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I’ll get right to the point:

A system of two particles has only one wavefunction.

Read that sentence aloud. Repeatedly. It takes some getting used to.
And it gets worse: A system of three particles, or four, or 1023, also has only

one wavefunction.
But let’s start with just two particles, and say they’re moving in just one dimen-

sion (to keep things as simple as possible). Then if x1 represents the position of the
first particle and x2 represents the position of the second particle, the wavefunction
is a function of two variables: ψ(x1, x2). In fact, the allowed wavefunctions of this
system are mathematically the same as those of a single particle in two dimensions:
Just change (x, y) to (x1, x2).

How do we interpret ψ(x1, x2)? Well, if you integrate its square modulus over
some range of x1 values and some range of x2 values, you should get the probability
of finding the first particle in the first range and the second particle in the second
range (if you measure both of their positions). If you just want the probability of
finding one particle in a certain region, you have to integrate over all possible values
of the other particle’s coordinate. Again, just think about a single particle in two
dimensions and change (x, y) to (x1, x2).

We can visualize ψ(x1, x2) in the same way as ψ(x, y), using a two-dimensional
density plot. You just have to keep reminding yourself that the two directions on the
plot correspond to the locations of the two particles along a single axis, rather than
two different directions of space. Here, for example, is a plot of the wavefunction
for a system in which particle 1 is localized around x = a and moving in the +x
direction, while particle 2 is localized around x = b and moving in the −x direction:

The formula for this wavefunction would be something like

ψ(x1, x2) = e−(x1−a)2eikx1e−(x2−b)2e−ikx2 , (1)
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and as you can see, this function is separable: it factors into a function of x1 times
a function of x2.

In general, a separable wavefunction is one for which

ψ(x1, x2) = ψa(x1)ψb(x2) (usually not possible), (2)

for some functions ψa and ψb. Whenever a two-particle system’s wavefunction is
separable, you can get away with saying that each particle has its own wavefunction.
But just as we saw in the previous lesson, separability is the exception rather than
the rule: the vast majority of all possible two-dimensional wavefunctions are not
separable. We can easily build a non-separable wavefunction by adding two different
separable functions, for example,

e−(x1−a)2e−(x2−b)2 + e−(x1−b)2e−(x2−a)2 , (3)

which would look like this:

On one hand, this wavefunction might seem no more strange than a single-particle
wavefunction that has two separated peaks. But please notice the following curios-
ity: The positions of both particles are indeterminate, so that if you measured either
one of them, you would have a 50/50 chance of finding it either near a or near b.
But if you do measure just one of them, the result will also tell you something about
the other; for example, if you measure particle 1’s position and find it near b, then
you immediately know that particle 2 is near a.

Whenever a two-particle wavefunction is not separable, we say that the two
particles are entangled. As the example above demonstrates, this means that you
might be able to learn something about both particles by performing a measurement
on just one of them.

Wavefunctions typically become entangled when the particles interact with each
other. For example, although the wavefunction in equation 1 is not entangled, it
does describe two particles that are moving toward each other. If these two parti-
cles interact, through a potential energy function that depends on their separation
distance, then in all likelihood they will become entangled as time passes.
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Ironically, even though the vast majority of multi-particle wavefunctions are
not separable, we’ll spend quite a bit of time working with wavefunctions that
are separable. This is because they are mathematically simpler, and also because
the separable wavefunctions are complete: any other wavefunction can always be
expressed as a linear superposition of separable wavefunctions (as in equation 3).
Just don’t let these separable wavefunctions give you the false impression that the
quantum world is always so simple. In quantum mechanics you need to keep re-
minding yourself that your basis vectors are merely a basis, from which you can
build arbitrary linear combinations to represent the unlimited variety of the world.

The Hamiltonian of a two-particle system is, as usual, the operator that cor-
responds to the system’s total energy. So it consists of a kinetic energy term for
each particle, plus an arbitrary potential energy term that can depend on both
coordinates:

H = − h̄2

2m1

∂2

∂x21
− h̄2

2m2

∂2

∂x22
+ V (x1, x2), (4)

where m1 and m2 are the masses of the two particles. Depending on the system, the
potential energy function can include “external” contributions that depend on the
separate coordinates x1 and x2, as well as an “internal” contribution that depends
on the separation distance x2 − x1.

All of these ideas and formulas generalize in the natural way to systems of two
particles in more than one dimension, and to systems of more than two particles.
So, for instance, a system of six particles in three dimensions, such as the electrons
in a carbon atom, would have a wavefunction that depends on 18 different variables:
x1, y1, z1, x2, . . . z6. Much of the art of quantum mechanics consists in figuring out
how many of the variables really need to be treated quantum mechanically, and then
modeling the system in a way that’s simple enough to make calculations feasible
and to provide genuine insight.

Identical particles

Quantum mechanics allows two (or more) particles to be identical in a sense that
isn’t really possible in classical mechanics. Consider what happens when two par-
ticles have all the same intrinsic properties (mass, electric charge, spin orientation,
etc.), and in addition, their two-particle probability density is unchanged under the
operation of interchanging its two arguments:

|ψ(x2, x1)|2 = |ψ(x1, x2)|2. (5)

If this relation holds, then the two particles can’t even be distinguished by their
locations or velocities (or by the probabilities of their being found at various loca-
tions or with various velocities), so it becomes meaningless to even ask which one is
which. This situation is fundamentally different from classical mechanics, in which
you can always distinguish particles by their trajectories (if nothing else).
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Moreover, it’s not hard to prove that if the particles are identical and equation 5
holds at one particular time, then the time-dependent Schrödinger equation will
ensure that it holds at all other times.

It seems that nature has taken advantage of this opportunity, and filled the
universe with particles that are truly identical to each other in the sense of equa-
tion 5. All electrons are identical to each other in this sense, as are all protons, and
all alpha particles, and all photons, and even all carbon-12 atoms (in their ground
state). There are actually two different ways that equation 5 can be realized:

ψ(x2, x1) = +ψ(x1, x2) or ψ(x2, x1) = −ψ(x1, x2). (6)

(Equation 5 would also be satisfied if ψ changed by an arbitrary phase eiφ when
x1 and x2 are interchanged, but consistency requires that repeating the interchange
operation restore the wavefunction to its original value, so φ can be only 0 or π.)
Again, the TDSE ensures that the choice of + or − in equations 6 is preserved as
time passes, so every species of particles falls into one of two categories, according to
this difference. Particles for which ψ(x2, x1) = +ψ(x1, x2) are called bosons (after
Satyendra Nath Bose), and include photons, pions, helium-4 nuclei, and many other
species of nuclei and atoms. Particles for which ψ(x2, x1) = −ψ(x1, x2) are called
fermions (after Enrico Fermi), and include electrons, protons, neutrons, helium-3
nuclei, and many other species of nuclei and atoms. You can tell which particles are
bosons and which are fermions by looking at their intrinsic spins, which I’ll discuss
further in the next lesson.

Equations 6 are the most general ways of expressing how identical-particle wave-
functions behave under interchange, but as usual, it’s more vivid to consider two-
particle wavefunctions that are built out of single-particle wavefunctions. Suppose,
for example, that we have a two-particle system in which one particle is in state
ψa(x) while the other particle is in state ψb(x). Then, if the two particles are bosons,
the wavefunction of the system would be (up to an overall normalization constant)

ψ(x1, x2) = ψa(x1)ψb(x2) + ψa(x2)ψb(x1), (7)

while if the two particles are fermions, the wavefunction of the system would be
(again up to an overall normalization constant)

ψ(x1, x2) = ψa(x1)ψb(x2)− ψa(x2)ψb(x1). (8)

In both cases, you can immediately see that conditions 6 are satisfied. Notice, by
the way, that if ψa and ψb are actually the same state, then equation 7 still makes
perfect sense (and reduces to a simple product), but equation 8 equals zero—which
isn’t allowed. It’s therefore impossible to put two identical fermions into the same
single-particle state; this fact is called the Pauli exclusion principle.
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