copyright c⇤2000, Addison-Wesley.
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Width = q/
√
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Full scale ≈ 105 km

qA

Figure 2.7. Multiplicity of a system of two large Einstein solids with many

energy units per oscillator (high-temperature limit). Only a tiny fraction of the

full horizontal scale is shown. Copyright c⇤2000, Addison-Wesley.



Figure 2.8. A sphere in momen-

tum space with radius

�
2mU . If a

molecule has energy U , its momen-

tum vector must lie somewhere on

the surface of this sphere. Copy-

right c⇤2000, Addison-Wesley.
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Figure 2.9. A number of “independent” position states and momentum states

for a quantum-mechanical particle moving in one dimension. If we make the wave-

functions narrower in position space, they become wider in momentum space, and

vice versa. Copyright c⇤2000, Addison-Wesley.
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Figure 2.10. In a gas of two identical molecules, interchanging the states of

the molecules leaves the system in the same state as before. Copyright c⇤2000,

Addison-Wesley.



UA, VA, N UB , VB , N

Figure 2.11. Two ideal gases, each confined to a fixed volume, separated by a

partition that allows energy to pass through. The total energy of the two gases is

fixed. Copyright c⇤2000, Addison-Wesley.
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Figure 2.12. Multiplicity of a system of two ideal gases, as a function of the

energy and volume of gas A (with the total energy and total volume held fixed). If

the number of molecules in each gas is large, the full horizontal scale would stretch

far beyond the edge of the page. Copyright c⇤2000, Addison-Wesley.



Figure 2.13. A very unlikely arrangement of gas molecules. Copyright c⇤2000,

Addison-Wesley.



Vacuum

Figure 2.14. Free expansion of a gas into a vacuum. Because the gas neither does

work nor absorbs heat, its energy is unchanged. The entropy of the gas increases,

however. Copyright c⇤2000, Addison-Wesley.



Figure 2.15. Two di⌅erent gases, separated by a partition. When the partition

is removed, each gas expands to fill the whole container, mixing with the other

and creating entropy. Copyright c⇤2000, Addison-Wesley.



3 Interactions and Implications

qA �A SA/k qB �B SB/k �total Stotal/k

0 1 0 100 2.8⇥ 1081 187.5 2.8⇥ 1081 187.5
1 300 5.7 99 9.3⇥ 1080 186.4 2.8⇥ 1083 192.1
2 45150 10.7 98 3.1⇥ 1080 185.3 1.4⇥ 1085 196.0
...

...
...

...
...

...
...

...
11 5.3⇥ 1019 45.4 89 1.1⇥ 1076 175.1 5.9⇥ 1095 220.5
12 1.4⇥ 1021 48.7 88 3.4⇥ 1075 173.9 4.7⇥ 1096 222.6
13 3.3⇥ 1022 51.9 87 1.0⇥ 1075 172.7 3.5⇥ 1097 224.6
...

...
...

...
...

...
...

...
59 2.2⇥ 1068 157.4 41 3.1⇥ 1046 107.0 6.7⇥ 10114 264.4
60 1.3⇥ 1069 159.1 40 5.3⇥ 1045 105.3 6.9⇥ 10114 264.4
61 7.7⇥ 1069 160.9 39 8.8⇥ 1044 103.5 6.8⇥ 10114 264.4
...

...
...

...
...

...
...

...
100 1.7⇥ 1096 221.6 0 1 0 1.7⇥ 1096 221.6

Table 3.1. Macrostates, multiplicities, and entropies of a system of two Einstein

solids, one with 300 oscillators and the other with 200, sharing a total of 100 units

of energy. Copyright c⇤2000, Addison-Wesley.
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Figure 3.1. A plot of the entropies calculated in Table 3.1. At equilibrium

(qA = 60), the total entropy is a maximum so its graph has a horizontal tangent;

therefore the slopes of the tangents to the graphs of SA and SB are equal in

magnitude. Away from equilibrium (for instance, at qA = 12), the solid whose

graph has the steeper tangent line tends to gain energy spontaneously; therefore

we say that it has the lower temperature. Copyright c⇤2000, Addison-Wesley.
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Figure 3.2. Graphs of entropy vs. energy (or happiness vs. money) for a “normal”

system that becomes hotter (more generous) as it gains energy; a “miserly” system

that becomes colder (less generous) as it gains energy; and an “enlightened” system

that doesn’t want to gain energy at all. Copyright c⇤2000, Addison-Wesley.
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Figure 3.3. Graphs of entropy vs. energy for two objects. Copyright

c⇤2000, Addison-Wesley.



A B

500 K 300 K

1500 J

∆SA = −3 J/K ∆SB = +5 J/K

Figure 3.4. When 1500 J of heat leaves a 500 K object, its entropy decreases by

3 J/K. When this same heat enters a 300 K object, its entropy increases by 5 J/K.

Copyright c⇤2000, Addison-Wesley.
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Figure 3.5. Each unit of heat energy (Q) that leaves a hot object is required to

carry some entropy (Q/T ) with it. When it enters a cooler object, the amount of

entropy has increased. Copyright c⇤2000, Addison-Wesley.
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Figure 3.6. A two-state paramagnet, consisting of N microscopic magnetic

dipoles, each of which is either “up” or “down” at any moment. The dipoles

respond only to the influence of the external magnetic field B; they do not interact

with their neighbors (except to exchange energy). Copyright c⇤2000, Addison-

Wesley.



Figure 3.7. The energy levels of a single

dipole in an ideal two-state paramagnet are

�µB (for the “up” state) and +µB (for the

“down” state). Copyright c⇤2000, Addison-

Wesley.
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N⇤ U/µB M/Nµ � S/k kT/µB C/Nk

100 �100 1.00 1 0 0 —
99 �98 .98 100 4.61 .47 .074
98 �96 .96 4950 8.51 .54 .310
97 �94 .94 1.6⇥ 105 11.99 .60 .365

...
...

...
...

...
...

...
52 �4 .04 9.3⇥ 1028 66.70 25.2 .001
51 �2 .02 9.9⇥ 1028 66.76 50.5 —
50 0 0 1.0⇥ 1029 66.78 ⌅ —
49 2 �.02 9.9⇥ 1028 66.76 �50.5 —
48 4 �.04 9.3⇥ 1028 66.70 �25.2 .001

...
...

...
...

...
...

...
1 98 �.98 100 4.61 �.47 .074
0 100 �1.00 1 0 0 —

Table 3.2. Thermodynamic properties of a two-state paramagnet consisting of 100

elementary dipoles. Microscopic physics determines the energy U and total magne-

tization M in terms of the number of dipoles pointing up, N⇤. The multiplicity ⇤
is calculated from the combinatoric formula 3.27, while the entropy S is k ln⇤.

The last two columns show the temperature and the heat capacity, calculated by

taking derivatives as explained in the text. Copyright c⇤2000, Addison-Wesley.
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Figure 3.8. Entropy as a function of energy for a two-state paramagnet consisting

of 100 elementary dipoles. Copyright c⇤2000, Addison-Wesley.



Figure 3.9. Temperature as a

function of energy for a two-state

paramagnet. (This graph was plot-

ted from the analytic formulas de-

rived later in the text; a plot of the

data in Table 3.2 would look sim-

ilar but less smooth.) Copyright

c⇤2000, Addison-Wesley.
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Figure 3.10. Heat capacity and magnetization of a two-state paramagnet (com-

puted from the analytic formulas derived later in the text). Copyright c⇤2000,

Addison-Wesley.
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Figure 3.11. The hyperbolic tangent function. In the formulas for the energy

and magnetization of a two-state paramagnet, the argument x of the hyperbolic

tangent is µB/kT . Copyright c⇤2000, Addison-Wesley.
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Figure 3.12. Experimental measurements of the magnetization of the organic

free radical “DPPH” (in a 1:1 complex with benzene), taken at B = 2.06 T and

temperatures ranging from 300 K down to 2.2 K. The solid curve is the prediction

of equation 3.32 (with µ = µB), while the dashed line is the prediction of Curie’s

law for the high-temperature limit. (Because the e⌅ective number of elementary

dipoles in this experiment was uncertain by a few percent, the vertical scale of

the theoretical graphs has been adjusted to obtain the best fit.) Adapted from P.

Grobet, L. Van Gerven, and A. Van den Bosch, Journal of Chemical Physics 68,

5225 (1978). Copyright c⇤2000, Addison-Wesley.



UA, VA, SA UB , VB , SB

Figure 3.13. Two systems that can exchange both energy and volume with each

other. The total energy and total volume are fixed. Copyright c⇤2000, Addison-

Wesley.
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Figure 3.14. A graph of entropy vs. UA and VA for the system shown in Fig-

ure 3.13. The equilibrium values of UA and VA are where the graph reaches its

highest point. Copyright c⇤2000, Addison-Wesley.



Figure 3.15. To compute the change

in entropy when both U and V change,

consider the process in two steps: chang-

ing U while holding V fixed, then chang-

ing V while holding U fixed. Copyright

c⇤2000, Addison-Wesley.
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Figure 3.16. Two types of non-quasistatic volume changes: very fast compression

that creates internal disequilibrium, and free expansion into a vacuum. Copyright

c⇤2000, Addison-Wesley.
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Figure 3.17. A crude model of a rubber band as a chain in which each link can

only point left or right. Copyright c⇤2000, Addison-Wesley.



UA, NA, SA UB , NB , SB

Figure 3.18. Two systems that can exchange both energy and particles. Copy-

right c⇤2000, Addison-Wesley.
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Figure 3.19. Particles tend to flow toward lower

values of the chemical potential, even if both values

are negative. Copyright c⇤2000, Addison-Wesley.



N = 3, q = 3, Ω = 10 N = 4, q = 2, Ω = 10

Figure 3.20. In order to add an oscillator (represented by a box) to this very small

Einstein solid while holding the entropy (or multiplicity) fixed, we must remove

one unit of energy (represented by a dot). Copyright c⇤2000, Addison-Wesley.



Type of Exchanged Governing
interaction quantity variable Formula

thermal energy temperature
1
T

=
�

⇥S

⇥U

⇥

V,N

mechanical volume pressure
P

T
=

�
⇥S

⇥V

⇥

U,N

di⇥usive particles chemical potential
µ

T
= �

�
⇥S

⇥N

⇥

U,V

Table 3.3. Summary of the three types of interactions considered in this chapter,

and the associated variables and partial-derivative relations. Copyright c⇤2000,

Addison-Wesley.



4 Engines and Refrigerators

Figure 4.1. Energy-flow diagram

for a heat engine. Energy enters

as heat from the hot reservoir, and

leaves both as work and as waste

heat expelled to the cold reservoir.

Copyright c⇤2000, Addison-Wesley.
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Qh
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(d)

Figure 4.2. The four steps of a Carnot cycle: (a) isothermal expansion at Th
while absorbing heat; (b) adiabatic expansion to Tc; (c) isothermal compression

at Tc while expelling heat; and (d) adiabatic compression back to Th. The system

must be put in thermal contact with the hot reservoir during step (a) and with

the cold reservoir during step (c). Copyright c⇤2000, Addison-Wesley.
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Figure 4.3. PV diagram for an

ideal monatomic gas undergoing a

Carnot cycle. Copyright c⇤2000,

Addison-Wesley.



Figure 4.4. Energy-flow di-

agram for a refrigerator or air

conditioner. For a kitchen

refrigerator, the space inside

it is the cold reservoir and

the space outside it is the

hot reservoir. An electrically

powered compressor supplies

the work. Copyright c⇤2000,

Addison-Wesley.
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Figure 4.5. The idealized Otto

cycle, an approximation of what

happens in a gasoline engine. In

real engines the compression ratio

V1/V2 is larger than shown here,

typically 8 or 10. Copyright c⇤2000,

Addison-Wesley.
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Figure 4.6. PV diagram for the

Diesel cycle. Copyright c⇤2000,

Addison-Wesley.
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Figure 4.7. A Stirling engine, shown during the power stroke when the hot piston

is moving outward and the cold piston is at rest. (For simplicity, the linkages

between the two pistons are not shown.) Copyright c⇤2000, Addison-Wesley.
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Figure 4.8. Schematic diagram of a steam engine and the associated PV cycle

(not to scale), called the Rankine cycle. The dashed lines show where the fluid

is liquid water, where it is steam, and where it is part water and part steam.

Copyright c⇤2000, Addison-Wesley.



T P Hwater Hsteam Swater Ssteam

(⇥C) (bar) (kJ) (kJ) (kJ/K) (kJ/K)
0 0.006 0 2501 0 9.156

10 0.012 42 2520 0.151 8.901
20 0.023 84 2538 0.297 8.667
30 0.042 126 2556 0.437 8.453
50 0.123 209 2592 0.704 8.076

100 1.013 419 2676 1.307 7.355

Table 4.1. Properties of saturated water/steam. Pressures are given in bars,

where 1 bar = 10
5

Pa ⌅ 1 atm. All values are for 1 kg of fluid, and are measured

relative to liquid water at the triple point (0.01
⇥
C and 0.006 bar). Excerpted from

Keenan et al. (1978). Copyright c⇤2000, Addison-Wesley.



Temperature (⇥C)
P (bar) 200 300 400 500 600

1.0 H (kJ) 2875 3074 3278 3488 3705
S (kJ/K) 7.834 8.216 8.544 8.834 9.098

3.0 H (kJ) 2866 3069 3275 3486 3703
S (kJ/K) 7.312 7.702 8.033 8.325 8.589

10 H (kJ) 2828 3051 3264 3479 3698
S (kJ/K) 6.694 7.123 7.465 7.762 8.029

30 H (kJ) 2994 3231 3457 3682
S (kJ/K) 6.539 6.921 7.234 7.509

100 H (kJ) 3097 3374 3625
S (kJ/K) 6.212 6.597 6.903

300 H (kJ) 2151 3081 3444
S (kJ/K) 4.473 5.791 6.233

Table 4.2. Properties of superheated steam. All values are for 1 kg of fluid, and

are measured relative to liquid water at the triple point. Excerpted from Keenan

et al. (1978). Copyright c⇤2000, Addison-Wesley.
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Figure 4.9. A schematic drawing and PV diagram (not to scale) of the standard

refrigeration cycle. The dashed lines indicate where the refrigerant is liquid, gas,

and a combination of the two. Copyright c⇤2000, Addison-Wesley.



Pi Pf

Figure 4.10. The throttling process, in which a fluid is pushed through a porous

plug and then expands into a region of lower pressure. Copyright c⇤2000, Addison-

Wesley.



P T Hliquid Hgas Sliquid Sgas

(bar) (⇥C) (kJ) (kJ) (kJ/K) (kJ/K)
1.0 �26.4 16 231 0.068 0.940
1.4 �18.8 26 236 0.106 0.932
2.0 �10.1 37 241 0.148 0.925
4.0 8.9 62 252 0.240 0.915
6.0 21.6 79 259 0.300 0.910
8.0 31.3 93 264 0.346 0.907

10.0 39.4 105 268 0.384 0.904
12.0 46.3 116 271 0.416 0.902

Table 4.3. Properties of the refrigerant HFC-134a under saturated conditions (at

its boiling point for each pressure). All values are for 1 kg of fluid, and are measured

relative to an arbitrarily chosen reference state, the saturated liquid at �40
⇥
C.

Excerpted from Moran and Shapiro (1995). Copyright c⇤2000, Addison-Wesley.



Temperature (⇥C)
P (bar) 40 50 60

8.0 H (kJ) 274 284 295
S (kJ/K) 0.937 0.971 1.003

10.0 H (kJ) 269 280 291
S (kJ/K) 0.907 0.943 0.977

12.0 H (kJ) 276 287
S (kJ/K) 0.916 0.953

Table 4.4. Properties of superheated (gaseous) refrigerant HFC-134a. All values

are for 1 kg of fluid, and are measured relative to the same reference state as in

Table 4.3. Excerpted from Moran and Shapiro (1995). Copyright c⇤2000, Addison-

Wesley.
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Figure 4.11. Schematic diagram of the Hampson-Linde cycle for gas liquefaction.

Compressed gas is first cooled (to room temperature is su⇧cient if it is nitrogen

or oxygen) and then passed through a heat exchanger on its way to a throttling

valve. The gas cools upon throttling and returns through the heat exchanger to

further cool the incoming gas. Eventually the incoming gas becomes cold enough

to partially liquefy upon throttling. From then on, new gas must be added at the

compressor to replace what is liquefied. Copyright c⇤2000, Addison-Wesley.



Figure 4.12. Lines of constant

enthalpy (approximately hori-

zontal, at intervals of 400 J/mol)

and inversion curve (dashed) for

hydrogen. In a throttling pro-

cess the enthalpy is constant,

so cooling occurs only to the

left of the inversion curve, where

the enthalpy lines have posi-

tive slopes. The heavy solid

line at lower-left is the liquid-

gas phase boundary. Data from

Vargaftik (1975) and Woolley

et al. (1948). Copyright c⇤2000,

Addison-Wesley.
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Temperature (K)
77 (liq.) 77 (gas) 100 200 300 400 500 600

1 bar �3407 2161 2856 5800 8717 11,635 14,573 17,554
100 bar �1946 4442 8174 11,392 14,492 17,575

Table 4.5. Molar enthalpy of nitrogen (in joules) at 1 bar and 100 bars.

Excerpted from Lide (1994). Copyright c⇤2000, Addison-Wesley.



Figure 4.13. Schematic diagram of a

helium dilution refrigerator. The work-

ing substance is
3
He (light gray), which

circulates counter-clockwise. The
4
He

(dark gray) does not circulate. Copy-

right c⇤2000, Addison-Wesley.
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Figure 4.14. Entropy as a function of temperature for an ideal two-state para-

magnet, at two di⌅erent values of the magnetic field strength. (These curves were

plotted from the formula derived in Problem 3.23.) The magnetic cooling process

consists of an isothermal increase in the field strength (step 1), followed by an

adiabatic decrease (step 2). Copyright c⇤2000, Addison-Wesley.



Laser

Figure 4.15. An atom that continually absorbs and reemits laser light feels a

force from the direction of the laser, because the absorbed photons all come from

the same direction while the emitted photons come out in all directions. Copyright

c⇤2000, Addison-Wesley.



5 Free Energy and
Chemical Thermodynamics

Figure 5.1. To create a rabbit out of nothing and place it on the table, the

magician need not summon up the entire enthalpy, H = U + PV . Some energy,

equal to TS, can flow in spontaneously as heat; the magician must provide only

the di⌅erence, G = H � TS, as work. Drawing by Karen Thurber. Copyright

c⇤2000, Addison-Wesley.



Figure 5.2. To get H from U or G from F ,

add PV ; to get F from U or G from H, sub-

tract TS. Copyright c⇤2000, Addison-Wesley.
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Figure 5.3. To separate water into hydrogen and oxygen, just run an electric

current through it. In this home experiment the electrodes are mechanical pencil

leads (graphite). Bubbles of hydrogen (too small to see) form at the negative

electrode (left) while bubbles of oxygen form at the positive electrode (right).

Copyright c⇤2000, Addison-Wesley.



∆G = 237 kJ
(electrical work)

P ∆V = 4 kJ (pushing
atmosphere away)

T ∆S = 49 kJ
(heat)

∆U = 282 kJ

System

Figure 5.4. Energy-flow diagram for electrolysis of one mole of water. Under ideal

conditions, 49 kJ of energy enter as heat (T⇥S), so the electrical work required is

only 237 kJ: ⇥G = ⇥H � T⇥S. The di⌅erence between ⇥H and ⇥U is P⇥V =

4 kJ, the work done to make room for the gases produced. Copyright c⇤2000,

Addison-Wesley.
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H2 O2
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Figure 5.5. In a hydrogen fuel

cell, hydrogen and oxygen gas

pass through porous electrodes

and react to form water, remov-

ing electrons from one electrode

and depositing electrons on the

other. Copyright c⇤2000, Addison-

Wesley.



(electrical work)
(heat)

394 kJ
78 kJ

∆U = −316 kJ

Figure 5.6. Energy-flow diagram for a lead-acid cell operating ideally. For each

mole that reacts, the system’s energy decreases by 316 kJ and its entropy increases

by 260 J/K. Because of the entropy increase, the system can absorb 78 kJ of heat

from the environment; the maximum work performed is therefore 394 kJ. (Because

no gases are involved in this reaction, volume changes are negligible so ⇥U ⌅ ⇥H
and ⇥F ⌅ ⇥G.) Copyright c⇤2000, Addison-Wesley.



I

Figure 5.7. A long solenoid, surrounding a magnetic specimen, connected

to a power supply that can change the current, performing magnetic work.

Copyright c⇤2000, Addison-Wesley.



Figure 5.8. For a system that can exchange

energy with its environment, the total en-

tropy of both tends to increase. Copyright

c⇤2000, Addison-Wesley.
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V , U , S, P , T 2V , 2U , 2S, P , T

Figure 5.9. Two rabbits have twice as much volume, energy, and entropy as

one rabbit, but not twice as much pressure or temperature. Drawing by Karen

Thurber. Copyright c⇤2000, Addison-Wesley.



System

Figure 5.10. When you add a particle

to a system, holding the temperature and

pressure fixed, the system’s Gibbs free

energy increases by µ. Copyright c⇤2000,

Addison-Wesley.
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300 85.84 25.30
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Figure 5.11. Phase diagram for H2O (not to scale). The table gives the vapor

pressure and molar latent heat for the solid-gas transformation (first three entries)

and the liquid-gas transformation (remaining entries). Data from Keenan et al.

(1978) and Lide (1994). Copyright c⇤2000, Addison-Wesley.
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Figure 5.12. Phase diagram for carbon dioxide (not to scale). The table gives the

vapor pressure along the solid-gas and liquid-gas equilibrium curves. Data from

Lide (1994) and Reynolds (1979). Copyright c⇤2000, Addison-Wesley.



Solid

Liquid

Gas

4He

Helium I

Helium II

T (K)4.2 5.2

1

2.2

25.3
34

3.2 3.3

(superfluid)

Solid

Gas

T (K)

P
(b

ar
)

1

3He

P
(b

ar
)

(normal liquid)

Figure 5.13. Phase diagrams of
4
He (left) and

3
He (right). Neither diagram is

to scale, but qualitative relations between the diagrams are shown correctly. Not

shown are the three di⌅erent solid phases (crystal structures) of each isotope, or

the superfluid phases of
3
He below 3 mK. Copyright c⇤2000, Addison-Wesley.
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Figure 5.14. Left: Phase diagram for a typical type-I superconductor. For lead,

Tc = 7.2 K and Bc = 0.08 T. Right: Phase diagram for a ferromagnet, assuming

that the applied field and magnetization are always along a given axis. Copyright

c⇤2000, Addison-Wesley.
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Figure 5.15. Molar Gibbs free energies of diamond and graphite as functions of

pressure, at room temperature. These straight-line graphs are extrapolated from

low pressures, neglecting the changes in volume as pressure increases. Copyright

c⇤2000, Addison-Wesley.



Figure 5.16. Infinitesimal changes in

pressure and temperature, related in such

a way as to remain on the phase bound-

ary. Copyright c⇤2000, Addison-Wesley.
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Figure 5.17. The experimen-

tal phase diagram of carbon.

The stability region of the gas

phase is not visible on this scale;

the graphite-liquid-gas triple

point is at the bottom of the

graphite-liquid phase boundary,

at 110 bars pressure. From

David A. Young, Phase Dia-
grams of the Elements (Univer-

sity of California Press, Berke-

ley, 1991). Copyright c⇤2000,

Addison-Wesley.



Figure 5.18. Cumulus clouds form when rising air expands adiabatically

and cools to the dew point (Problem 5.44); the onset of condensation slows

the cooling, increasing the tendency of the air to rise further (Problem 5.45).

These clouds began to form in late morning, in a sky that was clear only

an hour before the photo was taken. By mid-afternoon they had developed

into thunderstorms. Copyright c⇤2000, Addison-Wesley.



Figure 5.19. When two molecules come very close together they repel each other

strongly. When they are a short distance apart they attract each other. Copyright

c⇤2000, Addison-Wesley.
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Figure 5.20. Isotherms (lines of constant temperature) for a van der Waals fluid.

From bottom to top, the lines are for 0.8, 0.9, 1.0, 1.1, and 1.2 times Tc, the

temperature at the critical point. The axes are labeled in units of the pressure

and volume at the critical point; in these units the minimum volume (Nb) is 1/3.

Copyright c⇤2000, Addison-Wesley.
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Figure 5.21. Gibbs free energy as a function of pressure for a van der Waals fluid

at T = 0.9Tc. The corresponding isotherm is shown at right. States in the range

2-3-4-5-6 are unstable. Copyright c⇤2000, Addison-Wesley.



Figure 5.22. The same isotherm

as in Figure 5.21, plotted sideways.

Regions A and B have equal areas.

Copyright c⇤2000, Addison-Wesley.
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Figure 5.23. Complete phase diagrams predicted by the van der Waals model.

The isotherms shown at left are for T/Tc ranging from 0.75 to 1.1 in increments

of 0.05. In the shaded region the stable state is a combination of gas and liquid.

The full vapor pressure curve is shown at right. All axes are labeled in units of

the critical values. Copyright c⇤2000, Addison-Wesley.



A B Mixed

Figure 5.24. A collection of two types of molecules, before and after mixing.

Copyright c⇤2000, Addison-Wesley.
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Figure 5.25. Before mixing, the free energy of a collection of A and B molecules

is a linear function of x = NB/(NA + NB). After mixing it is a more complicated

function; shown here is the case of an “ideal” mixture, whose entropy of mixing

is shown at right. Although it isn’t obvious on this scale, the graphs of both

⇥Smixing and G (after mixing) have vertical slopes at the endpoints. Copyright

c⇤2000, Addison-Wesley.
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Figure 5.26. Mixing A and B can often increase the energy of the system; shown

at left is the simple case where the mixing energy is a quadratic function (see

Problem 5.58). Shown at right is the free energy in this case, at four di⌅erent

temperatures. Copyright c⇤2000, Addison-Wesley.
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a and b
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Figure 5.27. To construct the

equilibrium free energy curve,

draw the lowest possible straight

line across the concave-down sec-

tion, tangent to the curve at

both ends. At compositions

between the tangent points the

mixture will spontaneously sep-

arate into phases whose compo-

sitions are xa and xb, in order to

lower its free energy. Copyright

c⇤2000, Addison-Wesley.
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Figure 5.28. Left: Phase diagram for the simple model system whose mixing

energy is plotted in Figure 5.26. Right: Experimental data for a real system, water

+ phenol, that shows qualitatively similar behavior. Adapted with permission from

Alan N. Campbell and A. Jean R. Campbell, Journal of the American Chemical
Society 59, 2481 (1937). Copyright 1937 American Chemical Society. Copyright

c⇤2000, Addison-Wesley.



Figure 5.29. Free energy graphs

for a mixture of two solids with dif-

ferent crystal structures, � and ⇥.

Again, the lowest possible straight

connecting line indicates the range

of compositions where an unmixed

combination of a and b phases is

more stable than a homogeneous

mixture. Copyright c⇤2000, Addison-

Wesley.
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Figure 5.30. The five graphs at left show the liquid and gas free energies of an

ideal mixture at temperatures above, below, at, and between the boiling points

TA and TB . Three graphs at intermediate temperatures are shown at right, along

with the construction of the phase diagram. Copyright c⇤2000, Addison-Wesley.



Liquid

Gas

92

0

Pure N2 Pure O2

T
(K

)

90

88

86

84

82

80

78

76
0.2 0.4 0.6 0.8 1.0

x

Figure 5.31. Experimental phase diagram for nitrogen and oxygen at atmospheric

pressure. Data from International Critical Tables (volume 3), with endpoints ad-

justed to values in Lide (1994). Copyright c⇤2000, Addison-Wesley.



Solid

Liquid

0.2

1100

Albite Anorthite

T
(◦

C
)

0.4 0.6 0.8 1.00.0

1200

1300

1400

1500

1600

x

Figure 5.32. The phase diagram of plagioclase feldspar (at atmospheric

pressure). From N. L. Bowen, “The Melting Phenomena of the Plagioclase

Feldspars,” American Journal of Science 35, 577–599 (1913). Copyright

c⇤2000, Addison-Wesley.
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Figure 5.33. Construction of the phase diagram of a eutectic system from free

energy graphs. Copyright c⇤2000, Addison-Wesley.
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Figure 5.34. Phase diagram for mixtures of tin and lead. From Thaddeus B.

Massalski, ed., Binary Alloy Phase Diagrams, second edition (ASM International,

Materials Park, OH, 1990). Copyright c⇤2000, Addison-Wesley.
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Figure 5.35. Free energy diagrams for Problems 5.71 and 5.72. Copyright

c⇤2000, Addison-Wesley.



Figure 5.36. A dilute solution, in which

the solute is much less abundant than

the solvent. Copyright c⇤2000, Addison-

Wesley.



SolutionPure solvent

Semipermeable
membrane Figure 5.37. When a solution

is separated by a semipermeable

membrane from pure solvent at

the same temperature and pres-

sure, solvent will spontaneously

flow into the solution. Copy-

right c⇤2000, Addison-Wesley.



P1 P2

Figure 5.38. To prevent osmosis, P2 must exceed P1 by an amount called the

osmotic pressure. Copyright c⇤2000, Addison-Wesley.



∆h

Figure 5.39. An experimental arrange-

ment for measuring osmotic pressure.

Solvent flows across the membrane from

left to right until the di⌅erence in fluid

level, ⇥h, is just enough to supply the

osmotic pressure. Copyright c⇤2000,

Addison-Wesley.



Figure 5.40. The presence of a solute reduces

the tendency of a solvent to evaporate. Copyright

c⇤2000, Addison-Wesley.



Figure 5.41. If reactants

and products remained sep-

arate, the free energy would

be a linear function of the

extent of the reaction. With

mixing, however, G has a

minimum somewhere be-

tween x = 0 and x = 1.

Copyright c⇤2000, Addison-

Wesley.
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Figure 5.42. The dissolution of a gas in a liq-

uid, such as oxygen in water, can be treated as a

chemical reaction with its own equilibrium con-

stant. Copyright c⇤2000, Addison-Wesley.



6 Boltzmann Statistics

“System”
Energy = E

“Reservoir”
Energy = UR

Temperature = T

Figure 6.1. A “system” in thermal contact with a much larger “reservoir” at

some well-defined temperature. Copyright c⇤2000, Addison-Wesley.
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Figure 6.2. Energy level diagram for a hydrogen atom, showing the three lowest

energy levels. There are four independent states with energy �3.4 eV, and nine

independent states with energy �1.5 eV. Copyright c⇤2000, Addison-Wesley.
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Figure 6.3. Bar graph of the relative probabilities of the states of a hypothetical

system. The horizontal axis is energy. The smooth curve represents the Boltzmann

distribution, equation 6.8, for one particular temperature. At lower temperatures

it would fall o⌅ more suddenly, while at higher temperatures it would fall o⌅ more

gradually. Copyright c⇤2000, Addison-Wesley.



HHHFe FeCa Ca Mg

16 Cyg A

γ UMa

5800 K

9500 K

H H

400 420 440 460 480380

Wavelength (nm)

Figure 6.4. Photographs of the spectra of two stars. The upper spectrum is of

a sunlike star (in the constellation Cygnus) with a surface temperature of about

5800 K; notice that the hydrogen absorption lines are clearly visible among a

number of lines from other elements. The lower spectrum is of a hotter star (in Ursa

Major, the Big Dipper), with a surface temperature of 9500 K. At this temperature

a much larger fraction of the hydrogen atoms are in their first excited states, so

the hydrogen lines are much more prominent than any others. Reproduced with

permission from Helmut A. Abt et al., An Atlas of Low-Dispersion Grating Stellar
Spectra (Kitt Peak National Observatory, Tucson, AZ, 1968). Copyright c⇤2000,

Addison-Wesley.



Figure 6.5. Five hypothetical atoms distributed

among three di⌅erent states. Copyright c⇤2000,

Addison-Wesley.
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Figure 6.6. Energy level dia-

gram for the rotational states

of a diatomic molecule. Copy-

right c⇤2000, Addison-Wesley.
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Figure 6.7. Bar-graph representations of the partition sum 6.30, for two di⌅erent

temperatures. At high temperatures the sum can be approximated as the area

under a smooth curve. Copyright c⇤2000, Addison-Wesley.



q

∆q

Figure 6.8. To count states over a continuous variable q, pretend that they’re

discretely spaced, separated by ⇥q. Copyright c⇤2000, Addison-Wesley.



q

Boltzmann factor, e−βcq2

Figure 6.9. The partition function is the area under a bar graph whose height

is the Boltzmann factor, e��cq2
. To calculate this area, we pretend that the bar

graph is a smooth curve. Copyright c⇤2000, Addison-Wesley.



Figure 6.10. A one-dimensional potential

well. The higher the temperature, the far-

ther the particle will stray from the equi-

librium point. Copyright c⇤2000, Addison-

Wesley.
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Figure 6.11. A graph of the relative probabilities for a gas molecule to have

various speeds. More precisely, the vertical scale is defined so that the area under

the graph within any interval equals the probability of the molecule having a speed

in that interval. Copyright c⇤2000, Addison-Wesley.
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Figure 6.12. In “velocity space”

each point represents a possible

velocity vector. The set of all vec-

tors for a given speed v lies on the

surface of a sphere with radius v.

Copyright c⇤2000, Addison-Wesley.
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Figure 6.13. The Maxwell speed distribution falls o⌅ as v ⌃ 0 and as v ⌃ ⌥.

The average speed is slightly larger than the most likely speed, while the rms speed

is a bit larger still. Copyright c⇤2000, Addison-Wesley.



U fixed T fixed

S = k ln Ω F = −kT ln Z

Figure 6.14. For an isolated system (left), S tends to increase. For a system at

constant temperature (right), F tends to decrease. Like S, F can be written as

the logarithm of a statistical quantity, in this case Z. Copyright c⇤2000, Addison-

Wesley.
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Figure 6.15. Interchanging the states of two indistinguishable particles leaves

the system in the same state as before. Copyright c⇤2000, Addison-Wesley.
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Figure 6.16. The three lowest-energy wavefunctions for a particle confined to a

one-dimensional box. Copyright c⇤2000, Addison-Wesley.



7 Quantum Statistics
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E, N

“Reservoir”
UR, NR

T , µ

Figure 7.1. A system in thermal and di⌅usive contact with a much larger reser-

voir, whose temperature and chemical potential are e⌅ectively constant. Copyright

c⇤2000, Addison-Wesley.
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Figure 7.2. A single heme site can be unoccupied, occupied by oxygen, or occu-

pied by carbon monoxide. (The energy values are only approximate.) Copyright

c⇤2000, Addison-Wesley.



Figure 7.3. A simple model of five

single-particle states, with two particles

that can occupy these states. Copyright

c⇤2000, Addison-Wesley.



Normal gas, V/N ! vQ Quantum gas, V/N ≈ vQ

Figure 7.4. In a normal gas, the space between particles is much greater than the

typical size of a particle’s wavefunction. When the wavefunctions begin to “touch”

and overlap, we call it a quantum gas. Copyright c⇤2000, Addison-Wesley.



System

Reservoir

Figure 7.5. To treat a quantum gas using Gibbs factors, we consider a “system”

consisting of one single-particle state (or wavefunction). The “reservoir” consists

of all the other possible single-particle states. Copyright c⇤2000, Addison-Wesley.
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Figure 7.6. The Fermi-Dirac distribution goes to 1 for very low-energy states

and to zero for very high-energy states. It equals 1/2 for a state with energy µ,

falling o⌅ suddenly for low T and gradually for high T . (Although µ is fixed on

this graph, in the next section we’ll see that µ normally varies with temperature.)

Copyright c⇤2000, Addison-Wesley.
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Figure 7.7. Comparison of the Fermi-Dirac, Bose-Einstein, and Boltzmann distri-

butions, all for the same value of µ. When (⇤�µ)/kT ⇧ 1, the three distributions

become equal. Copyright c⇤2000, Addison-Wesley.
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Figure 7.8. A representation of

the system states of a fermionic sys-

tem with evenly spaced, nondegen-

erate energy levels. A filled dot rep-

resents an occupied single-particle

state, while a hollow dot represents

an unoccupied single-particle state.

Copyright c⇤2000, Addison-Wesley.
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Figure 7.9. At T = 0, the Fermi-Dirac distribution equals 1 for all states with

⇤ < µ and equals 0 for all states with ⇤ > µ. Copyright c⇤2000, Addison-Wesley.



Figure 7.10. Each triplet of

integers (nx, ny, nz) represents

a pair of definite-energy elec-

tron states (one with each spin

orientation). The set of all in-

dependent states fills the posi-

tive octant of n-space. Copy-

right c⇤2000, Addison-Wesley.
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Figure 7.11. In spherical coordinates (n, ⇧, �), the infinitesimal volume element

is (dn)(n d⇧)(n sin ⇧ d�). Copyright c⇤2000, Addison-Wesley.



Figure 7.12. The double star system Sir-

ius A and B. Sirius A (greatly overexposed

in the photo) is the brightest star in our

night sky. Its companion, Sirius B, is hot-

ter but very faint, indicating that it must

be extremely small—a white dwarf. From

the orbital motion of the pair we know

that Sirius B has about the same mass as

our sun. (UCO/Lick Observatory photo.)

Copyright c⇤2000, Addison-Wesley.
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g(ε)

ε

Figure 7.13. Density of states for a system of noninteracting, nonrelativistic

particles in a three-dimensional box. The number of states within any energy

interval is the area under the graph. For a Fermi gas at T = 0, all states with

⇤ < ⇤F are occupied while all states with ⇤ > ⇤F are unoccupied. Copyright c⇤2000,

Addison-Wesley.



µ εF

g(ε)nFD(ε)

g(ε)

ε

Figure 7.14. At nonzero T , the number of fermions per unit energy is given by

the density of states times the Fermi-Dirac distribution. Because increasing the

temperature does not change the total number of fermions, the two lightly shaded

areas must be equal. Since g(⇤) is greater above ⇤F than below, this means that the

chemical potential decreases as T increases. This graph is drawn for T/TF = 0.1; at

this temperature µ is about 1% less than ⇤F. Copyright c⇤2000, Addison-Wesley.



Figure 7.15. The derivative of the

Fermi-Dirac distribution is negligible

everywhere except within a few kT
of µ. Copyright c⇤2000, Addison-Wesley.
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Figure 7.16. Chemical potential of a noninteracting, nonrelativistic Fermi gas

in a three-dimensional box, calculated numerically as described in Problem 7.32.

At low temperatures µ is given approximately by equation 7.66, while at high

temperatures µ becomes negative and approaches the form for an ordinary gas

obeying Boltzmann statistics. Copyright c⇤2000, Addison-Wesley.
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Figure 7.17. The periodic potential of a crystal lattice results in a density-

of-states function consisting of “bands” (with many states) and “gaps”

(with no states). For an insulator or a semiconductor, the Fermi energy

lies in the middle of a gap so that at T = 0, the “valence band” is completely

full while the “conduction band” is completely empty. Copyright c⇤2000,

Addison-Wesley.



E = kT

Total energy = kT ·∞
E = kT

E = kT

Figure 7.18. We can analyze the electromagnetic field in a box as a superposition

of standing-wave modes of various wavelengths. Each mode is a harmonic oscil-

lator with some well-defined frequency. Classically, each oscillator should have an

average energy of kT . Since the total number of modes is infinite, so is the total

energy in the box. Copyright c⇤2000, Addison-Wesley.
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Figure 7.19. The Planck spectrum, plotted in terms of the dimensionless variable

x = ⇤/kT = hf/kT . The area under any portion of this graph, multiplied by

8⌥(kT )
4/(hc)3, equals the energy density of electromagnetic radiation within the

corresponding frequency (or photon energy) range; see equation 7.85. Copyright

c⇤2000, Addison-Wesley.
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Figure 7.20. Spectrum of the cosmic background radiation, as measured by the

Cosmic Background Explorer satellite. Plotted vertically is the energy density per

unit frequency, in SI units. Note that a frequency of 3 ⇥ 10
11

s
�1

corresponds

to a wavelength of ⌃ = c/f = 1.0 mm. Each square represents a measured data

point. The point-by-point uncertainties are too small to show up on this scale; the

size of the squares instead represents a liberal estimate of the uncertainty due to

systematic e⌅ects. The solid curve is the theoretical Planck spectrum, with the

temperature adjusted to 2.735 K to give the best fit. From J. C. Mather et al.,

Astrophysical Journal Letters 354, L37 (1990); adapted courtesy of NASA/GSFC

and the COBE Science Working Group. Subsequent measurements from this ex-

periment and others now give a best-fit temperature of 2.728±0.002 K. Copyright

c⇤2000, Addison-Wesley.
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Figure 7.21. When the temperature was

greater than the electron mass times c2/k, the

universe was filled with three types of radiation:

electrons and positrons (solid arrows); neutri-

nos (dashed); and photons (wavy). Bathed in

this radiation were a few protons and neutrons,

roughly one for every billion radiation particles.

Copyright c⇤2000, Addison-Wesley.



Figure 7.22. When you open a hole in

a container filled with radiation (here

a kiln), the spectrum of the light that

escapes is the same as the spectrum of

the light inside. The total amount of

energy that escapes is proportional to

the size of the hole and to the amount

of time that passes. Copyright c⇤2000,

Addison-Wesley.
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Figure 7.23. The photons that escape now were once somewhere within a hemi-

spherical shell inside the box. From a given point in this shell, the probability of

escape depends on the distance from the hole and the angle ⇧. Copyright c⇤2000,

Addison-Wesley.



Box of photons Blackbody

Figure 7.24. A thought experiment to demonstrate that a perfectly black surface

emits radiation identical to that emitted by a hole in a box of thermal photons.

Copyright c⇤2000, Addison-Wesley.



Sunlight
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Ground

Figure 7.25. Earth’s atmosphere is mostly transparent to incoming sunlight,

but opaque to the infrared light radiated upward by earth’s surface. If we model

the atmosphere as a single layer, then equilibrium requires that earth’s surface

receive as much energy from the atmosphere as from the sun. Copyright c⇤2000,

Addison-Wesley.
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n = 2
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n = 3√N

Figure 7.26. Modes of oscillation of a row of atoms in a crystal. If the crystal

is a cube, then the number of atoms along any row is
3�N . This is also the total

number of modes along this direction, because each “bump” in the wave form must

contain at least one atom. Copyright c⇤2000, Addison-Wesley.
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Figure 7.27. The sum in equation 7.106 is technically over a cube in n-space

whose width is
3�N . As an approximation, we instead sum over an eighth-sphere

with the same total volume. Copyright c⇤2000, Addison-Wesley.



Figure 7.28. Low-temperature

measurements of the heat capac-

ities (per mole) of copper, sil-

ver, and gold. Adapted with per-

mission from William S. Corak

et al., Physical Review 98, 1699

(1955). Copyright c⇤2000, Addison-

Wesley.
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Figure 7.29. The Debye prediction for the heat capacity of a solid, with the

prediction of the Einstein model plotted for comparison. The constant ⇤ in the

Einstein model has been chosen to obtain the best agreement with the Debye

model at high temperatures. Note that the Einstein curve is much flatter than the

Debye curve at low temperatures. Copyright c⇤2000, Addison-Wesley.
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wave:

Wavelength

Figure 7.30. In the ground state of a ferromagnet, all the elementary

dipoles point in the same direction. The lowest-energy excitations above

the ground state are spin waves, in which the dipoles precess in a conical

motion. A long-wavelength spin wave carries very little energy, because the

di⌅erence in direction between neighboring dipoles is very small. Copyright

c⇤2000, Addison-Wesley.
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Figure 7.31. The distribution of bosons as a function of energy is the product of

two functions, the density of states and the Bose-Einstein distribution. Copyright

c⇤2000, Addison-Wesley.
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Figure 7.32. Number of atoms in the ground state (N0) and in excited states,

for an ideal Bose gas in a three-dimensional box. Below Tc the number of atoms

in excited states is proportional to T 3/2
. Copyright c⇤2000, Addison-Wesley.
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Figure 7.33. Chemical potential of an ideal Bose gas in a three-dimensional

box. Below the condensation temperature, µ di⌅ers from zero by an amount that

is too small to show on this scale. Above the condensation temperature µ be-

comes negative; the values plotted here were calculated numerically as described

in Problem 7.69. Copyright c⇤2000, Addison-Wesley.
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Figure 7.34. Schematic representation of the energy scales involved in Bose-

Einstein condensation. The short vertical lines mark the energies of various single-

particle states. (Aside from growing closer together (on average) with increasing

energy, the locations of these lines are not quantitatively accurate.) The conden-

sation temperature (times k) is many times larger than the spacing between the

lowest energy levels, while the chemical potential, when T < Tc, is only a tiny

amount below the ground-state energy. Copyright c⇤2000, Addison-Wesley.



T = 200 nK T = 100 nK T ≈ 0

Figure 7.35. Evidence for Bose-Einstein condensation of rubidium-87 atoms.

These images were made by turning o⌅ the magnetic field that confined the atoms,

letting the gas expand for a moment, and then shining light on the expanded cloud

to map its distribution. Thus, the positions of the atoms in these images give a

measure of their velocities just before the field was turned o⌅. Above the conden-

sation temperature (left), the velocity distribution is broad and isotropic, in accord

with the Maxwell-Boltzmann distribution. Below the condensation temperature

(center), a substantial fraction of the atoms fall into a small, elongated region

in velocity space. These atoms make up the condensate; the elongation occurs

because the trap is narrower in the vertical direction, causing the ground-state

wavefunction to be narrower in position space and thus wider in velocity space.

At the lowest temperatures achieved (right), essentially all of the atoms are in the

ground-state wavefunction. From Carl E. Wieman, American Journal of Physics
64, 854 (1996). Copyright c⇤2000, Addison-Wesley.
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Figure 7.36. When most particles are in excited states, the Boltzmann factor for

the entire system is always very small (of order e�N
). For distinguishable particles,

the number of arrangements among these states is so large that system states of

this type are still very probable. For identical bosons, however, the number of

arrangements is much smaller. Copyright c⇤2000, Addison-Wesley.
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Figure 7.37. Heat capacity of an ideal Bose gas in a three-dimensional

box. Copyright c⇤2000, Addison-Wesley.



8 Systems of Interacting Particles
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Figure 8.1. Left: The Lennard-Jones intermolecular potential function, with a

strong repulsive region at small distances and a weak attractive region at somewhat

larger distances. Right: The corresponding Mayer f -function, for three di⌅erent

temperatures. Copyright c⇤2000, Addison-Wesley.
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Figure 8.2. Measurements of the second virial coe⇧cients of selected gases, com-

pared to the prediction of equation 8.36 with u(r) given by the Lennard-Jones

function. Note that the horizontal axis is logarithmic. The constants r0 and u0

have been chosen separately for each gas to give the best fit. For carbon diox-

ide, the poor fit is due to the asymmetric shape of the molecules. For hydrogen

and helium, the discrepancies at low temperatures are due to quantum e⌅ects.

Data from J. H. Dymond and E. B. Smith, The Virial Coe�cients of Pure Gases
and Mixtures: A Critical Compilation (Oxford University Press, Oxford, 1980).

Copyright c⇤2000, Addison-Wesley.



Figure 8.3. One of the many possible states

of a two-dimensional Ising model on a 10⇥ 10

square lattice. Copyright c⇤2000, Addison-

Wesley.



Figure 8.4. One particular state of an Ising model on a 4 ⇥
4 square lattice (Problem 8.15). Copyright c⇤2000, Addison-

Wesley.
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Figure 8.5. A one-dimensional Ising model with N elementary dipoles. Copyright

c⇤2000, Addison-Wesley.



Figure 8.6. The four neighbors of this particular

dipole have an average s value of (+1�3)/4 = �1/2.
If the central dipole points up, the energy due to its

interactions with its neighbors is +2⇤, while if it

points down, the energy is �2⇤. Copyright c⇤2000,

Addison-Wesley.
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Figure 8.7. Graphical solution of equation 8.50. The slope of the tanh function

at the origin is ⇥⇤n. When this quantity is less than 1, there is only one solution,

at s = 0; when this quantity is greater than 1, the s = 0 solution is unstable but

there are also two nontrivial stable solutions. Copyright c⇤2000, Addison-Wesley.



program ising Monte Carlo simulation of a 2D Ising

model using the Metropolis algorithm

size = 10 Width of square lattice

T = 2.5 Temperature in units of ⇤/k

initialize
for iteration = 1 to 100*size^2 do Main iteration loop

i = int(rand*size+1) Choose a random row number

j = int(rand*size+1) and a random column number

deltaU(i,j,Ediff) Compute ⇥U of hypothetical flip

if Ediff <= 0 then If flipping reduces the energy . . .

s(i,j) = -s(i,j) then flip it!

colorsquare(i,j)
else
if rand < exp(-Ediff/T) then otherwise the Boltzmann factor

s(i,j) = -s(i,j) gives the probability of flipping

colorsquare(i,j)
end if

end if
next iteration Now go back and start over . . .

end program

subroutine deltaU(i,j,Ediff) Compute ⇥U of flipping a dipole

(note periodic boundary conditions)

if i = 1 then top = s(size,j) else top = s(i-1,j)
if i = size then bottom = s(1,j) else bottom = s(i+1,j)
if j = 1 then left = s(i,size) else left = s(i,j-1)
if j = size then right = s(i,1) else right = s(i,j+1)
Ediff = 2*s(i,j)*(top+bottom+left+right)

end subroutine

subroutine initialize Initialize to a random array

for i = 1 to size
for j = 1 to size
if rand < .5 then s(i,j) = 1 else s(i,j) = -1
colorsquare(i,j)

next j
next i

end subroutine

subroutine colorsquare(i,j) Color a square according to s value

(implementation depends on system)

Figure 8.8. A pseudocode program to simulate a two-dimensional Ising model,

using the Metropolis algorithm. Copyright c⇤2000, Addison-Wesley.
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Figure 8.9. Graphical output from eight runs of the ising program, at succes-

sively lower temperatures. Each black square represents an “up” dipole and each

white square represents a “down” dipole. The variable T is the temperature in

units of ⇤/k. Copyright c⇤2000, Addison-Wesley.



Figure 8.10. A typical state generated by the ising program after a few billion

iterations on a 400⇥400 lattice at T = 2.27 (the critical temperature). Notice that

there are clusters of all possible sizes, from individual dipoles up to the size of the

lattice itself. Copyright c⇤2000, Addison-Wesley.



Figure 8.11. In a block spin transformation, we replace each block

of nine dipoles with a single dipole whose orientation is determined by

“majority rule.” Copyright c⇤2000, Addison-Wesley.
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Figure A.1. Two experiments to study the photoelectric e⌅ect. When an ideal

voltmeter (with essentially infinite resistance) is connected to the circuit, electrons

accumulate on the anode and repel other electrons; the voltmeter measures the

energy (per unit charge) that an electron needs in order to cross. When an ammeter

is connected, it measures the number of electrons (per unit time) that collect on the

anode and then circulate back to the cathode. Copyright c⇤2000, Addison-Wesley.



Laser

Figure A.2. In a two-slit interference experiment, monochromatic light (often

from a laser) is aimed at a pair of slits in a screen. An interference pattern of dark

and light bands appears on the viewing screen some distance away. Copyright

c⇤2000, Addison-Wesley.



Figure A.3. These images were produced using the beam of an electron micro-

scope. A positively charged wire was placed in the path of the beam, causing the

electrons to bend around either side and interfere as if they had passed through

a double slit. The current in the electron beam increases from one image to the

next, showing that the interference pattern is built up from the statistically dis-

tributed light flashes of individual electrons. From P. G. Merli, G. F. Missiroli,

and G. Pozzi, American Journal of Physics 44, 306 (1976). Copyright c⇤2000,

Addison-Wesley.
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Figure A.4. Wavefunctions for states in which a particle’s position is well de-

fined (at x = a and x = b, respectively). When a particle is in such a state, its

momentum is completely undefined. Copyright c⇤2000, Addison-Wesley.
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Figure A.5. Wavefunctions for states in which a particle’s momentum is well

defined (with small and large values, respectively). When a particle is in such a

state, its position is completely undefined. Copyright c⇤2000, Addison-Wesley.
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Figure A.6. A more complete illustration of the wavefunction of a particle with

well-defined momentum, showing both the “real” and “imaginary” parts of the

function. Copyright c⇤2000, Addison-Wesley.
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Figure A.7. Other possible wavefunctions for which neither the position nor the

momentum of the particle is well defined. Copyright c⇤2000, Addison-Wesley.
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∆x

Figure A.8. A wavepacket, for which both x and px are defined approximately

but not precisely. The “width” of the wavepacket is quantified by ⇥x, technically

the standard deviation of the square of the wavefunction. (As you can see, ⇥x is

actually a few times smaller than the “full” width.) Copyright c⇤2000, Addison-

Wesley.
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Figure A.9. A few of the lowest energy levels and corresponding definite-energy

wavefunctions for a particle in a one-dimensional box. Copyright c⇤2000, Addison-

Wesley.
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Figure A.10. A few of the lowest energy levels and corresponding wavefunctions

for a one-dimensional quantum harmonic oscillator. Copyright c⇤2000, Addison-

Wesley.
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Figure A.11. A portion of the emission spectrum of molecular nitrogen, N2. The

energy level diagram shows the transitions corresponding to the various spectral

lines. All of the lines shown are from transitions between the same pair of electronic

states. In either electronic state, however, the molecule can also have one or more

“units” of vibrational energy; these numbers are labeled at left. The spectral lines

are grouped according to the number of units of vibrational energy gained or lost.

The splitting within each group of lines occurs because the vibrational levels are

spaced farther apart in one electronic state than in the other. From Gordon M.

Barrow, Introduction to Molecular Spectroscopy (McGraw-Hill, New York, 1962).

Photo originally provided by J. A. Marquisee. Copyright c⇤2000, Addison-Wesley.
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Figure A.12. Energy level diagram for a hydrogen atom. The heavy curve is

the potential energy function, proportional to �1/r. In addition to the discretely

spaced negative-energy states, there is a continuum of positive-energy (ionized)

states. Copyright c⇤2000, Addison-Wesley.
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Figure A.13. A particle with well-defined |⌦L| and Lz has completely undefined

Lx and Ly, so we can visualize its angular momentum “vector” as a cone, smeared

over all possible Lx and Ly values. Shown here are the allowed states for  = 1

and  = 2. Copyright c⇤2000, Addison-Wesley.



Figure A.14. Enlargement of a portion of the N2 spectrum shown in Figure A.11,

covering approximately the range 370–390 nm. Each of the broad lines is actually

split into a “band” of many narrow lines, due to the multiplicity of rotational levels

for each vibrational level. From Gordon M. Barrow, Introduction to Molecular
Spectroscopy (McGraw-Hill, New York, 1962). Photo originally provided by J. A.

Marquisee. Copyright c⇤2000, Addison-Wesley.



B Mathematical Results
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Figure B.1. The Gaussian function e�x2
, whose integral from �⌥ to ⌥ is

�
⌥.

Copyright c⇤2000, Addison-Wesley.



Figure B.2. In polar coordinates, the

infinitesimal area element is (dr)(r d�).

Copyright c⇤2000, Addison-Wesley.
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Figure B.3. The gamma function, �(n). For positive integer arguments, �(n) =

(n�1)!. For positive nonintegers, �(n) can be computed from equation B.12, while

for negative nonintegers, �(n) can be computed from equation B.14. Copyright

c⇤2000, Addison-Wesley.
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Figure B.4. The area under the bar graph, up to any integer n, equals lnn!.

When n is large, this area can be approximated by the area under the smooth

curve of the logarithm function. Copyright c⇤2000, Addison-Wesley.
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Figure B.5. The function xne�x
(solid curve), plotted for n = 50. The area

under this curve is n!. The dashed curve shows the best Gaussian fit, whose area

gives Stirling’s approximation to n!. Copyright c⇤2000, Addison-Wesley.
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Figure B.6. To calculate the

area of a sphere, divide it into

loops and integrate. To calcu-

late the area of a hypersphere,

do the same thing. Copyright

c⇤2000, Addison-Wesley.
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Figure B.7. A square-wave function with period 2⌥ and amplitude ⌥/4. The

Fourier series for this function yields values of ⌅(n) when n is an even integer.

Copyright c⇤2000, Addison-Wesley.



Reference Data

Physical Constants

k = 1.381⇥ 10�23 J/K
= 8.617⇥ 10�5 eV/K

NA = 6.022⇥ 1023

R = 8.315 J/mol·K
h = 6.626⇥ 10�34 J·s

= 4.136⇥ 10�15 eV·s
c = 2.998⇥ 108 m/s

G = 6.673⇥ 10�11 N·m2/kg2

e = 1.602⇥ 10�19 C
me = 9.109⇥ 10�31 kg
mp = 1.673⇥ 10�27 kg

Unit Conversions

1 atm = 1.013 bar = 1.013⇥ 105 N/m2

= 14.7 lb/in2 = 760 mmHg
(T in ⇥C) = (T in K)� 273.15
(T in ⇥F) = 9

5 (T in ⇥C) + 32
1 ⇥R = 5

9 K
1 cal = 4.186 J

1 Btu = 1054 J
1 eV = 1.602⇥ 10�19 J
1 u = 1.661⇥ 10�27 kg



1
IA

18
VIIIA

1 H
Hydrogen

1.00794

2
IIA

13
IIIA

14
IVA

15
VA

16
VIA

17
VIIA

2 He
Helium

4.002602

3 Li
Lithium

6.941

4 Be
Beryllium

9.012182

Periodic Table of the Elements 5 B
Boron

10.811

6 C
Carbon

12.0107

7 N
Nitrogen

14.00674

8 O
Oxygen

15.9994

9 F
Fluorine

18.9984032

10 Ne
Neon

20.1797

11 Na
Sodium

22.989770

12 Mg
Magnesium

24.3050

3
IIIB

4
IVB

5
VB

6
VIB

7
VIIB

8 9
VIII

10 11
IB

12
IIB

13 Al
Aluminum

26.981538

14 Si
Silicon

28.0855

15 P
Phosph.

30.973761

16 S
Sulfur

32.066

17 Cl
Chlorine

35.4527

18 Ar
Argon

39.948

19 K
Potassium

39.0983

20 Ca
Calcium

40.078

21 Sc
Scandium

44.955910

22 Ti
Titanium

47.867

23 V
Vanadium

50.9415

24 Cr
Chromium

51.9961

25 Mn
Manganese

54.938049

26 Fe
Iron

55.845

27 Co
Cobalt

58.933200

28 Ni
Nickel

58.6934

29 Cu
Copper

63.546

30 Zn
Zinc

65.39

31 Ga
Gallium

69.723

32 Ge
German.

72.61

33 As
Arsenic

74.92160

34 Se
Selenium

78.96

35 Br
Bromine

79.904

36 Kr
Krypton

83.80

37 Rb
Rubidium

85.4678

38 Sr
Strontium

87.62

39 Y
Yttrium

88.90585

40 Zr
Zirconium

91.224

41 Nb
Niobium

92.90638

42 Mo
Molybd.

95.94

43 Tc
Technet.

(97.907215)

44 Ru
Ruthen.

101.07

45 Rh
Rhodium

102.90550

46 Pd
Palladium

106.42

47 Ag
Silver

107.8682

48 Cd
Cadmium

112.411

49 In
Indium

114.818

50 Sn
Tin

118.710

51 Sb
Antimony

121.760

52 Te
Tellurium

127.60

53 I
Iodine

126.90447

54 Xe
Xenon

131.29

55 Cs
Cesium

132.90545

56 Ba
Barium

137.327

57–71
Lantha-

nides

72 Hf
Hafnium

178.49

73 Ta
Tantalum

180.9479

74 W
Tungsten

183.84

75 Re
Rhenium

186.207

76 Os
Osmium

190.23

77 Ir
Iridium

192.217

78 Pt
Platinum

195.078

79 Au
Gold

196.96655

80 Hg
Mercury

200.59

81 Tl
Thallium

204.3833

82 Pb
Lead

207.2

83 Bi
Bismuth

208.98038

84 Po
Polonium

(208.982415)

85 At
Astatine

(209.987131)

86 Rn
Radon

(222.017570)

87 Fr
Francium

(223.019731)

88 Ra
Radium

(226.025402)

89–103
Actinides

104 Rf
Rutherford.

(261.1089)

105 Db
Dubnium

(262.1144)

106 Sg
Seaborg.

(263.1186)

107 Bh
Bohrium

(262.1231)

108 Hs
Hassium

(265.1306)

109 Mt
Meitner.

(266.1378)

110

(269, 273)

111

(272)

112

(277)

Lanthanide
series

57 La
Lanthanum

138.9055

58 Ce
Cerium

140.116

59 Pr
Praseodym.

140.90765

60 Nd
Neodym.

144.24

61 Pm
Prometh.

(144.912745)

62 Sm
Samarium

150.36

63 Eu
Europium

151.964

64 Gd
Gadolin.

157.25

65 Tb
Terbium

158.92534

66 Dy
Dyspros.

162.50

67 Ho
Holmium

164.93032

68 Er
Erbium

167.26

69 Tm
Thulium

168.93421

70 Yb
Ytterbium

173.04

71 Lu
Lutetium

174.967

Actinide
series

89 Ac
Actinium

(227.027747)

90 Th
Thorium

232.0381

91 Pa
Protactin.

231.03588

92 U
Uranium

238.0289

93 Np
Neptunium

(237.048166)

94 Pu
Plutonium

(244.064197)

95 Am
Americium

(243.061372)

96 Cm
Curium

(247.070346)

97 Bk
Berkelium

(247.070298)

98 Cf
Californ.

(251.079579)

99 Es
Einstein.

(252.08297)

100 Fm
Fermium

(257.095096)

101 Md
Mendelev.

(258.098427)

102 No
Nobelium

(259.1011)

103 Lr
Lawrenc.

(262.1098)

The atomic number (top left) is the number of protons in the nucleus. The atomic mass (bottom) is weighted by isotopic abundances in the earth’s
surface. Atomic masses are relative to the mass of the carbon-12 isotope, defined to be exactly 12 unified atomic mass units (u). Uncertainties range
from 1 to 9 in the last digit quoted. Relative isotopic abundances often vary considerably, both in natural and commercial samples. A number in
parentheses is the mass of the longest-lived isotope of that element—no stable isotope exists. However, although Th, Pa, and U have no stable isotopes,
they do have characteristic terrestrial compositions, and meaningful weighted masses can be given. For elements 110–112, the mass numbers of known
isotopes are given. From the Review of Particle Physics by the Particle Data Group, The European Physical Journal C3, 73 (1998).



Thermodynamic Properties of Selected Substances

All of the values in this table are for one mole of material at 298 K and 1 bar. Following

the chemical formula is the form of the substance, either solid (s), liquid (l), gas (g), or

aqueous solution (aq). When there is more than one common solid form, the mineral

name or crystal structure is indicated. Data for aqueous solutions are at a standard

concentration of 1 mole per kilogram water. The enthalpy and Gibbs free energy of

formation, ⇥fH and ⇥fG, represent the changes in H and G upon forming one mole of

the material starting with elements in their most stable pure states (e.g., C (graphite),

O2 (g), etc.). To obtain the value of ⇥H or ⇥G for another reaction, subtract ⇥f of the

reactants from ⇥f of the products. For ions in solution there is an ambiguity in dividing

thermodynamic quantities between the positive and negative ions; by convention, H
+

is

assigned the value zero and all others are chosen to be consistent with this value. Data

from Atkins (1998), Lide (1994), and Anderson (1996). Please note that, while these data

are su⇧ciently accurate and consistent for the examples and problems in this textbook,

not all of the digits shown are necessarily significant; for research purposes you should

always consult original literature to determine experimental uncertainties.

Substance (form) ⇥fH (kJ) ⇥fG (kJ) S (J/K) CP (J/K) V (cm
3
)

Al (s) 0 0 28.33 24.35 9.99
Al2SiO5 (kyanite) �2594.29 �2443.88 83.81 121.71 44.09
Al2SiO5 (andalusite) �2590.27 �2442.66 93.22 122.72 51.53
Al2SiO5 (sillimanite) �2587.76 �2440.99 96.11 124.52 49.90

Ar (g) 0 0 154.84 20.79

C (graphite) 0 0 5.74 8.53 5.30
C (diamond) 1.895 2.900 2.38 6.11 3.42
CH4 (g) �74.81 �50.72 186.26 35.31
C2H6 (g) �84.68 �32.82 229.60 52.63
C3H8 (g) �103.85 �23.49 269.91 73.5
C2H5OH (l) �277.69 �174.78 160.7 111.46 58.4
C6H12O6 (glucose) �1273 �910 212 115

CO (g) �110.53 �137.17 197.67 29.14
CO2 (g) �393.51 �394.36 213.74 37.11
H2CO3 (aq) �699.65 �623.08 187.4
HCO

�
3 (aq) �691.99 �586.77 91.2

Ca
2+

(aq) �542.83 �553.58 �53.1
CaCO3 (calcite) �1206.9 �1128.8 92.9 81.88 36.93
CaCO3 (aragonite) �1207.1 �1127.8 88.7 81.25 34.15
CaCl2 (s) �795.8 �748.1 104.6 72.59 51.6

Cl2 (g) 0 0 223.07 33.91
Cl
�

(aq) �167.16 �131.23 56.5 �136.4 17.3

Cu (s) 0 0 33.150 24.44 7.12

Fe (s) 0 0 27.28 25.10 7.11



Substance (form) ⇥fH (kJ) ⇥fG (kJ) S (J/K) CP (J/K) V (cm
3
)

H2 (g) 0 0 130.68 28.82
H (g) 217.97 203.25 114.71 20.78
H

+
(aq) 0 0 0 0

H2O (l) �285.83 �237.13 69.91 75.29 18.068
H2O (g) �241.82 �228.57 188.83 33.58

He (g) 0 0 126.15 20.79

Hg (l) 0 0 76.02 27.98 14.81

N2 (g) 0 0 191.61 29.12
NH3 (g) �46.11 �16.45 192.45 35.06

Na
+

(aq) �240.12 �261.91 59.0 46.4 �1.2
NaCl (s) �411.15 �384.14 72.13 50.50 27.01
NaAlSi3O8 (albite) �3935.1 �3711.5 207.40 205.10 100.07
NaAlSi2O6 (jadeite) �3030.9 �2852.1 133.5 160.0 60.40

Ne (g) 0 0 146.33 20.79

O2 (g) 0 0 205.14 29.38
O2 (aq) �11.7 16.4 110.9
OH

�
(aq) �229.99 �157.24 �10.75 �148.5

Pb (s) 0 0 64.81 26.44 18.3
PbO2 (s) �277.4 �217.33 68.6 64.64
PbSO4 (s) �920.0 �813.0 148.5 103.2

SO
2�
4 (aq) �909.27 �744.53 20.1 �293

HSO
�
4 (aq) �887.34 �755.91 131.8 �84

SiO2 (� quartz) �910.94 �856.64 41.84 44.43 22.69
H4SiO4 (aq) �1449.36 �1307.67 215.13 468.98


