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Now that we know all about angular momentum, let’s go back to the time-independent
Schrödinger equation, in spherical coordinates, for a particle subject to an r-dependent
potential energy function:
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ψ + V (r)ψ = Eψ. (1)

If you compare the terms with angular derivatives to the expression for L2 from the
previous lesson, you’ll see that every θ and φ matches perfectly, so we can write the
TISE more simply as[
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ψ = Eψ. (2)

But since L2 commutes with the Hamiltonian, we know we can find solutions to the
TISE that are also eigenfunctions of L2. We can also take them to be eigenfunc-
tions of Lz (which commutes with both L2 and H), so that they are the spherical
harmonics, Y m

l (θ, φ), multiplied by factors that are independent of θ and φ but
presumably still dependent on r. We’ll call these r-dependent functions R(r), so
that

ψ(r, θ, φ) = R(r)Y m
l (θ, φ). (3)

Plugging this separable solution into the TISE, replacing L2 with its known eigen-
value, and canceling the factor of Y m

l , we obtain the radial Schrödinger equation,[
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R(r) = ER(r). (4)

The radial Schrödinger equation simplifies somewhat if we make a change of
variables from R(r) to the function

u(r) = rR(r), (5)

which is sometimes called the reduced radial wavefunction. Notice that
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Plugging this simplification into the radial Schrödinger equation and multiplying
through by r, we obtain the reduced radial equation,[
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u(r) = Eu(r). (7)

The first term in brackets now looks just like the familiar one-dimensional kinetic
energy operator. The second term, for any fixed l value, is a known function of r,
which we can group with the potential energy to form the effective potential energy
function,
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just as we often do in classical mechanics problems with central forces. Then the
reduced radial equation becomes simply[

− h̄2

2m

d2

dr2
+ Veff(r)

]
u(r) = Eu(r), (9)

which is identical to the one-dimensional TISE but with x replaced by r, ψ replaced
by u, and V replaced by Veff.

Because of their mathematical similarity, we can analyze and solve the reduced
radial equation using all of the techniques that we learned for the one-dimensional
TISE earlier in this course. We can sketch qualitative graphs of the solutions. In a
few cases we can find exact solutions. And we can solve the equation numerically
using either the shooting method or the matrix diagonalization method. The only
mathematical difference is that whereas x normally ranges from −∞ to∞, negative
r values are not allowed. In fact, u(r) must equal zero at r = 0, as is almost obvious
from the definition u(r) = rR(r). (The only question that requires thought is
whether R(r) can ever by infinite at r = 0, and the answer is “no” in all the examples
we’ll encounter.) There’s also a difference when we interpret the solutions, because
the full wavefunction is u(r)/r times the applicable spherical harmonic. And we
need to remember that Veff depends on l, so we get to solve the reduced radial
equation separately for l = 0, l = 1, l = 2, and so on.

The l-dependent term in Veff is called the centrifugal term (as it is in classical
mechanics). It’s zero for l = 0, but for l > 0 it creates an effective repulsive force
that becomes infinite as r → 0, pushing the particle out from the origin. (Of course
this “force” is just a useful fiction that we invent so we can pretend that this is a
one-dimensional problem; in three dimensions, we would instead say that assuming
a nonzero angular momentum entails assuming that the particle avoids the origin.)

As a first example of solving the radial Schrödinger equation, consider the spher-
ical infinite square well, with V (r) = 0 out to some radius a and V = ∞ beyond
that. You should be able to write down the solutions for l = 0 almost immediately.
For l > 0 the solutions are harder to find, but they can still be expressed exactly in
terms of sines and cosines. Griffiths lays out the solutions at the end of Section 4.1,
so please look over his presentation.
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