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COMPUTATIONAL PHYSICS

The Computational Physics Section publishes articles that help students and their instructors learn about

the physics and the computational tools used in contemporary research. Most articles will be solicited, but

interested authors should email a proposal to the editors of the Section, Jan Tobochnik (jant@kzoo.edu)

or Harvey Gould (hgould@clarku.edu). Summarize the physics and the algorithm you wish to include in

your submission and how the material would be accessible to advanced undergraduates or beginning

graduate students.

The variational-relaxation algorithm for finding quantum bound states

Daniel V. Schroedera)

Department of Physics, Weber State University, Ogden, Utah 84408-2508

(Received 2 February 2017; accepted 19 July 2017)

I describe a simple algorithm for numerically finding the ground state and low-lying excited states

of a quantum system. The algorithm is an adaptation of the relaxation method for solving Poisson’s

equation, and is fundamentally based on the variational principle. It is especially useful for two-

dimensional systems with nonseparable potentials, for which simpler techniques are inapplicable

yet the computation time is minimal. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4997165]

I. INTRODUCTION

Solving the time-independent Schr€odinger equation for an
arbitrary potential energy function V ~rð Þ is difficult. There
are no generally applicable analytical methods. In one
dimension it is straightforward to integrate the equation
numerically, starting at one end of the region of interest and
working across to the other. For bound-state problems for
which the energy is not known in advance, the integration
must be repeated for different energies until the correct
boundary condition at the other end is satisfied; this algo-
rithm is called the shooting method.1–4

For a nonseparable5 potential in two or more dimensions,
however, the shooting method does not work because there
are boundary conditions that must be satisfied on all sides.
One can still use matrix methods,6–8 but the amount of
computation required can be considerable and the diagonal-
ization routines are mysterious black boxes to most
students.

This paper describes a numerical method for obtaining
the ground state and low-lying excited states of a bound
system in any reasonably small number of dimensions.
The algorithm is closely related to the relaxation
method9–11 for solving Poisson’s equation, with the com-
plication that the equation being solved depends on the
energy, which is not known in advance. The algorithm
does not require any sophisticated background in quantum
mechanics or numerical analysis. It is reasonably intuitive
and easy to code.

The following section explains the most basic version of
the algorithm, while Sec. III derives the key formula using the
variational method. Section IV presents a two-dimensional
implementation of the algorithm in MATHEMATICA. Section V
generalizes the algorithm to find low-lying excited states, and
Sec. VI presents two nontrivial examples. The last two sec-
tions briefly discuss other related algorithms and how such
calculations can be incorporated into the undergraduate phys-
ics curriculum.

II. THE ALGORITHM

A standard exercise in computational physics9–11 is to
solve Poisson’s equation,

r2/ ~rð Þ ¼ �q ~rð Þ; (1)

where q ~rð Þ is a known function, by the method of relaxation:
Discretize space with a rectangular grid, start with an arbi-
trary function / ~rð Þ that matches the desired boundary condi-
tions, and repeatedly loop over all the grid points that are not
on the boundaries, adjusting each / value in relation to its
nearest neighbors to satisfy a discretized version of
Poisson’s equation. To obtain that discretized version, write
each term of the Laplacian operator in the form

@2/
@x2
� / ~r þ dx̂ð Þ þ / ~r � dx̂ð Þ � 2/ ~rð Þ

d2
; (2)

where d is the grid spacing and x̂ is a unit vector in the x
direction. Solving the discretized Poisson equation for / ~rð Þ
then gives the needed formula,

/0 ¼ �/nn þ
1

2d
q0d

2; (3)

where /0 and q0 are the values of / and q at ~r (the current
grid location), d is the dimension of space, and �/nn is the
average of the / values at the 2d nearest-neighbor grid loca-
tions. As this formula is applied repeatedly at all grid loca-
tions, the array of / values “relaxes” to the desired self-
consistent solution of Poisson’s equation that matches the
fixed boundary conditions, to an accuracy determined by the
grid resolution.

What is far less familiar is that this method can be
adapted to solve the time-independent Schr€odinger equa-
tion. To see the correspondence, write Schr€odinger’s equa-
tion with only the Laplacian operator term on the left-hand
side:
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r2w ~rð Þ ¼ �2 E� V ~rð Þð Þw ~rð Þ; (4)

where E is the energy eigenvalue, V ~rð Þ is the given potential
energy function, and I am using natural units in which �h and
the particle mass are equal to 1. Discretizing the Laplacian
gives a formula of the same form as Eq. (3),

w0 ¼ �wnn þ
1

d
E� V0ð Þw0d

2; (5)

where the subscripts carry the same meanings as in Eq.
(3). The appearance of w0 on the right-hand side creates
no difficulty at all, because we can solve algebraically for
w0:

w0 ¼
�wnn

1� E� V0ð Þd2=d
: (6)

The more pressing question is what to do with E, the energy
eigenvalue that we do not yet know. The answer is that we
can replace it with the energy expectation value

hEi ¼ hwjHjwihwjwi ; (7)

where H ¼ � 1
2
r2 þ V ~rð Þ is the Hamiltonian operator. We

then update this expectation value after each step in the cal-
culation. (The denominator in Eq. (7) is needed because the
algorithm does not maintain the normalization of w.) As the
relaxation process proceeds hEi will steadily decrease, and
we will eventually obtain a self-consistent solution for the
ground-state energy and wave function.

The inner products in Eq. (7) are integrals, but we can
compute them to sufficient accuracy as ordinary sums over
the grid locations. The denominator is simply

hwjwi ¼
X

i

w2
i d

d; (8)

where the index i runs over all grid locations and I have
assumed that w is real. Similarly, the potential energy contri-
bution to the numerator is

hwjVjwi ¼
X

i

Viw
2
i d

d: (9)

To obtain the kinetic energy (K ¼ � 1
2
r2) contribution, we

again discretize the derivatives as in Eq. (2), arriving at the
expression

hwjKjwi ¼ �d
X

i

wi
�wnn � w2

i

� �
dd�2: (10)

Each of these inner products must be updated after every
change to one of the wi values, but there is no need to evalu-
ate them from scratch. When we change w0,old to w0,new, the
corresponding changes to the inner products are

Dhwjwi ¼ w2
0;new � w2

0;old

� �
dd; (11)

DhwjVjwi ¼ V0 w2
0;new � w2

0;old

� �
dd; (12)

DhwjKjwi ¼ � 2d w0;new � w0;old

� ��wnnd
d�2

þ d w2
0;new � w2

0;old

� �
dd�2; (13)

where the factor of 2 in the first term of Eq. (13) arises
because there is an identical contribution of this form from
the terms in the sum of Eq. (10) in which i is one of the
neighboring grid locations.

The algorithm, then, is as follows:

(1) Discretize space into a rectangular grid, placing the
boundaries far enough from the region of interest that the
ground-state wave function will be negligible there.

(2) Initialize the array of w values to represent a smooth,
nodeless function such as the ground state of an infinite
square well or a harmonic oscillator. All the w values on
the boundaries should be zero and will remain unchanged.

(3) Use Eqs. (8)–(10) to calculate hwjwi; hwjHjwi, and hEi
for the initial w array.

(4) Loop over all interior grid locations, setting the w value
at each location to

w0 ¼
�wnn

1� hEi � V0ð Þd2=d
: (14)

Also use Eqs. (11)–(13) to compute the changes to
hwjHjwi and hwjwi that result from this change to w0 and
use these quantities to update the value of hEi before
proceeding to the next grid location.

(5) Repeat step 4 until hEi and w ~rð Þ no longer change,
within the desired accuracy.

The simplest procedure, as just described, is to update each
w value “in place,” so that a change at one grid location
immediately affects the calculation for the next grid location.
In the terminology of relaxation methods, this approach is
called the Gauss–Seidel algorithm.9–11

III. VARIATIONAL INTERPRETATION

In the previous section I asserted, but did not prove, that
hEi will steadily decrease during the relaxation process. To
see why this happens, it is instructive to derive Eq. (14) using
the variational method of quantum mechanics.12 The idea is
to treat each local value w0 as a parameter on which the func-
tion w ~rð Þ depends, and repeatedly adjust these parameters,
one at a time, to minimize the energy expectation value hEi.
So let us consider how the expression for hEi in Eq. (7)
depends on w0.

Focusing first on the denominator of Eq. (7), we discretize
the integral as in Eq. (8) but rewrite the sum as

hwjwi ¼ w2
0d

d þ s; (15)

where s is an abbreviation for the terms in the sum that do
not depend on w0. Similarly, the discretization of Eqs. (9)
and (10) allows us to write the numerator of Eq. (7) as

hwjHjwi ¼ �2dw0
�wnnd

d�2 þ dw2
0d

d�2 þ V0w
2
0d

d þ h;

(16)

where the factor of 2 in the first term is the same as in Eq.
(13) and h is an abbreviation for all the terms that do not
depend on w0.
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Inserting Eqs. (15) and (16) into Eq. (7) gives

hEi ¼ h� 2ddd�2w0
�wnn þ ddd�2 þ V0d

d
� �

w2
0

sþ ddw2
0

; (17)

where I have written the h and s terms first because they are
larger than the others by a factor on the order of the total
number of lattice points.13 We are looking for the value of
w0 that minimizes this expression. Differentiating with
respect to w0 and setting the result equal to 0 gives a compli-
cated equation, but in the limit of a large lattice it is a valid
approximation to keep only the leading terms in s and h.
With that approximation, after some algebra, the extremiza-
tion condition reduces to

w0 ¼
�wnn

1� h=sð Þ � V0½ �d2=d
: (18)

The ratio h/s is equal to hEi in the limit of an infinite lattice,
so this result is effectively the same as Eq. (14). By similarly
focusing on the leading nontrivial terms in powers of s and
h, it is straightforward to show that this extremum is a mini-
mum, if the lattice spacing d is sufficiently small.

We can therefore be confident that each step of the algo-
rithm will reduce the value of hEi. This result suggests, but
does not prove, that the algorithm will converge to the sys-
tem’s ground state. In fact every energy eigenfunction is a

stationary point of the energy functional,12 so there can be
situations in which the algorithm converges (or almost con-
verges) to an excited state instead of the ground state. But
the excited states are unstable to small perturbations, and
they can be avoided entirely by choosing an initial wave
function that is sufficiently similar to the ground state. Once
the algorithm brings hEi below every excited-state energy,
the ground state is the only possible result after sufficiently
many iterations.14

IV. AN IMPLEMENTATION

Figure 1 shows a basic implementation of the variational-
relaxation algorithm in MATHEMATICA,15 for a two-dimensional
potential well. Translating this example to other computer lan-
guages should be straightforward.

The first four lines of the code define the resolution of the
lattice (here 50� 50), initialize the wave function to the
ground state of an infinite square well, and then plot the ini-
tial wave function using a custom plotting function that
maps the array of lattice points to a square in the xy plane
extending from 0 to 1 in each direction. Notice that the array
size is one element larger in each dimension than the nomi-
nal lattice size (51� 51 in this case), so that the edges can be
mapped to exactly 0 and 1, where the wave function will be
held fixed throughout the calculation. Notice also that an off-
set of 1 is required when indexing into the array, because
MATHEMATICA array indices start at 1 rather than 0.

Fig. 1. MATHEMATICA code to implement the basic variational-relaxation algorithm for a two-dimensional quantum system. Here the potential energy function is

for a harmonic oscillator, for which the solutions are known analytically.

700 Am. J. Phys., Vol. 85, No. 9, September 2017 Daniel V. Schroeder 700



Lines 5 and 6 define and plot an array of values to repre-
sent the potential energy function. Here, for testing purposes,
this function is a harmonic oscillator potential with a classi-
cal angular frequency of 40 (in natural units) in the x direc-
tion and 60 in the y direction. The rest of the code is
sufficiently versatile, however, that almost any potential
energy function can be used, as long as its discrete represen-
tation is reasonably accurate.

Lines 7–13 compute the inner products hwjwi and
hwjHjwi according to Eqs. (8) through (10). Because the
width of the two-dimensional space is one unit, the lattice
spacing d is the reciprocal of the lattice size (1/50). Line 14
displays the initial value of hEi.

The algorithm itself is implemented in the relax func-
tion (lines 15–24), whose argument is the number of times to
iterate the algorithm for each lattice site. For each iteration
step we loop over all the lattice sites, and for each site, save
the old wave function value, calculate the new value from
Eq. (14), and update the inner products hwjwi and hwjHjwi
using Eqs. (11)–(13). When everything is finished we display
the final value of hEi and then plot the final wave function.
To actually execute this function, we type something like
relax[100] for 100 iteration steps. We can do this repeat-
edly, checking the results for convergence.

For this harmonic oscillator example using a 50� 50 lat-
tice, 100 iteration steps results in an energy value of 49.97,
within less than 0.1% of the analytically known value of 50
(that is, �h=2 times the sum of the x and y frequencies). After
another 100 steps the energy converges to 49.94, slightly
below the analytical value due to the lattice discretization.
The calculated wave function has the familiar Gaussian
shape. On a typical laptop computer, MATHEMATICA can exe-
cute 100 iteration steps for a 50� 50 lattice in just a few sec-
onds. This execution speed, along with the brevity of the
code, brings two-dimensional calculations of this type well
within the reach of a typical undergraduate homework
assignment.

V. EXTENSIONS

An easy trick for speeding up the algorithm is to use over-
relaxation,9–11 in which we try to anticipate subsequent itera-
tions by “stretching” each change to a w value by a factor
between 1 and 2. If we call the value of expression (14)
w0,nominal, then the formula to update w0 becomes

w0;new ¼ w0;old þ x w0;nominal � w0;old

� �
; (19)

where the “stretch factor” x is called the over-relaxation
parameter. Figure 2 shows how the rate of convergence
depends on x, for the two-dimensional harmonic oscillator
example described in Sec. IV.

After finding the ground state of a particular system, we
can go on to find its first excited state with only a minor
modification of the algorithm. The idea is the same as with
other variational solutions,12 namely, to restrict the trial
wave function to be orthogonal to the ground state. To do
this, we periodically project out any contribution of the
ground state to the trial function during the course of the cal-
culation. More explicitly, the procedure is as follows:

(1) Normalize and save the just-determined ground-state
wave function as wgs.

(2) Initialize a new trial wave function w that crudely resem-
bles the first excited state, with a single node. The first
excited state of an infinite square well or a harmonic
oscillator would be a reasonable choice. It may be neces-
sary to try different orientations for the node of this
function.

(3) Proceed as in the basic algorithm described in Sec. II,
but after each loop through all the grid locations, calcu-
late the wgs component of the trial function as the inner
product

hwgsjwi ¼
X

i

wgs;iwid
d: (20)

Multiply this inner product by wgs and subtract the result
from w (point by point). Then recalculate the inner prod-
ucts hwjwi and hwjHjwi before proceeding to the next
iteration.

The orientation of the initial state’s node matters because
we want it to resemble the first excited state more than the
second. For example, the first excited state of the anisotropic
harmonic oscillator potential used in Sec. IV has a node line
parallel to the y axis, so a good choice for the initial state
would be sin 2pxð Þ sin pyð Þ, rather than the orthogonal state
sin pxð Þ sin 2pyð Þ. If the latter state is used the algorithm will
become stuck, for a rather long time, on the second excited
state (with energy 110) before finally converging to the first
excited state (with energy 90).

After finding the first excited state we can find the second
excited state in a similar way, this time projecting out both
the ground-state contribution and the first-excited-state con-
tribution after each loop through all the grid locations. We
could then go on to find the third excited state and so on, but
if many states are needed it may be easier to use matrix
methods.6–8

VI. EXAMPLES

To illustrate the versatility of the variational-relaxation
algorithm, Fig. 3 shows results for an intricate but contrived

Fig. 2. The energy expectation value hEi as a function of the iteration num-

ber, for the two-dimensional harmonic oscillator example used in Sec. IV.

The different data sets are for different values of the over-relaxation parame-

ter x. The basic algorithm without over-relaxation corresponds to x¼ 1. In

this example, with a lattice size of 50� 50, the optimum x is about 1.8.
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potential energy well based on an image of the Weber State
University “Flaming W” logo.16 As before, the units are
such that �h, the particle mass, and the width of the square
grid region are all equal to 1. In these units the sine-wave
starting function (that is, the ground state of an infinitely
deep two-dimensional box of this size) has a kinetic energy
of p2� 10, so the well depth of 200 is substantially larger
than this natural energy scale. All three of the states shown
are bound, with energies less than 200. As expected, the
ground-state wave function spreads to fill the oddly shaped
potential well but is peaked near the center. The two lowest
excited states are relatively close together in energy, with
nodal curves that are roughly orthogonal to each other.

For a second example, note that the Schr€odinger equation
for a single particle in two dimensions is mathematically
equivalent to that for two equal-mass particles in one dimen-
sion. We can therefore adapt our results to the latter system
by renaming (x, y) ! (x1, x2). Consider, then, a pair of
equal-mass (but distinguishable) particles trapped in a one-
dimensional infinite square well, exerting a repulsive force
on each other.17 A smooth potential for modeling such a
force is a Gaussian,18

V x1; x2ð Þ ¼ Vmaxe� x1�x2ð Þ2=a2

; (21)

and for illustration purposes I will take Vmax ¼ 80 and
a¼ 0.4 in natural units. This potential and its three lowest-
energy stationary states are shown in Fig. 4. Interpreting
these two-particle wave function plots takes a little practice;
for example, the two peaks in the ground-state wave function
correspond not to the two particles but rather to two equally
probable configurations for both particles, one with particle
1 near x¼ 0 and particle 2 near x¼ 1, and the other with the
particles interchanged. This is an “entangled” state, because
a measurement of one particle’s position changes the

probability distribution for the other particle’s position.
Notice that the first excited state, with a node along x1¼ x2,
has an almost identical probability density and only slightly
more energy, as is typical of double-well potentials. In con-
trast, the second excited state tends to put one particle or the
other near the middle of the well and has considerably more
energy.

These two examples are merely meant to suggest the wide
range of possible uses of the variational-relaxation algo-
rithm. The algorithm should be applicable to real-world sys-
tems such as quantum dots7,19 and other nano-structures that
can be modeled as two-dimensional or three-dimensional
potential wells. For a system of two particles in one dimen-
sion, one could investigate other interaction potentials, repul-
sive or attractive, as well as other confining potentials.

VII. RELATED ALGORITHMS

The algorithm described in this paper cannot possibly be
new, because it is such a minor adaptation of the familiar
relaxation algorithm for Poisson’s equation. However, I have
been unable to find a published description of it.20,21

Giordano and Nakanishi22 describe a closely related algo-
rithm that also uses a rectangular lattice and the variational
principle, but takes a Monte Carlo approach. Instead of loop-
ing over all lattice points in order, they choose successive
lattice points at random. And instead of computing the value
of w0 that minimizes hEi using Eq. (14), they consider a ran-
dom change to w0, compute the effect of this change on hEi,
and then accept the change if hEi will decrease but reject it if
hEi would increase. This Monte Carlo approach inspired the
algorithm described in this paper. However, the Monte Carlo
algorithm is much less efficient, at least when fixed, uniform
distributions are used for the random numbers.

Fig. 3. A “Flaming W” potential energy well (upper left) and the three

lowest-energy wave functions and corresponding energies for a particle

trapped in this well. The potential energy is zero inside the W and þ200 (in

natural units) in the flat area surrounding it. The grid resolution is 64� 64.

Fig. 4. The interparticle potential energy (upper left) and the three lowest-

energy wave functions and corresponding energies for a pair of equal-mass

but distinguishable particles trapped in a one-dimensional infinite square

well, repelling each other according to Eq. (21). The grid resolution is

50� 50 and the maximum potential energy is 80 in natural units.
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Koonin and Meredith23 describe an alternative algorithm
that evolves an initial trial function in imaginary time,
according to the Schr€odinger-like equation

@w
@s
¼ �Hw; (22)

whose formal solution is

w sð Þ ¼ e�Hsw 0ð Þ: (23)

If we imagine expanding w(0) as a linear combination of
eigenfunctions of the Hamiltonian H, then we see that the
ground-state term in the expansion decreases the most slowly
(or grows the most rapidly if its energy is negative), so even-
tually this evolution in “fake time” will suppress all the
remaining terms in the expansion and yield a good approxi-
mation to the ground state.24 An advantage of the imaginary-
time approach is that its validity rests on the fundamental
argument just given, rather than on the more subtle varia-
tional principle.

The speed and coding complexity of an imaginary-time
algorithm depend on the specific method used for the
imaginary-time evolution. Koonin and Meredith use a basic
first-order forward-time Euler integration, resulting in an
algorithm that is just as easy to code as the variational-
relaxation algorithm and that requires about the same execu-
tion time as the latter without over-relaxation. Their algo-
rithm is therefore a strong candidate for use in an
undergraduate course, especially if students are more famil-
iar with time-evolution algorithms than with relaxation algo-
rithms (and if teaching relaxation algorithms is not a course
goal).

Faster imaginary-time algorithms also exist, but may be
too sophisticated for many educational settings. Simply
switching to a centered-difference approximation for the
time derivative, which is quite effective for the actual time-
dependent Schr€odinger equation,25 yields an algorithm that
is unstable no matter how small the time step.26 Implicit
algorithms27 would solve the stability problem, but these
require working with large matrices. One reviewer of early
drafts of this paper strongly recommends an imaginary-time
adaptation of the split-operator algorithm described in Sec.
16.6 of Ref. 2, which uses a fast Fourier transform to switch
back and forth between position space and momentum space
during each time step.

VIII. CLASSROOM USE

Students in a computational physics course should be
able to code the variational-relaxation algorithm them-
selves, perhaps after practicing on the ordinary relaxation
algorithm for Poisson’s or Laplace’s equation. Coding the
algorithm in just one spatial dimension can also be a
good warm-up exercise, keeping in mind that it is usually
easier to solve one-dimensional problems by the shooting
method.

In an upper-division undergraduate course in quantum
mechanics, it may be better to provide students with the
basic code shown in Fig. 1 (or its equivalent in whatever pro-
gramming language they will use). Typing the code into the
computer gives students a chance to think about each compu-
tational step. After verifying that the algorithm works for a
familiar example such as the two-dimensional harmonic

oscillator, students can be asked to modify it to handle other
potential energy functions, over-relaxation, and low-lying
excited states.

Even in a lower-division “modern physics” course or the
equivalent, I think there is some benefit in showing students
that the two-dimensional time-independent Schr€odinger
equation, for an arbitrary potential energy function, can be
solved. For the benefit of students and others who are not
ready to code the algorithm themselves, and for anyone who
wishes to quickly explore some nontrivial two-dimensional
stationary states, the supplementary material28 to this paper
provides a JAVASCRIPT implementation of the algorithm with a
graphical user interface, runnable in any modern web
browser.

In any of these settings, and in any other physics course,
introducing general-purpose numerical algorithms can help
put the focus on the laws of physics themselves, avoiding an
over-emphasis on idealized problems and specialized analyt-
ical tricks.
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