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PREFACE

I came to write these lectures in the course of participating in the Introductory University
Physics Project (IUPP), which was organized in 1987 by the American Physical Society and the
American Association of Physics Teachers under the sponsorship of the National Science
Foundation. The ultimate goal of IUPP is to develop some new models for the introductory,
calculus-based, university physics course. As envisioned by [UPP chairman John Rigden, the
new course models should have a “leaner story line,” and should if at all possible contain
something meaningful about quantum mechanics. My own involvement in IUPP is as a
member of the working group on quantum mechanics, which is chaired by Eugen Merzbacher
and co-chaired by Thomas Moore.

[ must emphasize that the set of lectures presented here is not patterned after the syllabus
recommended by the [UPP quantum mechanics working group. The approach taken in these
lectures is frankly too abstract and too formal, too long on theory and too short on applications,
for most of the students who take the introductory calculus-based physics course. But some of
those students, those with a more mathematical and philosophical bent, might possibly profit
from these lectures. And perhaps also some physics teachers might find one or more features of
these lectures worth incorporating into their own lectures and writings.

Why should a university student bother to learn quantum mechanics? For students intent
on becoming professional physicists, the motive has always been clear and compelling: [f you
don’t learn quantum mechanics, then you can’t join the club. Obviously, a different motive
must impel students on a broader spectrum, and perhaps should impel physics majors as well.
The motive that | have tried to implicitly establish in these lectures is roughly as follows.
Nature has been found to behave, on the microscale, in ways that seem to utterly defy common
sense. Mankind has thus been presented with an immense challenge: Make sense of Nature on
the microscale! Quantum mechanies, within carefully prescribed limits, has successfully met
that challenge. So the theory of quantum mechanics represents an intellectual achievement of
truly heroic proportions, and may rightly be regarded as "a principal jewel in the cultural
crown of civilization.” To appreciate the beauty and mystery of that cultural jewel is alone
sufficient reason for any student of any university to undertake a serious study of quantum
mechanics.

It seems that there are two approaches to teaching physics in general and quantum
mechanics in particular: In the axiomatic approach, one first sets forth a minimal number of
assumptions or axioms, and one then rigorously deduces their various consequences. By
contrast, in the organic approach one pays little attention to logical structure, and simply
allows the various facts of the theory to arrange themselves in whatever way seems convenient.
While I have respect for the organic approach, and in fact suspect that physicists of that camp
are more likely than their opposites to make significant advances in physics, | have
deliberately written these lectures in the axiomatic vein. [ believe that students with an
aptitude for mathematics and logical reasoning strongly prefer to learn by the axiomatic
approach. The "axioms” of quantum mechanics are presented here in the form of five rules; the
first four rules are stated in Lecture 3, and the fifth rule is stated in Lecture 6. The language of
those rules, which provides the allowed mechanisms of inference, is the mathematical language
of linear algebra, which I have preferred here to call "generalized vector theory.” That
language is developed, in [ think a rather novel way, in Lecture 2. Lecture 2 is therefore a
make-or-break lecture for the whole series. Although cach of the seven lectures can be read in
one hour, [ think most will take fwo 50-minute lecture sessions o successfully deliver. Lectures
5 and 7 are the most challenging of the series, and could be omitted for a less demanding five-
lecture sequence; however, a glance at the table of contents will show that omission of Lectures
5 and 7 will cut out several major topics. :
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I feel obliged to forewarn teachers who are contemplating using these lectures that I have
taken what some might consider to be an unnecessarily doctrinaire position, namely, that
observables for microscale systems do not always have values. In fact, I make that premise to be
a principal motive for devising quantum mechanics. A teacher who feels that this premise is
unwarranted, or even false, will not like these lectures. But before such a teacher lays these
pages aside for that reason, [ would respectfully entreat a reading of the entertaining article by
N. David Mermin in the April 1985 issue of Physics Today. In that article, Mermin discusses
the implications of Bell’s theorem in terms of an idealized experiment that is equivalent to an
electron-pair spin-correlation experiment, but which is happily devoid of the esoteric jargon of
quantum physics. Mermin shows with remarkable clarity that there is simply no way of
explaining the results of his experiment without doing great violence to one’s sense of
“reasonableness.” [ think that a defensible interpretation of the specific conclusions of the
Mermin experiment is this: There is no way to assign fixed values (red or green) to each
observable (1, 2 and 3) of both particles in such a way that the experimental data can be
quantitatively acounted for; hence, we cannot generally ascribe simultaneous values, even
unknown values, to non-commuting observables. This is one of several non-common-sensical
features of quantum mechanics that have been exposed by John Bell’s work in 1964, and more
recently confirmed experimentally by Alain Aspect and coworkers. [ believe it is wrong not to
be up-front with students about such issues. I believe it is wrong to pretend to students, on the
pretext of "doing physics rather than philosophy,” that although quantum mechanics may seem
strange and unusual there is nothing about it that should disturb our view of Reality. Indeed, I
feel that the strong claim which quantum mechanics has to profound cultural significance
stems largely from the fact that it has raised serious and as yet unanswered questions about
Reality. We nced not necessarily make a philosophical study of such issues in a physics course,
and we do not do that in these lectures, but we should not deny the existence of these issues. As
evidence in these lectures for the "fact” that observables for microscale systems do not always
have values, | have invoked the double-slit experiment. The evidence provided by that
experiment is strong, but not unassailable. Evidence of a more compelling nature would have
been provided by an electron-pair spin-correlation experiment, but unfortunately a satisfactory
quantum analysis of such an experiment lies beyond the reach of these lectures. The double-slit
experiment on the other hand can be analyzed within the framework of these lectures, and in
fact it provides us with a thematic bridge from Lecture 1 to Lecture 7.

As to the treatment given in these lectures of the quantum theory itself, I have indeed
organized and presented the ingredients of the theory in a very different way than is usually
done. But the basic view of quantum mechanics taken in these lectures is quite orthodox, and is
fully in line with what one will find in such standard texthooks as Dirac, Messiah and
Merzbacher. [ have tried to present in these lectures a highly simplified and hence
unconventional rendering of conventional quantum theory.

I would like to thank John Rigden and Eugen Merzbacher for their encouragement in
preparing these lectures. I am happy to acknowledge the benefits of conversations with other
physicists who participated in the 1988 IUPP conferences at Harvey Mudd College and
Carleton College, especially those in the quantum mechanics working group. And [ want to
thank Ron Derr, Head of the Research Department of the Naval Weapons Center, for allowing
me to participate in [UPP and develop these lectures within the framework of the Center’s
Independent Research Program.

China Lake, California D.T. Gillespie
May, 1989
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LECTURE 1. INTRODUCTION AND MOTIVATION

p1.1 The Fundamental Problem of Mechanics

The subject of “mechanics” deals with a system and its observable properties or observables. If A is
an observable of a given system, then we can at any time “make a measurement of A on the system,”
and thereby obtain a result A, an ordinary number that we call the value of A. For example, the
position (an observable A) of a ball (the system being considered) is measured, with the numerical
result 4.7 (= A, the measured value of the observable A).

In the “classical” mechanics of Isaac Newton, there is no need to distinguish between an
observable A and its value A: The values of the observables of a system are represented by ordinary
mathematical variables, and the central program of mechanics is to find (e.g., by using F = ma) the
time dependence of those “observable variables.” This program is very successful on the macroscale,
the scale of systems that we are familiar with from our everyday experience (such as the moon,.
airplanes, tennis balls and dust particles). But the classical program runs into serious difficulties on
the microscale, the scale of individual atoms and molecules. As a prelude to describing the microscale
difficulties of classical mechanics, and how "quantum” mechanics ultimately avoids those difficulties,
let’s begin by rephrasing the goal of mechanics in a more cautious “operational” way:

THE FUNDAMENTAL PROBLEM OF MECHANICS (FPOM):

- At time zero we measure some observable A on the system, and obtain the result A.

- Then we let the system evolve on its own until some time ¢ (¢=0).

- At t, we measure some observable B on the system.

® Knowing A, A, t and B, what can we predict about the result B of the second measurement?

»1.2 The Failure of Classical Mechanics on the Microscale

In the classical approach to the FPOM, we know that in some circumstances we can predict B
exactly, while in other circumstances we can predict B only probabilistically. For example, consider a
simple harmonic oscillator of mass m and spring constant k. Classically, it executes sinusoidal
motion with frequency 2n(k/m)!1/2 and some amplitude a. Suppose the first-measured observable A is
“total energy,” and the second measured observable B is “position.” Since the energy value A will be
related to the oscillation amplitude a by A =+ka2/2, then after the A-measurement we will know that
the amplitude of the oscillator motion is a=[2A/k]1/2. But that’s all we will know. So we can’t make a
unique prediction for the result B of any subsequent position measurement. We can, however, make
some probabilistic predictions: We know that B must lie somewhere between *[2A/k|1/2; moreover,
since the particle spends more time near the turning points £[2A/k]V2, where it moves slowly, than
near 0, where it moves quickly, then we should expect B-values near *[2A/k]1/2 to be more likely
than B-values near 0. In fact, if we reason carefully from the classical equations of motion for a
harmonic oscillator (we won’t go through the details here), we can derive the “probability density”
curve for the B-values shown in Fig. 1-1. The shaded area in that figure is equal to the probability
that the result B will lie between B and By. (The curve is the reciprocal of the oscillator’s speed at
position B, multiplied by a constant that makes the total area under the curve unity.)

Well, what do we find experimentally? We get excellent quantitative agreement with this
classical prediction for particles of “tangible” mass. But if we could do the experiment with a particle
of very small mass, such as an atom, we would see marked deviations from this prediction: Depending
upon the energy result A, we would find that it is impossible to get some position values B between
T[2A/k11/2, and possible to get position values B with |B|>[2A/k|1/2. [When m is very small we would
also notice that the energy values A obtained in the first measurement are always integer multiples
of a number proportional to (k/m)1/2, another feature that is not predicted by classical mechanics.|

We conciude from this and similar experiments that, at the very least, the values of the
observables of a microscale system are not interrelated by the familiar classical formulas that work so
well for macroscale systems. But in fact, the failure of classical mechanics on the microscale runs
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FIG. 1-1. The classical prediction for the result B of a position measurement that is
performed on a harmonic oscillator with total energy A and spring constant k. The
shaded area is equal to the probability that the result of such a measurement will
fail between the position values By and Bg.

much deeper than this: Other experiments indicate that it is pointless, even self-contradictory, to say
that microscale system observables always “have values.” Of those experiments, perhaps the eusiest
to both describe and analyze is the so-called double-slit experiment.

In the double-slit experiment, schematized in Fig. 1-2, a very small particle — let’s say an electron
for definiteness — is fired with horizontal momentum py at a vertical screen Sy (assume that no
gravity forces operate). Screen Sy is opaque to the electron except for two horizontal slits at y =y and
y=y9. To actually see the effects that we shall describe, these two slits must be very narrow and very
close together, so this is indeed a "microscale” experiment. Bevond Sy is a second vertical sereen S,
this one coated like a television screen with a substance that emits a spot of light wherever i1t is struck

T
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(momentum T
Po) slit yo frequency
screen Sy screen Sy

FIG. 1-2. Schematic diagram of the double-slit experiment, showing the hit probability
patterns with both slits open (curve Cy9) and with only one slit open (curves Cy and Cy).
The length scale on sereen Sy has been greatly magnified in this drawing; compared to the
“macroscopic” scale of screen Sg, the two slits in screen Sy are "microscopic” in both their
size and their separation.
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by an electron. The coating allows us to record the point z where the electron hits Sg. (We measure
vertical position along S; by y, and vertical position along Sg by z. Note that in Fig. 1-2 the y-scale is
greatly magnified relative to the z-scale.) If we repeat this experiment many times, we can
empirically determine the probability that the impact point of the electron on screen So will be at any
point z. Curve C1g shows schematically the hit probability (or hit frequency) pattern that is actually
observed when slits y; and y are both open. Now it so happens that this curve looks exactly like the
interference intensity pattern we would get if we were transmitting through the two slits, instead of
particles, waves of sound or light with wavelength

X = 2nh/py. (1-1)

Here, py is the measured initial momentum of the electrons, and %, called “h-bar”, is a universal
physical constant introduced by Max Planck with the numerical value

f = 1.054...X10-34 joule-sec. (1-2)

So the shape of curve Cj4 strongly suggests that an electron is a wave; yet the fact that the curve Cyo
is inferred from the statistics of one-at-a-time, point-like scintillations of equal intensity suggests
equally strongly that an electron is a particle. This curious behavior is not peculiar to electrons
alone, but is observed for virtually all elementary constituents of matter and energy (such as protons,
photons, etc.). Nature seems to exhibit on the microscale a wave-particle duality that is simply not
understandable in purely classical terms.

Curve C in Fig. 1-2 shows schematically the hit probability pattern that is observed when only
slit y; is open. The curve Cg obtained when only slit ys is open is virtually indistinguishable from
curve Cy, because the slit separation distance on screen S; is miniscule on the length scale of screen
S2. Notice that there are some points on screen Sy, such as zy, that are more likely to be hit when both
slits are open than when only one slit is open; that’s not surprising. But what is surprising is the fact
that there are other points on screen Sg, such as z9, that are less likely to be hit when both slits are
open than when only one slit is open,; i.e., by closing one slit we make it more likely that point zo will
be hit on any one electron firing! Now, it is obvious that any electron arriving at screen Sy can only
have come by way of the two slits y; and ys in screen S;. And it is equally obvious that when only slit
¥1 is open, any electron arriving at Sg can only have come through that slit, and hence must have had
at screen S; the y-position value y;. When both slits are open, common sense would seem to require
that any electron arriving at S must have come either wholly through slit y; or wholly through slit
y2. But if that were true, then closing one slit could not possibly increase the likelihood that an
electron will reach point z9, as we observe that it does. So we must conclude that “common sense” is
wrong: any electron that reaches screen Sy with both slits open did not go through either slit y1 or slit
¥2, but instead somehow made use of both slits! It follows that, for such an electron, the observable “y-
position at Sy” cannot meaningfully be said to have “had a value.”

This finding is just one example of the astonishing conclusion that physicists have been forced to
by many carefully done experiments: Observables for microscale systems do not always "have values.”
Therefore, we cannot address the Fundamental Problem of Mechanics on the microscale with the
usual “common sense” classical approach, because that approach always starts from the assumption
that system observables do always have values. (For example, we can’t analyze the double-slit
experiment by trying to figure out how the position value of the electron changes with time, because a
“position value of the electron” does not always exist during that experiment.) Although classical
mechanics works quite well for macroscale systems, it seems that a radically different approach to
microscale mechanics must be devised.

p1.3 The Aim and Plan of These Lectures

The “replacement theory” for classical mechanics on the microscale is called quantum mechanics.
Quantum mechanics was developed during the first quarter of the Twentieth Century by Werner
Heisenberg, Erwin Schrédinger, Niels Bohr, Max Born, Paul Dirae, John von Neumann, and a
number of others. We shall not delve into the history of quantum mechanics in these lectures, but we
should note that the decision of early Twentieth Century physicists to abandon classical mechanics on
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the microscale was at the time both daring and traumatic. The theory that ultimately emerged from
the heroic efforts of those physicists, the standard theory of quantum mechanics . . .

- takes a radically different approach than classical mechanics;

- is "non-intuitive” from the viewpoint of ordinary experience;

- gives correct results on the microscale;

- reduces to classical mechanics on the macroscale;

- is controversial, even among physicists;

- is one of the most ingenious and significant intellectual achievements in the history of mankind.

There is no way that we can cover quantum mechanics completely in seven lectures. We will have
to leave a lot out, and greatly simplify the rest. The limited goal of these lectures will not be to show
you how to solve lots of quantum mechanics problems, but rather to give you an accurate appreciation
of the “essence” of quantum theory. With some effort on your part, you should acquire from these
lectures an honest sense of the strange kind of reasoning we have to use in order to successfully
describe physical phenomena on the microscale.

We shall first have to learn some new mathematics — calculus alone is not enough for quantum
mechanics. We'll get a brief start on that task in just a moment by developing some facts about
complex numbers. We'll need those facts in our second lecture, where we will develop the
mathematical theory of generalized vectors. The theory of generalized vectors provides the basic
“mathematical language” of quantum mechanics, and we will have to achieve some fluency in that
language if we are to gain any real insight into quantum theory. The bad news is that the theory of
generalized vectors is very abstract; the good news is that it is in many ways less difficult to learn
than calculus, and we won’t have to use it here to make any terribly complicated calculations.

In our third lecture we shall use the language of generalized vectors to lay out the first four rules
(or axioms or laws) of quantum theory. Those four rules will enable us to see how, at least in
principle, quantum theory frames its answer to the FPOM for =0 (an A-measurement followed
immediately by a B-measurement). Those rules thus form the foundation of "quantum statics,” where
there is no consideration given to the passage of time. Remarkably, all the non-intuitive "weirdness”
of quantum theory can be exposed in the context of quantum staties. In our fourth and fifth lectures
we shall continue our discussion of quantum statics by pursuing some other important results.

In our sixth lecture we shall state the fifth rule of quantum theory, and we shall see how it allows
us to finally frame an answer to the FPOM for any ¢=0. At that stage, we’ll have all the basic
ingredients for "quantum dynamics,” and an essentially complete quantum theory. Our seventh and
final lecture will consider the specific problem of a free particle in one dimension, and will provide us
at last with a view of how quantum mechanics accounts for the seemingly unaccountable results of
the double-slit experiment.

Note: For an abbreviated five-lecture sequence that is less mathematically demanding of the
student, the fifth and seventh lectures may be omitted.

p1.4 Complex Numbers

You have probably already encountered complex numbers. Here we are going to review a few
basic facts about them that we shall need for our development of quantum mechanics.

A complex number is a number of the form
¢c=a+ib, (1-3)
where i=V —1, and a and b are ordinary real numbers. We call a the “real part” of ¢, and b the
“imaginary part” of ¢, and we write
a = Relc}, b = Imic}.
Il 6=0 we say that ¢ is pure real, while if a =0 we say that ¢ is pure imaginary. And if ¢ and b are both
zero, we write ¢=0. It is important to understand that the terms "real” and "imaginary” are used
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here in a strictly technical sense; you should not grant them their usual connotations of “genuine”
and “artificial.”

The key feature of complex numbers is that they can be added and multiplied by using the
ordinary rules of algebra, but supplemented by the rule that i2= —1.

®Lxercise [-1. If cy=a;+iby and co=ag+ibg, show that

c1tcg = (ag +ag) + i(by + bg), (1-4a)
cice = (ayjag—b1bg) + ilay1ba+ byas). (1-4b)
The complex conjugate of ¢ in (1-3) is defined to be the complex number
c* =a —ib. (1-5)
®Exercise 1-2. Show that c is pure real if and only if ¢*=c. Also prove that
(e*)* =¢, (1-6a)
c+c* = 2Re{c}, (1-6b)
(c1+c2)* = ci* +co*, (1-6¢)
(cic2)* = cr*co*. (1-6d)
The square of ¢, namely
2 =cc = (a2-b2) + i(2ab), (1-7a)
is obviously a complex number. However, the square modulus of ¢, which we define to be
[e]2 = cc* = c*c= a2 + b2, (1-7b)

is evidently a non-negative real number, which vanishes if and only if ¢ =0.
®Lxercise 1-3. Carry out the algebra leading to equations (1-7). Also prove, using the results of
Exercise 1-2, that
lercz] = fealeal, (1-8a)
lcr+eol 2= ler]2 + lco|2 + 2Ref{cico*}. (1-8b)
Finally, for any real number u we define ‘
~ eiu = cosu + isinu. (1-9)

One rationale for denoting the complex number on the right side of (1-9) by the exponential symbol on
the left is this: If a is any real constant and x any real variable, then

(d/dx)eiax = (d/dx)[cosax + isinax] = —a sinax + ia cosax = ialisinax + cosax],
{d/dx)eiax = iqg eiax, (1-10)
which is precisely what we would get if i were an ordinary real number.

®Lxercise 1-4. Using the definition (1-9), prove that

ei0 =1, (1-11a)
(elu)* = cosu —isinu = e—ix, (1-11b)
IeiuIZ =1, (1-11¢)
(eiu)(eiv) = eilu+ov), (1-11d)

» Before the next lecture, you should do Exercises 1-1 through 1-4. You should become fairly
familiar with these facts about complex numbers before tackling the mathematics of generalized
vectors, which is what we will do in the next lecture.



LECTURE 2. THE MATHEMATICS OF GENERALIZED VECTORS

»2.1 Vectors, Scalars, Components, Basis Expansions

You have learned that there are some quantities in physics, such as mass, temperature and
density, that have only “magnitude,” and are called scalars; other quantities, such as position,
velocity and force, have both “magnitude” and "direction,” and are called vectors. Let’s review some
things you presumably already know about vectors.

[See Fig. 2-1] We can picture a vector v as an arrow, whose length is the magnitude of the vector,
and whose sense (from its tail to its head) is the direction of the vector. If we translate the arrow, i.e.,
move it without changing its length or direction, we don’t change the vector. We can multiply any
vector v by any real number r, called a scalar, to get a new vector, written rv or vr, which has a
magnitude that is || times the magnitude of v and a direction that is the same or opposite the
direction of v accordingly as r is positive or negative. Two vectors v; and vs can be added to form a
new vector, vi+ vy, by translating them so that the tail of vy lies on the head of v; and then drawing
the sum vector from the tail of v| to the head of vo. And vo+ vy is the same vector as vy + vo.

S

also vector v
vector v
(0.5) v (=125 v

N =

\ va
V2 + V1
vi+ vy

v2 Vi

FIG. 2-1. Vectors, scalar multiplication and vector addition.

[See Fig. 2-2] Any vector with length 1 is called a unit vector. The component of any vector v
relative to a unit vector e is the perpendicularly projected length of v onto e, a scalar that we denote
by e-v. If the head-to-head angle between v and e is 0, then e-v is equal to the magnitude of v times
cosf; thus, e-v is positive or negative accordingly as 0 is less than or greater than /2. If 0=r/2, then
e-v=0, and we say that e and v are orthogonal. The e-component of rv is r times the e-component of
v; the e-component of v| + vy is the sum of the e-components of vy and vs.

[See Fig. 2-3] In two dimensions, any two orthogonal unit vectors e; and es form a basis, and any
vector v can be "expanded” in that basis according to the rule

v = e (e+v) + eg(ea-v),
wherein the scalar multiplying the unit vector e; is just the e;-component of v. Similarly in three

dimensions, any three mutually orthogonal unit vectors e, e and e constitute a basis, and any
vector v can be expanded in that basis according to

v =ej(e-v) + ealesv) + e3(e3-v).



LECTURE 2. THE MATHEMATICS OF GENERALIZED VECTORS 7
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FIG. 2-2. Unit vectors and components relative thereto.
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v = ey (e1-v) + ez (eg-v) ey (e9-v)

v =ej(e;-v) + ey (egv) + e3lezv)

FIG. 2-3. Bases and expansions therein.

The aforementioned facts about vectors should not really be new to you. Now, besides vectors, you
have no doubt also encountered in your studies mathematicians; they too are both amusing and
useful. One of the amusing and useful things about mathematicians is their penchant for doing
mathematics without relying on pictures, as we just did in our discussion of vectors. Let’s see how a
mathematician might try to “formalize” the foregoing vector notions, and lay out a mathematical
theory of vectors without ever refering to directed line segments. [Note to students of linear algebra:
The definitions and postulates that follow will be a bit different from what you've learned. We're
going to take as direct and elementary an approach as our later needs will allow. |

We define a vector space to be a collection of objects v, called vectors, such that the following things
[(a) through (d)] are true: . .

(a) "Scalar multiplication” is defined: [f v is any vector in the space and r is any real number, also

called a scalar, then rv (=vr), called the product of r and v, is also a vector in the space.
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(b) "Vector addition” is defined: If v{ and vg are any two vectors in the space, then v; + vo, called
the sum of vi and vy, is also a vector in the space. And vo+ v is the same vector as v; + vo.

Comment: From (a) and (b) we see that, for any two vectors vj and vy in the space and any two scalars
r1and ro, the linear combination ryvy+rove is a well-defined vector in the space.

(c) There exists in the space unit vectors, relative to which all vectors in the space have
components. The component of the vector v relative to the unit vector e, called the e-component of
v, is written e-v, and has the following properties:

(cl) e-v isascalar.

(c2) e«(r\vy+rove) = ri(e-vy) + ro(e-vg).

(c3) e.e = 1.

(c4) e-e' = e’-e, for any two unit vectors eand e’.

Comment: (cl) says that the e-component of any vector v is a real number. (c2) says that the e-
component of any linear combination vector is the same linear combination of the e-components. (¢c3):
says that the e-component of itself is unity, and thus serves to define a unit vector. And (c4) says that
for any two unit vectors e and e’, the e-component of €' is equal to the e’-component of e.

(d) If the vector space is N-dimensional, then there exists at least one set of N unit vectors {ey, e,
..., N} called a basis such that

(d1) ej-e;, = 0 wheneverj=k.
(d2) For any vector v in the space,
v =ej(e1-v) + ex(erv) + ... + eyl(eyn-v). (2-1)

Comment: (d1) stipulates that the unit vectors composing a basis be mutually orthogonal. (d2) says
that any vector v can be written as a linear combination of the basis vectors, and that the scalar
coefficient of e; in this e-basis expansion of v is just e;-v, the e;-component of v. Eq. (2-1) also suggests
something that is quite valid about how we actually specify vectors in practice:. We generally.specify.
a vector v by giving its components relative to some “known” basis, which in turn need not be further
specified. The point is that we can’t really specify a length and direction for v unless we say “length
relative to what” and “direction relative to what,” and a basis is the "what.” So the actual
specification of a vector in N dimensions ultimately comes down to specifying N ordinary numbers —
the components of v relative to some particular basis.

Now at this point, if you're not a mathematician, you’re probably thinking that all this formalism
may be okay, but pictures are better: One picture is worth a thousand mathematicians! In fact, you
probably suspect that even though the mathematician didn’t draw pictures, he/she was thinking
pictures! But notice something: The mathematician’s formal vectors are a little more general than
our picture vectors: the dimensionality N of the mathematician’s vector space can be any positive
integer, whereas we can draw picture vectors only for N<3. Thus, the mathematician has come up
with a significant generalization of the vector concept, one that we will in fact make use of in our
subsequent discussions. However, when we speak of “generalized” vectors in what follows, we shall
mean something more than arbitrary dimensionality. For generalized vectors, the scalars are complex
numbers instead of real numbers. And then it’s “goodbye pictures,” even in two dimensions. For
generalized vectors, we have no choice but to use the abstract, formal approach of the mathematician.
Fortunately, though, we can lay out the theory of generalized vectors by repeating almost verbatim the
formal theory of ordinary vectors. Here is how it goes: [From now on we shall use the word “vector” to
mean “generalized vector,” and not a directed line segment. |

We define a vector space to be a collection of objects y, called vectors, such that the following
things [(A) through (D)] are true:
(A) “Scalar multiplication” is defined: If @ is any vector in the space and ¢ is any complex

number, also called a scalar, then cp (=ye), called the product of ¢ and g, is also a vector in the
space.
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(B) "Vector addition” is defined: If ¢ and g9 are any two vectors in the space, then @)+ o,
called the sum of p; and yg, is also a vector in the space. And w9+ y; is the same vector as
p1+ 2.
Comment. From (A) and (B) we see that, for any two vectors gy and w9 in the space and any two
scalars ¢ and c9, the linear combination ciyp) +cope is a well-defined vector in the space.
(C) There exists in the space unit vectors, relative to which all vectors in the space have
components. The component of the vector p relative to the unit vector ¢, called the e-component of
p, is written (g,p), and has the following properties:

(C1) (&,p) isascalar.

(C2) (g, c1p1 +copg) = ¢y (g,91) + cale, o).

(C3) (g,8) = 1.

(C4) (g,e") = (¢',6)*, for any two unit vectorseand ¢’.

Comment: (C1) says that the e-component of any vector y is a complex number. (C2) says that the e-
component of any linear combination vector is the same linear combination of the £-components. (C3)
says that the e-component of itself is unity, and thus serves to define a unit vector. And (C4) says that
for any two unit vectors ¢ and &', the e-component of &' is equal to the complex conjugate of the ¢'-
component of &. The conjugation operation here marks an interesting and curious departure from the
theory of ordinary vectors. [But notice that we could have written (c¢4) in the ordinary vector theory
as e-e’ =(e’-e)* without altering anything, since complex conjugation doesn’t change real numbers.|

(D) Ifthe vector space is N-dimensional, then there exists at least one set of N unit vectors {¢1, &9,
..., N} called a basis such that

(D1) (¢j,e£) = 0 wheneverj=k.
(D2) For any vector g in the space,
@ =1 (e1,p) + e2(e2,) + ... + en(en,p) = Zjg; (g),p). (2-2)

Comment. (D1) stipulates that the unit vectors composing a basis be mutually orthogonal. (D2) says
that any vector w can be written as a linear combination of the basis vectors, and that the scalar
coefficient of ¢; in this £-basis expansion of y is just (¢,p), the £;-component of y.

In analogy with ordinary vectors, we can schematically represent the expansion (2-2) in two
dimensions by the diagram in Fig. 2-4; however, we must bear in mind that this is not an actual

€2

&2 (e2,9)

. 3>

£ e (e1,p)

FIG. 2-4. Schematic representation of the expansion (2-2) for N=2.

representation of the situation. The reason, of course, is that the components (¢;,p) are generally
complex numbers. But, if we can’t draw an accurate picture of p, how can we specify that vector? Just
as with an ordinary vector v in (2-1), we can specify a generalized vector @ by giving its components,
(e1,9), (e2,p), ..., (en,p), relative to some particular basis; the only difference is that these N
components are now complex numbers instead of real numbers.

In our later work with generalized vectors we shall have occasion to use two theorems. One is the
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Component Expansion Theorem: If g is any vector, ¢’ is any unit vector, and {¢j} is any basis, then
the £’-component of p can be “"expanded in the basis {¢j}” according to the formula

(e p) = Zj (")) (g),p), (2-3)
where the sum runs over the dimensionality of the space. [Mnemonic: Sum over the “inside” &'s. |

Proof: (¢',p) = (¢', Zj &j(g,p)) lexpanding  in the {¢;}-basis according to (2-2)]
= (', Zjcj¢) [ (¢j,p)=c; is some scalar|
= Zj cj(e',e) [invoking the fundamental component property (C2)]

= ZIj (81,11))(8',81‘) = Ej- (8',£j) (ej,lp).
[t's easier, in fact recommended, that you remember this important proof in the two-step form:
&) = (', Zjei(e),p) = T, (&) (&,p).
The other theorem we shall need later on is the

Generalized Pythagorean Theorem: If ¢ is any unit vector and {¢;} is any basis, then the sum of
the square moduli of all the {ej}-components of ¢’ is one; i.e.,

Zileenf2 = 1. (2-4)
®Lxercise 2-1. Prove the generalized Pythagorean theorem. [Hint: First apply the component
expansion theorem with y replaced by ¢’. Then make use of properties (C3) and (C4).]

The name of this second theorem comes from the fact that it generalizes the following familiar result:
For any two-dimensional real unit vector e’, as shown in Fig. 2-5,

(ej-e')2 + (eg-e')2 = 12.
But notice in (2-4) that we sum, not the squares of the components of &', but their square moduli.

}— (eloe') _>| e

FIG.2-5. A two-dimensional unit vector e’ and a basis {e,eq}.

.

»2.2 Operators, Linearity, Eigenvectors and Eigenvalues, Eigenbases

In calculus you learned that a function f transforms a number x into a new number, flx).
Similarly, an operator O transforms a vector p into a new vector, written Oyw. In the picture
terminology of ordinary vectors, we can loosely think of O as generally “stretching” and “rotating”
the vector  into a new vector Oyp.

If the action of O on a particular vector ¢ is a pure "stretch” by a scalar factor o,

O¢ = o¢, (2-5)

then we say that ¢ is an eigenvector of O, and o is the corresponding eigenvalue.

®fxercise 2-2. 1If O is the rule "multiply the given vector by the scalar (3+i4),” find all the
eigenvectors and eigenvalues of O.
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oL xercise 2-3. If O is the rule “add to the given vector the vector (i2)8,” where 8 is some vector
show that f§ is an eigenvector of O, and find the corresponding eigenvalue.

’

In quantum mechanics, we will only have to deal with operators O that have the following two
special properties:
(a) Oislinear. This means that, for any two vectors g1 and @9 and any two scalars ¢; and co,
Olcry + caps) = ¢ Oy + c20ypq. (2-6)
(b) O has an eigenbasis. This means that there is some basis {¢1, @9, ... }, each vector of which is
an eigenvector of O. We shall denote the eigenvalue corresponding to eigenvector ¢; by 0. We

call the basis {¢1, @2, ... } the eigenbasis of O, and the scalars {0y, 09, ... } the eigenvalue set of O.
Thus we have

(¢,@)) = 1 forallj, (2-Ta)

(¢j,pr) = 0 forallj=k, (2-Tb)

w = L, ¢;(¢,p) for any vector p, (2-7c)
as with any basis, but additionally,

O(I)j = 0j¢j for allj. (2-7d)

To define an operator O, we must specify how it produces, for any given vector yp, the vector Oy.
Of the many ways in which we might do that, one especially simple way invokes the eigenbasis and
eigenvalue set of O. To show that a knowledge of the eigenbasis and eigenvalue set of O suffices to
determine Oy for any given p — and hence suffices to define O — we reason as follows:

Op=0 Zj Pj(;p) [expand p in the eigenbasis of O}
=2;0¢;(¢,p) [invoke the linearity of O]
= Zjo0;p; (d,p) [invoke the eigenvector condition]
Oyp = Zj @ilojf(d;,p)l. (2-8a)
Equation (2-8a) tells us that the ¢;-component of vector Oy is 0/(¢;,p); i.e.,
(9,,0p) = oj(¢),p). (2-8b)

Thus, given the ¢;-component of any vector g, we can obtain the ¢;-component of vector Oy by simply
multiplying the former by the corresponding eigenvalue o;, as illustrated in Fig. 2-6.

T -------------------------- 7 Oy

or(Pr,®)  ___ A _______

(Pr,p)
1

— (¢,p) ™

OJ((i)J’(P) 1

FIG. 2-6. THustrating schematically how to construct vector Oy for any given
vector @ by using the eigenbasis {¢1, @9, ... } and eigenvalue set {01, 09, ... } of O.

Ok xercise 2-4. Derivé equation (2-8b) directly by first substituting (2-7¢) on the left (first change
the summation index to k), and then applying (2-6), (2-7d), (C2), (2-7h) and (2-7a), in that order.
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»2.3 Summary

The table below summarizes generalized vector theory as we shall require it for our development
of quantum mechanics. Before the next lecture, you should do three things: First, make sure you
understand everything in the summary table. Second, work Exercises 2-1 through 2-4; if you can
master them, then you’ll be able to handle all the mathematics in the remaining lectures. Finally,
read again Sec. 1.1 to remind yourself of the FPOM; in the next lecture, we’ll use the theory of
generalized vectors to show how quantum mechanics proposes to answer the FPOM for t=~0.

TABLE SUMMARIZING GENERALIZED VECTOR THEORY

name item comment
A vector: 7 A “very abstract” arrow.
A scalar: c Any complex number.
A linear combination: iy + copg A vector in the space.
The component of p A scalar,
relative to the (e,p) i.e., a complex number.
unit vector ¢: The "¢-component of p.”
Key (e, ey +cap2) = ¢y (6,91) + co(e,p2) Used again and again.
properties (g,6) =1 Defines a unit vector ¢.
thereof: (g,e") = (&', 0)* The curious conjugation.
(¢j,;) = 1 forally Unit vectors,
L A basis {e1, €9, ... }: (ej,er) = 0 forallj=Fk mutually orthogonal.
w=Zjg(gj,p) forall The “{¢;}-expansion of p.”
3 Component expansion thm.: (e",p) = Zj (¢',¢)) (¢},p) Sum over "inside” ¢’s.
3 Pythagorean theorem: ZJ |(£J‘,8')|2 =1 For any unit vector ¢’.
An operator: O Transforms g into Oy.
Linearity of O: Olciyr + cowe) = 10w + a0y Used again and again.
2 The eigenbasis {¢;} {P1, D9, ... } is a basis See above.
and eigenvalue set {o;} 01,09, ... are scalars l.e., complex numbers.
of O: 0¢; = 0;¢; forallj The eigenvector condition.
3 Effect of O on any y: (9,,09) = o(¢),p) Sce Fig. 2-6.

Notes:

! Any vector p in N dimensional space can be specified by N complex numbers, namely, the N
components of g, (£1,9), (g2,9), ..., (en,p), relative to some basis {1, &9, ... , en}.

2 Any linear operator O defined on an N dimensional vector space can be specified by specifying
its cigenbasis {¢1, @2, ..., nt and eigenvalue set {oy, 09, ... , on}.

3 A "theorem,” derivable from the preceding definitions and properties.
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LECTURE 3. QUANTUM MECHANICS: STATICS I

p3.1 States and Observables, Vectors and Operators

In our first lecture, we said that "mechanics” deals with systems and their observables. If Ais an
observable (say, position) of a certain system (say, a ball), then we can at any time measure A on the
system and get a result A (say, 4.7), which we call the value of A. (So, the measured value of the ball’s
position is 4.7.) We also noted that the chief concern of mechanics is to answer the following general
kind of question (the FPOM): If we measure an observable A on a system with result A, and then a
time ¢ later measure observable B on the system, what can we predict about the result B of the second
measurement? :

The answer to this question proffered by classical mechanics is generally framed in terms of the
system’s “classical state.” For example, suppose our system is a simple particle of mass m that moves
on the x-axis in a potential energy field V(x) {or equivalently, in a force field F(x) = — V'(x)|. Classical
mechanics defines the state of this system at time ¢ to be the pair of variables [x(¢),p(#)], the particle’s
position and momentum at time ¢. This definition of state is motivated by two considerations: First, a
knowledge of the particle’s instantaneous state [x(£),p(t)] allows us to calculate the instantaneous
values of all other meaningful observables, such as the particle’s velocity p(¢)/m, or its energy
p2(8)/2m+ V(x(t)). And second, a knowledge of the particle’s initial state |x(0),p(0)] provides precisely
the information needed (two integration constants) to uniquely solve Newton’s equation F = ma,

md2x/di2 = - V'(x), (3-1)

for the particle’s state [x(¢),p(t) = mdx({)/d¢] at any time ¢>0. In general, then, the answer to the
FPOM from the classical viewpoint hinges on how well we can know the system’s state, which
classical mechanics defines to be the values of some fixed set of key observables.

We noted in our first lecture that this classical approach to the FPOM works very well for
macroscale systems, but not for microscale systems. We explained that the failure of classical
mechanics on the microscale is quite profound; and arises basically from the fact that observables of
microscale systems (such as the "position” of an electron) cannot always be said to "have values.” And
we don’t mean by this that sometimes we are just ignorant of an observable’s value; we mean that
sometimes we will involve ourselves in a contradiction if we even assume the existence of such a value.
{Recall our discussion of the double-slit experiment.) The replacement for classical mechanics on the
microscale is called quantum mechanics, and is the subject of this and the following four lectures.

In essence, the "standard theory” of quantum mechanics takes the following tack. It proposes to
retain the classical idea that a physical system always has a definite state, but to reject the classical
definition of "state” as the instantaneous values of some fixed set of key observables. For example,
quantum mechanics would go along with classical mechanics in saying that a microscale particle on
the x-axis is always in a well-defined state, but quantum mechanics would not define that state to be
the instantaneous values of the particle’s position and momentum; indeed, it couldn’t, because those
values won't always exist. And how does quantum mechanics propose to separate the notions of
“state” and “observable”? By doing something very un-intuitive, something so very outlandish that
the only rationale we ecan give for it is simply the fact that it ultimately works! Quantum mechanies
turns to the abstract, mathematical theory of generalized vector spaces and says, let’s represent states
by vectors, and observables by operators. More precisely, quantum mechanics starts by laying down
the following two rules (or axioms or postulates): :

» Rule 1: Corresponding to any isolated physical system there is a generalized vector space. The
unit vectors in this space “represent” the possible physical states of the system. The particular
unit vector representing the system state at time ¢ is written W,, and is called the state vector of
the system at time {; we say that the system is “in the state W,” at time ¢.

» Rule 2: Each system observable A is "represented” by a linear operator A that has an eigenbasis
{ay, ag, ... } in the system’s generalized vector space, and a real cigenvalue set {Ay, Ag, ... }; that is,
the linear operator A representing the observable A is such that
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Ag; = Ajo; (j=1,2,...) (3-2)
where the eigenvectors {a;, ag, ... } form a basis in the system’s generalized vector space, and
where the eigenvalues {Ay, Ao, ... } are all real numbers.

Now at this point, you must be very patient, because these rules don’t just look abstract, they look
pointless! What does it mean to say that the vector W, “represents” the system’s state, or the operator
A “represents” the observable A? How should we go about finding either that vector or that operator?
Why should we even want to? In truth, Rules 1 and 2 are just getting things set up for Rules 3 and 4,
which we’ll write down in a minute, and which will answer most of those very reasonable questions.
But before we go on to those next rules, let’s clarify some implications of Rules 1 and 2 that will turn
out later to be important.

First, Rule 1 implies that every unit vector in the system’s generalized vector space corresponds to
a possible physical state of the system, and conversely, every possible physical state of the system
corresponds to some unit vector in the system’s generalized vector space. (The correspondence
between physical states and unit vectors is not quite one-to one, but we’re not going to worry about
that technicality here.) In writing the system’s state vector at time ¢ as W,, Rule 1 obviously suggests
that the state vector evolves with time; i.e., for two different times ¢t and ¢, W, and W, will usually be
two different unit vectors in the space. The time-dependence of the state vector W, is described by
Rule 5, but we won’t get to Rule 5 until our Lecture 6. In this and the next two lectures, we’ll be
concerned solely with what can be said about the system at a single instant ¢ — i.e., with the "static”
features of quantum mechanics.

Rule 2 similarly implies that there is an essentially one-to-one correspondence between physical
observables on the one hand, and linear operators with an eigenbasis and real eigenvalue set on the
other. Of course, we may not know, or even care, how to measure all those observables. In fact, it is
the high calling of the physicist as a “diviner of Nature” to identify the physically relevant
obhservables of a system, and to mathematically construct their associated operators. Notice that, in
the process of constructing operator A, the physicist will also construct, either explicitly or implicitly,
the associated basis {ay, ao, ... }, and hence the entire generalized vector space of the system. Clearly,
this is not a trivial task! In Lecture 5 we'll see how to construct the operators X and P that correspond
to the position and momentum of a particle on the x-axis. But mostly in these lectures, we’ll just be
talking about what you can do with observable operators once you have them.

Notice that neither the general observable operator A, nor its cigenbasis or eigenvalues, depend
upon time. In the formulation of quantum mechanics that we are considering here, only the system’s
state vector evolves with time.

Since the A-eigenvectors {a;, ag, ... } are a basis in the system’s state space, it follows that the
system’s instantaneous state vector W, can always be "expanded in the A-eigenbasis” as

W, = Xjaj(a;, ¥y, (3-3)
where (q;,¥)), the a;-component of W,, is just some complex number. We’ll see later that such
expansions of the state vector in the eigenbasis of observable operators play an important role in
quantum theory. Also important will be the fact that, since W, is a unit vector, then by the
(generalized) Pythagorean theorem the sum of the square moduli of its {a}-components must equal
unity:

Zj|(aj,‘{r‘¢)|2 =1. . (3-4)
We're not specifying the summation limits in (3-3) and (3-4), because the dimensionality of the
generalized vector space is not the same for all systems. Some systems require only a two
dimensional vector space, but most systems (even a simple particle on the x-axis) call for an infinite
dimensional vector space.

If the observable A is the first-measured observable in our statement of the FPOM, then by Rule 2
the second-measured observable B will be similarly represented by some linear operator B with
eigenbasis {81, B2, ... } and real eigenvalue set {By, Bo, ... }. And just as with Eqgs. (3-3) and (3-4), we
can always expand the system’s state vector W, in the B-eigenbasis according to
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W, = Zp B (Br, W),
where the components of W, relative to the B-eigenbasis are complex numbers satisfying
Zp|(Br, W2 = 1.

If the A-eigenbasis components of W, happen to be known, then we can calculate from them the B-
eigenbasis components of W, by using the component expansion theorem [see Eq. (2-3)]:

(ﬁkrlpt) = zj(ﬁk»aj)(aqu,t) (3‘5)
Here, the coefficient (8,,a;) is of course the f3,-component of the vector a; in the expansion
aj = L Br (Br,a). (3-6)

®fxercise 3-1. Eq. (3-6) is the expansion of the A-eigenvector q; in the B-eigenbasis. Write down
the expansion of the B-eigenvector 5, in the A-eigenbasis.

®Exercise 3-2. Prove the following two relations between the fr-component of vector a; and the aj-
component of vector [3:

(Br,a)) = (a;,Br)*, (3-7Ta)
[Be,apl2 = [(a;,B0)2. (3-7b)
®Exercise 3-3. What is the formula for calculating the A-eigenbasis components of W, from the B-

eigenbasis components of W,? How are the coefficients in this formula related to the coefficients
in formula (3-5)?

» 3.2 Results and Effects of Measurements

Now that we have "set the stage” with Rules 1 and 2, let’s “raise the curtain and start the play:”
Let’s address the crucial question of what happens when we measure a given ohservable A on a
system in a known state W,. The answer to that question comes in two parts. The first part, which
we'll call Rule 3, deals with predicting the result of a measurement.

» Rule 3: Ifobservable A is measured on a system in state ¥, then the most that can be predicted
about the result of that measurement is this: The probability that the result will be the
eigenvalue Aj is equal to the square modulus of the a;-component of W, namely [(a;,W,)|2.

Rule 3 implies that even though the state of the system is completely specified, in that the state
vector W, is known, we can nevertheless make only probabilistic predictions about measurement
results. This is in sharp contrast to the situation in classical mechanics, where the (classical) state
uniquely determines the result of any observable measurement. But in quantum mechanies, all we
can say prospectively about a measurement of A on the system in state W, is that the probability that
the result will be Ay is |(a;,W)|2, the probability that the result will be Ay is |(ag, ¥,)|2, etc.

The addition law for probabilities implies that we can calculate the probability that an A-
measurement on state W, will yield any of the eigenvalues of A — i.e., either A or Ag or Az ... — by
simply adding up all the individual probabilities. Thus,

Prob{Ajor Agor...} = [(a1, W2 + [(ag, |2 + ... = Zjl(a;, ¥)|2.

But Eq. (3-4) tells us that the sum on the right is one, which in probability theory means “absolute
certainty.” Thus, a measurement of A is certain to yicld some one of the cigenvalues of A. In other
words, the eigenvalues {A, Ag, ... } introduced in Rule 2 are the only values that any measurement of
A can ever yield. Now, depending upon the observable, eigenvalue sets can be either discretely
distributed (like the integer numbers) or continuously distributed (like the real numbers).
Historically, the fact that many observables on the microscale (such as the energy of an electron
inside an atom) turn out to have discrete or "quantized” values, is what led to the name "quantum”
mechanics. (Of course, you can see already that the difference between classical and quantum
mechanics runs much deeper that quantized measurement results.) In our work here we are going to



16 LECTURE 3. QUANTUM MECHANICS: STATICS |

pretend, insofar as possible, that all observable eigenvalue sets are discretely distributed, because
that’s the easiest case to treat mathematically.

We have seen how Rule 3 illuminates the significance of the eigenvalues of the operator A
corresponding to the observable A: those eigenvalues are just the allowed results of an A-
measurement. Rule 3 also sheds some light on the significance of the eigenvectors of A as well: It says
that if we expand the system’s state vector W, in the A-eigenbasis, as in Eq. (3-3), then the square
modulus of the coefficient of eigenvector a; is the probability of measuring the corresponding
eigenvalue A;. And this in turn implies another interesting fact:

Ifthe system’s state vector ¥, coincides with the eigenvector ag, then an
A-measurement on the system is certain to yield the eigenvalue A;.

To prove this statement, we simply observe from Rule 3 that an A-measurement on the system in the
state W,=aqy, will yield eigenvalue A; with probability [(a;,W))[2=]|(a;,a)|2. This probability is zero if
J =k, owing to the orthogonality of different eigenbasis vectors, and one if j=k, owing to the fact that
ag is a unit vector. So we see that Rule 3 implies that the eigenbasis vectors of A define the possible
states of the system for which an A-measurement will have a uniquely predictable result (namely the
corresponding eigenvalue of A).

Further insight into the significance of the cigenbasis vectors of A is provided by Rule 4. This
rule deals with the effect of a measurement on the state.

» Rule 4: If a measurement of A does yield eigenvalue A;, then immediately after that
measurement the system’s state vector will coincide with the corresponding eigenvector a;,
regardless of what the state vector was just before the measurement.

Rule 4 implics that when we measure A on a system, the system’s state vector immediately
“jumps” to one of the eigenbasis vectors of A, namely to that eigenbasis vector corresponding to the
measured cigenvalue. This is another dramatic departure from classical mechanics, where a
measurement (of the ideal kind we’re considering here) has no effect on the state. Notice that in
quantum mechanics a measurement result tells us much more about the state of the system
immediately after the measurement than immediately before: If the measurement result is A, then
immediately after the measurement we know that the state vector of the system is a;; however, all we
can infer about the state immediately before the measurement is that its a;-component was not zero
(otherwise, we couldn’t have got the result A)).

®Fxercise 3-4. Suppose our system’s generalized vector space is two dimensional, so that the
eigenbasis of A consists of the two orthogonal unit vectors a; and as.

ag

as =Y, T ¥

(a) If W,=ay, as indicated schematically in (a) above, calculate the probability that an A-
measurement will yield the value A, Ditto lor the value As. What will the state vector of the
system be immediately after an A-measurement?

(b) If W,=(i/2)a; +(V3/2)ag, as indicated schematically in (b) above, calculate the probability
that an A-measurement will yield the value A;. Ditto for the value As. For each outcome,
describe the state vector immediately after the measurement.
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» 3.3 Answer to the FPOM fort=0

With Rules 1 through 4, you have now seen the most bizarre features of quantum mechanics; you
have arrived at the “radical core” of the theory! Also with these four rules, you are now in a position
to see how quantum mechanics proposes to answer the FPOM for (=0, i.e., for no appreciable time
lapse between the A-measurement and the subsequent B-measurement. We reason as follows:

- When A is measured on the system, the result must (by Rules 2 and 3) be some A-eigenvalue;
let’s call the measured eigenvalue A;.

- So immediately after the A-measurement, the system will (by Rule 4) be in the state a;. And
since =0, the system will still be in state a; for the B-measurement.

- Measuring B on the state q; will (by Rule 3) yield any B-eigenvalue B, with probability

[(Br,a)l2. v
» Therefore, quantum theory’s answer to the FPOM in the £=0 case is:
Prob{B =By, giventhat A=Ajand t=0} = [(B,,a))]2. (k=1,2,..) (3-8)

Notice that all we need to know to answer the FPOM for ¢=0 are:
- the eigenvalues of A and B, and
- the components of the A eigenvectors relative to the B eigenbasis.

Notice also, from Eq. (3-7b), that 8 and a; in (3-8) can be interchanged.

As a simple application of the result (3-8), suppose that A and B are the same observable (call it A).
Then (3-8) implies that the probability that the second A-mecasurement will give the result A, when
the first A-measurement gave the result A; is

[(ag,0)2 =0 ifk=j (sincearand a; are orthogonal for k=)
=1 ifk=j (sinceaq;is a unit vector)

Thus, the second A-measurement is certain to give the same result A; as the first A-measurement.
More generally, the results obtained in two rapid, successive measurements: of any observable- will.
always agree with each other. So quantum mechanics is not totally crazy! But notice that this
consistency of immediate remeasurement results depends strongly on the "measurement jump” of the
state vector postulated by Rule 4: After the first A-measurement, with whatever result A, the state
vector must coincide with the corresponding eigenvector a; in order for Rule 3 to guarantee the result
Ajon the second A-measurement.

®Exercise 3-5. Suppose A and B are observables of a system with a two-dimensional state space,
and suppose the B-eigenbasis vectors are given in terms of the A-eigenbasis vectors by

b1 = i(1/3)12a; +(2/3)12a9 and P9 = (2/3)12a1 +i(1/3)12a9.
(a) By inspecting the above formulas, identify the components (a;,8;) for all j and £. Then use Eq.
(3-7a) to deduce (f3,a)) for all j and k. Using the latter numbers and Eq. (3-6), write down a; and

ag in terms of B; and fla. Check your answer by solving the above two equations simultaneously
for ay and ag.

(b) In the FPOM, suppose the A-mcasurement yields the result Ay. What is the probability that
the immediately subsequent B-measurement will yield the result B1? The result By?

(¢) Suppose the B-measurement gives the result By, and then an immediate remeasurement of A
is made. What is the probability that the result of this second A-measurement will give the same
value.Ag as obtained in the first measurement?
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»4.1 Recapitulation
Let’s review our story so far.

Classical mechanics founders on the microscale, essentially because it tries to identify the
enduring “state” of a physical system with the not-so-enduring values of certain observables of the
system. Quantum mechanics attempts to salvage things by separating the notions of "state” and
"observable” using the mathematical theory of generalized vectors. Specifically, quantum mechanics
postulates, in its Rules 1 and 2, that to every physical system there corresponds an abstract
generalized vector space, in which the system’s stutes are represented by certain vectors and the
system’s observables are represented by certain operators. The vectors representing system’s states
are all unit vectors. The operators representing system’s observables are all linear with eigenbases
and real eigenvalue sets. And just how are we supposed to find the operators that represent specific
system observables, and that in fact define through their eigenbases the system’s abstract vector
space? That is something that quantum theory leaves to the wit and wiles of the physicist, who thus
is given the challenging task of hooking up the rules of quantum mechanics to the real world.

But we can’t expect to form a meaningful physical theory by doing nothing more than associating
states with vectors and observables with operators. What ties all these concepts together is the notion
of measurement. Rules 3 and 4 describe what happens when we make a measurement of an
observable A on a system whose state vector is W,. Those rules say, firstly, that the outcome of such a
measurement must be one of the real eigenvalues {Ay, Ag, ... } of the operator A associated with
observable A. But which eigenvalue? Quantum theory says that usually we can’t be sure, and that
the best we can do is this: Expand the state vector W, in the eigenbasis {a;, ag, ... } of A,

Y, = Zja;(a;,¥), (4-1)
and observe the complex component (a;,'¥;) of W, along the eigenbasis vector a;; the square modulus of
that component, namely |(0j,q’z)|2, is numerically equal to the probability that an A-measurement on
the system in the state ¥, will give the eigenvalue A, corresponding to eigenvector a;. And while we
can’t always be sure of the result of an A-measurement, we can be sure of this: If the result is the
particular eigenvector A, then the state vector of the system immediately after the measurement will
coincide with the corresponding eigenbasis vector a;. In other words, a measurement of A causes the
system’s state vector to "jump” to one of the eigenvectors of the observable’s operator A, namely to
that eigenvector corresponding to the eigenvalue found in the measurement. This measurement
jump, like the measurement result itself, is inherently random and uncontrollable, and does not seem
to be explainable in terms of any underlying deterministic mechanism.

That, in brief, is the gist of quantum mechanics as embodied by our Rules 1 through 4. At the end
of our last lecture, we showed how these four rules allow us to frame an answer to the FPOM for the
“static” case t=0. Let’s review that answer in the context of a simple hypothetical system whose
generalized vector space is two-dimensional. Let’s assume that we have defined the operators A and
B for observables A and B by specifying their respective eigenbases, {aj,ae} and {B1,B2}, and their
corresponding real eigenvalue sets, {A,Ay} and {By,Bg}. The eigenbases define in turn the
generalized vector space of the system. To help us visualize that abstract space, and in particular the
relation between the two eigenbases, we'll use the pictorial representation in Fig. 4-1a. We can think
of the components of the various vectors relative to each other as”projections,” just as we do for
ordinary vectors, provided we keep in mind the caveat illustrated in Fig. 4-1b: Although the drawing
implies that the component of, say, vector i relative to vector ay is equal to the component of a;
relative to 1, those two components are in fact complex conjugates of each other; i.e., (ay B =(3,a0*
Now, the ¢=0 version of the FPOM contemplates a measurement of observable A followed
immediately by a measurement of observable B. We know that the A-measurement must yield one of
the two eigenvalues Ay or Ag. If the result is Ay, then regardless of what the state vector of the
system was just before the A-measurement, it will coincide with a; immediately after that
measurement; hence, the system will be in the state a; for the B-measurement. So to predict the
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FIG. 4-1. Generalized two-dimensional vector space for a hypothetical system, showing in (a)
the eigenbases {aj,ag} and {f1,82} of two observable operators A and B, and reminding us in
(b) of the inherent limitation of this kind of pictorial representation of generalized vectors.
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FIG. 4-2. Showing the complex components needed to answer the FPOM for ¢=0, (a) when the
result of the A-measurement is Ay, and (b) when the result of the A-measurement is As.

result of the B-measurement, we first calculate the complex components (8y,a7) and (3,a;) of a;
relative to the B-eigenbasis [see Fig. 4-2a]. We then assert that the B-measurement will yield the
result By with probability |(81,a1)|2, and the result By with probability [(82,a1)]2. On the other hand, if
the A-measurement had given the result Ag, then we would know that the system’s state vector just
before the B-measurement would be ay. In that case, we would calculate the complex components
(f1,a9) and (89,09) of ag relative to the B-eigenbasis [see Fig. 4-2b|, and then assert that the B-
measurement will yield the result By with probability |(81,a2)|2, and the result By with probability
|(B2,a2)|2. That, in brief, is quantum theory’s answer to the FPOM in the “static” case.

Now let’s pursue some other implications of the first four rules of quantum mechanics.
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»4.2 Compatible and Incompatible Observables

First we’re going to discuss a notion, or if you will a definition, that is very revealing of the non-
classical character of quantum mechanics. Two observables A and B are said to be compatible if and
only if, in a rapid sequence of three measurements — of A then of B then of A again — the results of
the first and third measurements will always agree with each other. But if, in those three
measurements, it might happen that the first and third measurements will not agree, then A and B
are said to be incompatible.

In classical mechanics this definition is rather useless, because there all observables are
compatible: The intervening B-measurement, being “ideal,” has no effect on the state of the system,
and hence no effect on the value of observable A. But in quantum mechanics, it is easy to see how two
observables might very well be incompatible. For example, consider a system with a two-dimensional
state space, and suppose that the eigenbases {aj,a2} and {§;,89} of the operators for observables A and
B do not coincide with each other, as is indicated schematically in Fig. 4-3a. If the first

b A%2 A ag=f (or fy)
B

#=ﬁl (or o)

(a) (b)

FIG. 4-3. [llustrating, for two observables A and B with repective eigenbases {a;,as} and {81,582},
the conditions of (a) incompatibility, and {(b) compatibility.

A-measurement yields eigenvalue Ay, then the system’s state vector will jump to state a;. The
subsequent B-measurement will make the system’s state vector jump to either state 8 or state fSo.
But in neither of those two states is it guaranteed that an A-measurement will give the result A| that
was obtained in the first measurement. Of course, we might get the result A; on the third
measurement, but that is not a certainty; so by our definition, A and B are incompatible observables.

On the other hand, suppose that the eigenbases {a;,as} and {f;,89} of the A and B operators
coincide with each other, as is indicated schematically in Fig. 4-3b (whether the eigenbasis indices
match or not is immaterial for our arguments). Now what happens in our A-B-A measurement
sequence? If the first A-measurement gives the result Ay, then the system will jump to state a;. Since
ap is also an eigenbasis vector of B's operator, then the B-measurement will simply leave the system in
that state; thus, the remeasurement of A will necessarily yield the eigenvalue Aj again. Obviously, a
similar argument will show that if the first measurement had given the result Ay, then the third
measurement would also have to give the result A3. So A and B in this case are compatible
observables.

Our conclusions here represent a general result in quantum mechanics: A necessary and
sufficient condition for two observables to be compatible is that their operators have a common
eigenbasis. If the operators for A and B do not have a common eigenbasis, then in a rapid A-B-A
measurement sequence the B-measurement always has the potential of “spoiling” the remeasurement
of A. But it is very important to understand that this spoilage, when it occurs, is not the result of
sloppy measuring technique, but rather is intrinsic to the nature of the measured observables.
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p 4.3 Interference. The "Value” of an Observable

A fascinating property of incompatible ohservables is their apparent tendency to “interfere” with
each other. The most famous manifestation of quantum interference occurs in the double-slit
experiment, which we discussed in our first lecture. However, the double-slit experiment is an
example of “dynamic” interference, since it involves in a fundamental way the passage of time; we
shall consider the double-slit experiment in some detail in Lecture 7. The general phenomenon of
interference can be demonstrated in a static context rather easily by appealing once again to a
hypothetical system with a two-dimensional state space. Suppose A and B are two incompatible
observables for such a system, so that the eigenbases {a;,a2} and {f;,f2} of their associated operators A
and B do not coincide, as schematized in Fig. 4-4. Suppose further that the system’s instantaneous

h

W,

)(11

FIG. 4-4. A situation leading to “interference” between the incompatible observables A and B.

state vector ¥, does not coincide with any of those four eigenbasis vectors. As we know quite well by
now, the measurement probabilities for observables A and B on state W, are as follows:

Prob{Meas(A)=A;} = |(a;,%¥)[2 (j=1,2); Prob{Meas(B)=B} = |[(B,,¥)|2 (k=1,2).
Now, if we expand W, in the A-eigenbasis,
W, = aj (a;,W)) + ag (a9, W)
then we can write the fi{-component of W, in the form
B, W) = (Br, a1 (a, W) + ag(ag, W) = (B,a1)(a,'W) + (By,a9)az, ¥y

which of course is just the change-of-basis formula (3-5). Therefore, the probability that a B-
measurement on state W, will yield the result By can be computed as

Prob{Meas(B) =B} = {(81,¥)|2
= |(Br,a(a, W) + (By,02)(az, Wyl2.

Observing that the right side is just the square modulus of the sum of two complex numbers, we need
only invoke the identities (1-8) to get

Prob{Meas(B) =B} = [(B1,ap)|2|(a;, W)|2 + |(B1,a2)|2 |(ag, ¥ ,)|2
+ 2Re{(B1,a1)(a, W) fB1,a2)*(ag, W) *} (4-2)

®Lxercise4-1. Carry out the algebra leading to Eq. (4-2).

Notice in Eq. (4-2) that the first two terms on the right are strictly positive (none of the paired unit
vectors are orthogonal), while the third term may be either positive or negative but not zero.

The third term on the right side of Eq. (4-2) is called the "interference” term. That name is partly
a holdover from a way of trying to interpret Eq. (4-2) that was popular in the early days of quantum
mechanics. In this (unrecommended) view, one regards A and B as “joint random variables” —i.e., as
variables that can simultaneously take values which are predictable only in a probabilistic sense. For



22 LECTURE 4. QUANTUM MECHANICS: STATICS I

such variables the event B=B; always occurs in conjunction with one of the two mutually exclusive
events A=A or A= Ag, so the laws of probability theory imply that
Prob{B=B;} = Prob{B=Byand A=A} + Prob{B=B; and A=Ay} (4-3)

One now tries to view Eq. (4-2) as an instance of Eq. (4-3). The difficulty is that there is no consistent
way of doing that. In particular, the most plausible association, of the first two terms on the right side
of Eq. (4-2) with the corresponding two terms on the right side of Eq. (4-3), leaves one quite unable to
account for the third term on the right side of Eq. (4-2). What some people did was to still regard those
associations as meaningful, and then regard the "interference” term as a manifestation of the overall
quantum mystery.

Without denying the presence of a "quantum mystery,” let’s recommend another way to resolve
the discrepancy posed by Eqs. (4-2) and (4-3). In the circumstance illustrated in Fig. 4-4, where the
state vector is such that it is absolutely impossible to predict with certainty what value will be
obtained in an A-measurement, does it really make any sense to speak of A as "having a value”? Let’s
answer this question in the negative; in other words, let’s adopt the following position:

An observable A can be said to "have a value” if and only if the system’s state vector guarantees a
unique result of measuring A.

Therefore, if W, is a linear combination of two or more eigenbasis vectors of operator A, then
observable A cannot be said to have a value. In that circumstance, it is the act of measuring A that
develops an A-value; the measurement does this by causing the system’s state vector to jump to one of
the A-eigenbasis vectors, so that then A will have a value. But an A-value does not exist prior to the
A-measurement. Now, in our interference problem, since it is obviously not possible for W, to
simultaneously coincide with an eigenvector of both A and B, then it is not possible for A and B to
simultaneously have values; hence, it is not possible to regard A and B as joint random variables, and
Eq.(4-3) does not apply. With Eq. (4-3) thus eliminated, there is no discrepancy. Or, if you prefer, we
have replaced the “interference” mystery with the mystery that there are perfectly legitimate system
observables that sometimes have values and sometimes do not have values.

But then, the latter mystery was precisely the conclusion that we seemed to be forced to by the
results of the double-slit experiment. Referring to Fig. 1-2, we concluded that the results of that
experiment implied that any electron reaching screen Sy with both slits y; and y2 open could not
plausibly be said to have come through one slit exclusive of the other; therefore, such an electron could
not be said to have had a y-position value when it passed screen S;. In light of such experimental
evidence, it does not seem terribly unreasonable to disallow the underlying premise of Eq. (4-3) that
incompatible observables will always simultaneously have values.

Before the next lecture you should review this and the preceding lecture, and work all the
exercises therein (the five exercises in Lecture 3 and one in the present Lecture 4). We will use the
remaining time here to answer any questions you might have about our development so far.
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»5.1 The Position and Momentum Operators. Wave Functions

In this lecture we’re going to discuss two specific physical observables, the position X and the
momentum P of a particle that is constrained to move in one physical dimension — say along the x-
axis. Our first task is to produce the operators X and P that physicists, in their role as “diviners of
Nature,” have decreed shall represent those two observables. There are several equivalent
procedures for defining the operators X and P. Our procedure here will be to simply specify their
eigenbases and eigenvalue sets; that this will completely define those operators follows from the
general result of Exercise 2-5 [see also Fig. 2-6]. In our definition, you will notice that the eigenvalue
sets of X and P are taken to be continuously distributed. While that seems very reasonable, it will
make for some mathematical complications further on — which is why we have thus far been
“pretending” that all observable eigenvalue sets were discretely distributed.

® DEFINITION OF X AND P:

- The eigenvalue set of X is the set {x} of all real numbers x, and the eigenvalue set of P is the
set {p} of all real numbers p.

- The X-eigenbasis vector &, that corresponds to the eigenvalue x (X8, =x6,), and the P-
eigenbasis vector ¢, that corresponds to the eigenvalue p (P¢,=pg,), are such that the
component of ¢, relative to J; is the complex number

(0x,9,) = re—ixwlh = r[cos(xp/h) —isin(xp/h)], (5-1a)

where i is Planck’s constant in Eq. (1-2), and r is a real constant whose value will not concern
us here. [In a more advanced quantum mechanics course, you'd learn that r=(2r4) - 1/2 ]

Notice that we have cleverly specified the two eigenbases {§,} and {@,} by giving their components:
relative to each other; indeed, it follows from Eqgs. (5-1a) and (1 11b) that the component of §, relative
to ¢, must be given by

(@p,82) = (Se,dp)* = re+iwh = r[cos(xp/h) + i sin(xp/h)]. * (5-1h)

Egs. (5-1) make it rather plain that the eigenbases {8} and {¢,} do not coincide with each other; thus,
we can expect X and P to be incompatible observables. We will explore that issue in more detail a
little later.

In allowing the eigenvalue sets of X and P to be continuously distributed, we have evidently
created a generalized vector space that has as many dimensions as there are real numbers; because,
for each real number x there is a distinct basis vector &, and similarly, for each real number p there is
a distinct basis vector ¢,. This "heavy” kind of infinite-dimensionality gives rise to some thorny
mathematical complications, the most bizarre of which is this: Although the position and momentum
eigenbasis vectors are mutually orthogonal in the usual sense that

(6x,6x) =0 if x=x' and (¢p,¢y) =0 if p2p’, (5-2a)
it turns out that the “self-components” of those eigenbasis vectors, instead of being unity, are infinite:
_ (0y,0,) = © and (hp,@p) = . (5-2b)

But we hdbten to add that all other unit vectors in the space are assumed to have self-components of
one —i.e., (g,e)=1.

Somewhat more reasonably, the expansion formulas for the state vector W, in the position and
momentum eigenbases, instead of being discrete sums as in Eq. (3-3), are taken to be continuous sums
—i.e., integrals:

@ @

W, =D a@W) - W= I-mé'x(é'x,‘l’t)dx, W, = J—md)p(([)p,‘pt)dp. (5-3)

Jj=1
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Similarly, the Pythagorean formula (4-3) takes the "continuous-sum?” forms

= o
Z |(aj,‘Pl)| =1 - J

Jj=1

o o)

wl(é'x,‘l’t)lzdx =1, J ml((j)p,qlt)lzdp =1. (5-4)

And the change-of-basis formula (3-5) takes the continuous-sum forms

w an

(,Bk,‘l’t): Zl (,Bk,aj)(aj,q’t) - ((bp,‘{’t): J w((pp,éx)(é‘x’lvt)dx, (éx,‘{’t): J ’n(éx,d)p)((pp,q’t) dp. (5-5)
J= B -
Apart from these mathematical technicalities, a noteworthy modification is made in oux; Rule 3,
for predicting the result of a measurement: For position and momentum measurements, Rule 3 is to be
interpreted as follows:

|(8, W2 dx = probability that an X-measurement, made on the particle in the
state W,, will yield some value between x and x+dx, (5-6a)

l(¢p,ll’¢)l2 dp = probability that a P-measurement, made on the particle in the
state W, will yield some value between p and p+dp. (5-6b)

With these rules, Egs. (5-4) tell us that the result of an X- or P-measurement on the particle in any
state W, must be some real number between — o and + =, just as we should expect.

Of all the foregoing statements, only parts (a) and (b) of our definition of the operators X and P
contain really new information; all the other formulas are just restatements in “continuous”
eigenvalue language of things we’ve said before in “discrete” eigenvalue language.

The 6,-component of the state vector W, namely (6,,¥,), is evidently a complex number that
depends on the two parameters x and ¢; hence, it is a complex function of x and ¢t . As such, it is often
written in the alternate functional form

(6, W9 = Wxlx,0), (5-Ta)
and called the position wave function of the system. If we know the position wave function Wx(x,¢) for
all values of its argument x, then we obviously know all the components of the state vector relative to
a basis, namely the X-eigenbasis {§,}; thus, knowing the position wave function is tantamount to

knowing the "state” of the particle. Similarly, the ¢,-component of W, (¢,,"¥,), is a complex function
of p and ¢ that is often written

(p,¥) = ¥p(p,0), (5-7b)
and called the momentum wave function of the system. If we know the momentum wave function
Wp(p,¢) for all values of its argument p, then we obviously know all the components of the state vector
relative to the P-eigenbasis {¢,}, so knowing the momentum wave function is also tantamount to

knowing the "state” of the particle. Wave functions are a convenient and frequently used way of
representing the state of a particle.

Since Eqgs. (5-4) through (5-6) all involve the §,- and ¢p-components of the state vector, we can
rewrite all of those equations in terms of the wave functions. Let’s do that now. Beginning with Eq.
(5-6), we see that the square moduli of the position and momentum wave functions have the special
significance that

|Wx(x,t)|2dx = probability that an X-measurement, made on the particle in the
state W, will yield some value between x and x +dx, (5-8a)

|"Wo(p,0)|2dp = probability that a P-measurement, made on the particle in the
state Wy, will yield some value between p and p+dp. (5-8b)
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And Eqgs. (5-4) tell us that these square moduli also satisfy
J |‘[/x(x,t)f2dx =1 and J |‘1’p(p,l)[2dp =1. (5-9)

Fig. 5-1 shows schematic plots of the square moduli of the position and momentum wave functions.
Eqgs. (5-8) imply that the shaded areas in those figures are respectively equal to the probabilities for
X- and P-measurements on the particle in the state W, to yield results in the indicated intervals. And
Egs. (5-9) imply that the total area under each curve is one.

|Px(x,0)]2 [¥p(p,0)]2

A A

yan
/
” o , v
X1 X2 X

pP1 p2 P

FIG. 5-1. Schematic plots of the square moduli of the position and momentum wave functions.
The shaded areas equal the probabilities for X- and P-measurements on the particle in the state
W, to give results in the indicated intervals. The total area under each curve is unity.

And finally, it follows from the change-of-basis formulas (5-5) and our fundamental Eqgs. (5-1) that
either of the two wave functions can be calculated from the other through the formulas

w0

W (b0 =r [ el *Ph W (x,0)dx, (5-10a)

— 0

@0

P =r J e xph ¥ (p.Odp. (5-10b)

—_—

®LExercise 5-1. Derive Eqgs. (5-10).

Now let us deduce some of the interesting physical consequences of this rather heavy formalism.

» 5.2 The Wave-Particle Duality

In developing the consequences of our definition of the position and momentum operators, we
don’t want to confuse the particle that is our system with the particle attribute of being “localized at
some point.” So let’s suppose that our system particle in an electron on the x-axis. Then the foregoing
considerations enable us to make the following deductions:

Deduction 1. If the electron has a position x’, then its position wave function Wx(x,¢) is zero for all
x except x=x', where it has an infinite spike.

Proof: If the electron has a position x', then by definition its state vector W, coincides with the X-
eigenbasis vector 8. The position wave function is therefore
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Fx(x,t) = (65, Wy) = (6y,6),
which by Egs. (5-2) is zero if x#x’ and infinite if x=x', precisely as claimed. Notice that this
result is consistent with the probability interpretation of the square modulus of Wx(x,t) in (5-8a),

since it implies that a position measurement on an electron with position x’ cannot yield any
value other than x'.

Deduction 2. If the electron has a momentum p’, then its momentum wave function Wp(p,¢) is zero
for all p except p=p’, where it has an infinite spike.

®Exercise 5-2. Prove Deduction 2. {Hint: Repeat the proof of Deduction 1, except interchange the
roles of position and momentum.]

Deduction 3. If the electron has a momentum p, then in some sense it also has a position
wavelength

Ax = 2nhip. (5-11)
Proof: If the electron has a momentum p, then its state vector W, coincides with the P-eigenbasis
vector ¢,,. Its position wave function is then

Pxlx,t) = (6, Wy = (Or,0pp) = re—ixplh = rlcos(xp/h) —isin(xp/h)].
Now since

cos[(x+ 2nh/p)p/k| = coslxp/h+ 2n] = coslxp/tl,
and similarly for the sine funection, it follows that

Wylx+2nhip,t) = Wxix,b).

Thus, the position wave function of an electron with momentum p is periodic in x, with period or
wavelength 2n#/p. Since this function completely defines the state of the electron, then the
electron too must, in some obscure sense, "have a wavelength” 2r#/p.

Notice that Deduction 3 provides some glimmer of insight into the double-slit experiment
discussed in Lecture 1, wherein an electron with momentum pgy exhibited an interference pattern
characteristic of a wave with wavelength 2nf/p;. We shall give a fuller account of the double slit
experiment in Lecture 7.

®fixercise 5-3. Show that if the electron has a position x, then in some sense it also has a
momentum wavelength Ap=2nh/x. [Hint: Repeat the proof of Deduction 3, except interchange
the roles of position and momentum.]

Deduction 4. If the electron has a momentum p, then a position measurement will yield any value
with equal probability, consequently, it makes absolutely no sense to ascribe a position value to an
electron that "has a momentum.”

Proof: If the electron has a momentum p, then its state vector W, coincides with the P-eigenbasis

vector ¢, so its position wave function is

Wx(x,t) = (6, W) = (6y,0p) = re—izplt,
Then according to Eq. (5-8a), the probability that a position measurement will yield a result
between x and x+dx is

| Wx(x,)|2 dx = r2le-ixp/h|2 dx = r2dx.

where we have invoked Eq. (1-11¢). Since this probability is independent of x, then we must
conclude that all x-values are equally likely.

Deduction 5. If the electron has a position x, then a momentum measurement will yield any value
with equal probability;, consequently, it makes absolutely no sense to ascribe a momentum value to
an electron that “has a position.”

®Ffxercise 5-4. Prove Deduction 5. [Hint: Modify the proof of Deduction 4. |

We had already inferred from our fundamental premise (5-1) that position and momentum were
incompatible observables, and Deductions 4 and 5 evidently confirm that inference in the strongest
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possible terms. Apparently, when we measure the position of an electron, we force the electron’s state
vector into one of the X-eigenbasis vectors Jy; there the electron can be said to have a position value x
but not a momentum value, and the electron’s spatial localization causes us to think of it as a
“particle.” But if we then measure the momentum of that same electron, we force its state vector into
one of the P-eigenbasis vectors ¢,,; there the electron cannot be said to have a position value. But it
can be said to have a momentum value p, and hence also a spatial wavelength 2ih/p, so we can think
of the electron as a "wave.” That, in essence, is how quantum mechanics explains, or at least
accommodates, the wave-particle duality of Nature.

» 5.3 The Heisenberg Uncertainty Principle

We shall conclude our sojourn into quantum statics by saying something about the celebrated
Heisenberg Uncertainty Principle, which you have no doubt heard of. The Heisenberg Uncertainty
Principle is a purely mathematical consequence of Eqs. (5-10); however, its actual derivation would
take more time than we have available here. We shall simply content ourselves with an explanation
of what it says. But before we begin, here is a suggestion: Forget anything you think you already
know about the Heisenberg Uncertainty Principle — just pretend you’re hearing about it for the first
time right now.

Suppose we have a particle on the x-axis in some state ¥,. As we have seen, the components of ¥,
relative to the X-eigenbasis {0,} are given by the (complex) values of the position wave function
¥Px(x,t), while the components of ¥, relative to the P-eigenbasis {¢,} are given by the (complex)
values of the momentum wave function ¥p(p,t). We have also seen that the square moduli of those
complex functions have special import for predicting the results of position and momentum
measurements. Specifically, as illustrated in Fig. 5-1, the area under the |Wx(x,¢)|2-versus-x curve
between x1 and xg is numerically equal to the probability that a position measurement on the particle
in state W, will yield a value between x; and xg; similarly,the area under the |¥p(p,¢)|2-versus-p curve-
between p; and py is numerically equal to the probability that a momentum measurement on the
particle in state W, will yield a value between p; and ps. Now, it is possible to mathematically define
for any |Wx(x,0)|2 curve a generic quantity Ay that measures the "width” or "spread” or “fatness” of
that curve. The magnitude of Ax will therefore characterize the uncertainty we would have to
contend with in trying to predict the result of a position measurement on the particle in state ¥,. And
the same mathematical definition gives for any | ¥p(p,t)|2 curve a quantity Ap that measures its width,
and hence the amount of uncertainty we would have to contend with in trying to predict the result of a
momentum measurement on the particle in state W,, We show in Fig. 5-2 the particle’s position
uncertainty Ay and momentum uncertainty Ap for a hypothetical state W,.

|Wx(x,0)2 |We(p,0)2

A

’—/

> 3>
x P

FIG. 5-2. Schematic plots of the square moduli of the position and momentum wave functions
of a particle in some state W,. The leisenberg Uncertainty Principle says that the products of
the (suitably defined) widths Ayx and Ap can never be smaller than A/2.
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Now, since the two wave functions Wx(x,t) and Wp(p,t) are related according to Eqs. (5-10), it
should come as no surprise that the quantities Ax and Ap are related to each other. In fact, if we start
with Egs. (5-10) and go through a lengthy but purely mathematical argument, it is possible to prove
the following inequality:

Ax-Ap = h/2. (5-12)

This is the Heisenberg Uncertainty Principle, at least as it applies to the position and momentum of a
particle. [t implies that, for any state W, there is a fundamental limit on the simultaneous smallness
of the two uncertainties Ax and Ap: For a given position uncertainty Ay, then Ap can be no smaller
than #/24x, a lower bound that approaches infinity as Ax—0. Or, for a given momentum uncertainty
Ap, then Ay can be no smaller than #/24p, a lower bound that approaches infinity as Ap—0.

The most difficult thing to understand about the Heisenberg Uncertainty Principle is the precise
physical meanings of the "uncertainties” Ax and Ap. Perhaps the best way to clarify those meanings
is to imagine that we have 100 identical electrons, all in the same state W,. Suppose we make
identical position measurements on 50 of those electrons. If the square modulus of the position wave
function corresponding to state W, looks anything like that shown in Fig. 5-2, then those electrons
obviously do not have a position value prior to the position measurement, and the results obtained in
those 50 measurements will generally all be different. The quantity Ax characterizes the probable
"scatter” in those 50 measurement results — i.e., the approximate amount by which any two of those
measurement results will be found to differ from each other. Similarly, if on the other 50 electrons we
make identical momentum measurements, then Ap will characterize the scatter in the resulting 50
momentum values. Notice that Ay is not a measure of our ignorance of the “true value” of X prior to
an X-measurement; rather, it is a measure of the intrinsic uncertainty as to what X-value will be
“developed” in an X-measurement. The “uncertainties” in the Heisenberg Uncertainty Principle
obviously have a very technical definition that cannot be fully appreciated outside of the logic
established by Rules 1 through 4. That’s why the Heisenberg Uncertainty Principle, which is an
important and often useful fact of modern science, is so often misrepresented outside of physics.

We have already seen the implications of the Heisenberg Uncertainty Principle in two limiting
cases: IfW,=4,, sothat the electron “has a position x,” then our Deduction 1 implies that Ax =0 while
Deduction 5 implies that Ap =, just as required by (5-12). And at the other extreme, if ¥,=¢,,, so
that the electron “has a momentum p,” then our Deduction 2 implies that Ap=0 while Deduction 4
implies that Ax =, again in consonance with (5-12).

But if (5-12) is true, then how is it that we can ever use classical mechanics, which assumes that
Ay and Ap are both always zero? The answer is that A is such a fantastically small number from a
macroscopic point of view that Ax and Ap can appear to be macroscopically zero and still satisfy (5-12).
It is only on the microscale that the Heisenberg Uncertainty Principle makes itself felt. The
following exercise is intended to demonstrate this point.

®Fxercise 5-5. Since momentum and velocity are related by p=muv, then Ap=mAy, and (5-12) can
be written in the form

Ax-Ay = h/2m.
(a) Show that a 1-gram particle can have its position certain to within 10-8 cm and its velocity
certain to within 10-10 cm/sec, and yet still be a very long way from violating (5-12).

(b) Suppose an electron ( mass =10~27 grams) is confined to an atom (diameter of 10-8 cm).
What would be the minimum value for the velocity uncertainty Ay? Would it be at all meaningful
to ascribe a “velocity value” to an electron that is inside an atom?

This concludes our discussion of quantum statics. In the next lecture we will take a look at
quantum dynamics.
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» 6.1 The Hamiltonian Operator and Time-evolution

In Rules 1 and 2, we attached a time variable ¢ to the state vector W, but not to the general
observable operator A. The obvious implication is that the state vector changes with time, while all
observable operators (along with their eigenbasis vectors and eigenvalues) are constant in time. In
order to answer the FPOM for any ¢>0, it is necessary to specify precisely how W, evolves with time.
This is the subject of Rule 5, and leads us into the “dynamics” part of quantum mechanics.

Rule 5 comes in two parts. The first part introduces an operator called the “Hamiltonian
operator,” and the second part introduces a closely related operator called the “time-evolution
operator.” We'll first state Rule 5 in full, and then elaborate its two parts separately.

» Rule 5:

(a) Every physical system has an observable H called the “total energy.” The operator H that
represents this observable is called the system’s Hamiltonian operator, and we denote its
eigenbasis by {n,} and its associated eigenvalue set by {E,}:

Hn,=E;n,. (n=0,1,2 .) (6-1)

(b) If the system is in some state Wg at time 0, then provided the system is not disturbed (such as
by being measured), its state vector at time ¢ will be

= UWy. (t=0) (6-2)

Here, U,, called the time evolution operator, is the linear operator with eigenbasis {n,} and
associated eigenvalue set {e — LEt/A}

Uin, = e-iEthn, = [cos(E,t/h) — isin(E t/h)ln,, (n=0,1,2 ..) (6-3)
where {n,} and {E,} are as defined in part (a), and # is Planck’s constant [see Eq. (1-2)].

Part (a) of Rule 5 simply asserts that every physical system has a Hamiltonian operator H, which
is the operator that represents the system observable “total energy.” But Rule 5 does not tell us how
to find that operator H. As with any observable, it’s up to the physicist to “discover” the Hamiltonian
operator H for each physical system of interest. In discovering H the physicist defines, either directly
or indirectly, its eigenbasis {n,} and eigenvalue set {E,}; the former characterizes the generalized
vector space of the system, while the latter characterizes the allowed energy values of the system.
The task of finding H is obviously non-trivial, but not so impossible as it might seem. This is because
various rules-of-thumb have been discovered over the years that give demonstrably correct
Hamiltonians for many physical systems. Those rules-of-thumb have in fact become an important
part of quantum mechanics as an "applied science.” But we’re not going to discuss those rules here;
we're just going to describe what can be done once the Hamiltonian operator H is in hand.

Part (b) of Rule 5 says that once we know the system’s Hamiltonian operator H, then we can
proceed to determine the time-evolution of the state vector. We do that by first defining a new linear
operator Uy, called the time-evolution operator, as follows: U, is to have the same eigenbasis {n,,} as H,
but the eigenvalue corresponding to n,, instead of being E,, is to be e—iE,% where % is Planck’s
constant. That this specification procedure completely defines the operator U, follows from our
discussion of Fig. 2-6. Notice that U, cannot be regarded as an “observable operator,” because its
eigenvalue spectrum is not pure real. Indeed, the role of Uy in our theory is quite different from the
role of H or any other observable operator: U, acts on the time-0 state vector W and transforms it into
the time-t state vector W,. Since Rule 1 requires the system’s state vector to always be a unit vector,
then we may expect that the action of U, on W will be a "pure rotation” with no “stretching;” we’'ll
verify shortly that that is indeed the case.

Now we're going to use Rule 5 to derive an explicit formula for the time-varying state vector. We
proceed as follows:
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Y, = U%¥ [by (6-2)|
= U,[Z, 0, (n,%¥l [by expanding W in the H-eigenbasis|
=X, Um, (n,¥o) [since U, is a linear operator]
=X, e—iE hn, (n,,¥o) [by (6-3)]
Y, = X, nule—iEqth (n,, Wy)l. (6-4)

Eq. (6-4) shows how, in principle, we can calculate W, from a knowledge of Wy, {n,} and {E,}. Notice
that the coefficient of the vector nj;, in this formula is just the product of two complex numbers, namely
e—iE 'k and (n,,¥y), and hence is itself a complex number. In fact, since (6-4) is just an expansion of
W, in the eigenbasis {f,,}, it follows that the coefficient of nj,, in that formula is none other than the
n,-component of ¥, i.e., Eq. (6-4) tells us that

(np, Wy = e~ Epth(n,,Wo). (6-5)
So to get the n,-component of W,, we merely multiply the n,-component of W by the complex number
e—1E, th Fig. 6-1 illustrates this important relationship pictorially.

®F xercise 6-1. Show that Eqs. (6-4) and (6-5) are identities for ¢=0. [Hint: Recall (1-11a).]
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FIG. 6-1. Showing schematically how the state vector evolves with time
from the perspective of the eigenbasis {n,} of the Hamiltonian operator H.

Notice that the state vector of the system can change in two different ways: One way is the
smooth, orderly evolutionary process described by Rule 5 that occurs when the system is left
undisturbed. The other way is the sudden, random change described by Rule 4 that occurs when the
system is measured. Much effort has gone into trying to explain the measurement change of Rule 4 in
terms of the evolutionary change of Rule 5, but with no real success. Perhaps that’s not surprising in
view of the fact that the measurement change mandated by Rule 4 is non-deterministic, while the
evolutionary change described by Rule 5 is quite deterministic. So we apparently must accord Rules 4
and 5 equal status in the theory. Thoughtful physicists still worry about whether these five rules are
logically consistent; however, the fact remains that these rules seem to work verv well together in the
laboratory.
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) 6.2 Conserved Quantities. Stationary States
We're now in a position to answer the FPOM for ¢t>0. But first, let’s savor the result (6-4) a bit by
drawing out some of its other interesting consequences.
If we take the square modulus of Eq. (6-5), we get
(0, WI2 = e~ 1t (n,, Wo)|2 = |e~ExtA12|(n,, Wo)l2 = |(n,, Wo)l2, (6-6)
where the two final steps have invoked the identities (1-8a) and (1-11¢). Now this result has two
interesting implications.
First, since Rule 3 tells us that |(n,,¥,)|2 is the probability that an energy measurement on the
system in the state W, will yield the H-eigenvalue E,,, then Eq. (6-6) implies that
Prob{Meas(H)=E, at time t} is independent of ¢. (6-7)
So energy measurement probability is always conserved in time, provided of course that the system is
not measured or otherwise disturbed. Notice that this does not say that the value of the system’s
energy is always conserved in time — indeed, such a value will not exist unless W, happens to
coincide with one of the H-eigenbasis vectors. All that (6-7) says is that the probability for an energy
measurement to yield any particular result is conserved in time.
A second implication of (6-6) follows by summing both sides over all n:
an(nn"pt)lz = 2n|(rlm‘l'0)|2 =1,
where the last equality is due to the fact that W is a unit vector. In other words, the fact that Wy is a
unit vector guarantees that W,=U,W, will also be a unit vector, as is required by Rule 1. This
confirms our earlier conjecture that the effect of the time-evolution operator U, on Wy is a "pure
rotation” in the generalized vector space, with no “stretching.”

Another interesting consequence of Eq. (6-4) arises when the system’s initial state W coincides
with some H-eigenvector n, so that the system at time 0 has energy E;. According to Eq. (6-4), the
state vector of the system at time ¢ will then be given by

W, = Z:n nale—iE,th (anj)]- :
Since (np,n;)) is zero for n=j and one for n=j, then the sum here collapses, and we obtain the theorem

Wo=n; = W,=nje-Ek forallt>0. (6-8)

This theorem has two important implications: If W¥g=nj, and the system remains undisturbed, then:
(a) the system will have energy E; for all t>0; and (b) the measurement probabilities for all system
observables will be conserved. We’ll leave the proofs of these two facts as an exercise.
®Lxercise 6-2.
(a) Prove the first assertion above by using theorem (6-8) to show that
Prob{Meas(H)=E; at any time ¢>0, given Wy=n;} = 1. (6-9a)
[Hint: Start with Rule 3.]
(b) Prove the second assertion above by using theorem (6-8) to show that, for any ohservable A,
Prob{Meas(A) = A, at time ¢, given W =n;} is independent of ¢. (6-9b)
[Hint: Start with Rule 3, and remember that (g,cp) =cle,p).]
The time-dependent vector n; e—iEj¥hA appearing on the right side of theorem (6-8) is called a
stationary state of the system. Obviously, there is one stationary state for each eigenbasis vector of
the system’s Hamiltonian operator. What we have proved here is that if the system starts out in a

stationary state, then the system will remain in that stationary state with a constant energy value
and constant measurement probabilities for all its observables.
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» 6.3 Answer to the FPOM for Any t=0

Now let us see how quantum mechanics proposes to answer the Fundamental Problem of
Mechanics for any t=0. We reason as follows

- When A is measured on the system, the result must (by Rules 2 and 3) be some A-eigenvalue;
let’s call the measured eigenvalue A;.

- So immediately after the A-measurement, the system will (by Rule 4) be in the state a;.

- Starting from the state Wo=a; at time 0, the state vector will then evolve smoothly until
time ¢, when it will be [by (6-4)] the vector

W, = X, nale-iEnth (n,,a))].

- Then measuring B at time ¢ will (by Rule 3) yield any B-eigenvalue Bj, with probability
(B, ¥ )12 = |(Bry Z, nale ~ Bt (q,,a) D2 = |Z, (Brann)le =iEnth (n,,0)|%.

» Therefore, quantum theory’s answer to the FPOM in the general ¢ case is:

Prob{B =B} at time ¢, given A= A; at time 0}
= |20 (Brnn) e~ Enth (nuap2. (k=1,2,..)  (6-10)

Notice that all we need to know to answer the FPOM for any ¢=0 are:
- the eigenvalues of A, B,and H, and
- the components of the A and B eigenvectors relative to the H-eigenbasis.

Let’s verify that the general result (6-10) indeed reduces to the static result (3-8) when ¢=0. Since
ei0=1 by (1-11a), then the right side of (6-10) becomes

|2n (Br.nn) eio(rlmaj)'2 = |2n (Br.nn) (rlnyaj)lz = |(ﬁk;0j)|2,

where in the last step we have invoked the component expansion theorem (2-3). This is precisely the
result (3-8) for the ¢=0 case. ‘

®Lxercise 6-3. In the FPOM, suppose the second-measured observable B is the same as the first-
measured observable A. Prove that

Prob{A=A;attime ¢, given A=A at time 0} = |E,, |(n,,0))|2 e —iE,t/h 12. (6-11)

Show that this probability is unity if ¢=0, as required by Rules 3 and 4, but need not be unity for
any t>0.

®Fxercise 6-4. Use (6-10) to show that an energy measurement at time 0 followed by an energy
measurement at any time ¢t >0 will always give equal results, in agreement with theorem (6-9a).

Rules 1 through 5 form the logical foundations of the "standard” theory of quantum mechanics,
and (6-10) is the answer that those rules give to the Fundamental Problem of Mechanics. All the rest of
quantum mechanics consists of: generalizing those five rules somewhat to accommodate more
complicated situations; finding specific operators to represent specific system observables, especially
specific Hamiltonian operators for specific systems; and, of course, evaluating (6-10) for specific
problems.

We shall conclude this lecture by sketching a philosophically interesting shift of perspective on
quantum theory, along lines originally suggested by Richard Feynman.
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»6.4 Transition Amplitudes and Virtual Processes

It is possible to look upon our fundamental result (6-10) as giving the probability that the two
consecutive processes “¢-passage” and “B-measurement” will jointly carry the system from state a; at
time zero fo state f§;, at time ¢. In this view, (6-10) gives the probability that the system will “make a
transition” from state a; to state B in time ¢, with the tacit understanding that B is actually measured
at time ¢. Inthe spirit of this view, here is an alternate way of arriving at the result (6-10):

» Rule A. Imagine that the a;-to-f, transition occurs, in some vaguely defined way, via the energy
eigenstates {n,}, and assign to the particular virtual process {aj—>n,—f} in time ¢} the transition
amplitude,

T (aj>n,—f in t) = (Bg,n,) e~ iEth (n,,0)). (6-12a)

[The quantity on the right side is most suggestively read from right-to-left. Notice that this
transition amplitude is simply the product of three complex numbers, and hence is itself just a
complex number; indeed, it is just the summand in (6-10).]

» Rule B. Similarly, associate with the net process {a;—f; in time ¢t} a transition amplitude
[I(aj—f, in t), and postulate that this net transition amplltude is equal to the sum of all the
virtual process amplitudes:

M(aj=Bin &) = X, [1(aj=>n,~>Prin 0). (6-12b)
[This net amplitude, being a sum of complex numbers, is then itself a complex number.]

» Rule C. Finally, postulate that the probability of the net process {a,—f, in time ¢} is equal to the
square modulus of its amplitude:

Prob(aj—f in t) = |[[I(aj—f in 1)]2. (6-12¢)

It is easy to see that if (6-12a) is substituted into (6-12b), and then that is substituted into (6-12¢),
we get precisely the result (6-10). The foregoing describes what might be called a “virtual process”
formulation of quantum theory. It's relation to the "conventional” formulation of quantum theory, as
embodied by Rules 1 through 5, can be briefly summarized this way: The virtual process formulation
retains Rules 1, 2 and 5(a), but replaces Rules 3, 4 and 5(b) with Rules A, B and C.

We know that, when considering mutually exclusive real processes, we must sum their
probabilities to obtain the total process probability. But for the mutually exclusive virtual processes
contemplated above, the rules are evidently different: We must sum their amplitudes, and then
obtain the total process probability as the square modulus of that amplitude sum.

But, you might ask, how does Nature really work? Does the system go from state a; to state 3, by
way of one, or all, of the states {,}? Or does the system’s state vector smoothly rotate from state a; to
state W, and then suddenly jump to state §; when the B-measurement is made? In truth, no one really
knows. Moreover, no one has been able to paint a detailed, consistent, plausible picture of either the
mysterious virtual transition process a;—n,—f;, or the equally mysterious measurement jump
process W, —>[.

So what are we to make of this state of affairs? The answer seems to be this: All that present day
quantum theory can do is provide a computational algorithm — namely (6-10) — for quantitatively
answering the Fundamental Problem of Mechanics. That algorithm has been amazingly successful in
laboratory applications, not only in describing phenomena that were already known, but also in
predicting phenomena that were subsequently discovered. But no one has been able to undergird that
algorithm with a common-sense “picture of reality” analogous to the one suggested by classical
mechanics for macroscale phenomena. The suspicion among some is that microscopic reality may not
be "understandable” by minds whose criteria for understanding have been conditioned so thoroughly
by macroscale experiences. Serious contemplation of this prospect leaves most physicists in some
linear combination state of dismay, skepticism, awe and fascination.
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» 7.1 Recapitulation

In our last lecture we introduced Rule 5, our final rule of quantum mechanics. Rule 5 comes in
two parts. Part (a) asserts that every physical system has a “total energy” — an observable that we
represent in the system’s generalized vector space by an operator H called the system’s Hamiltonian.
We denote the eigenbasis of H by {n,,} and the corresponding eigenvalue set by {E,}:

Hn,=E,n,. (n=12,...) (7-1)

Rule 5 does not tell us how to find the Hamiltonian operator for any given physical system; the
“discovery” of H is up to us. In discovering H, we also discover, either directly or indirectly, its
eigenbasis {n,} and eigenvalue set {E,}. The former effectively defines the system’s generalized
vector space, while the latter determines the system’s allowed energy values. What makes the
Hamiltonian operator more important than any other observable operator of the system: is the fact
that H determines the time evolution of the system’s state vector. Specifically, part (b) of Rule 5 says
that, given that the system is in state Wg at time 0, then if we leave the system alone until time ¢ its
state vector will be

Y, = UW, (=0 (7-2)
Here, U,, called the time-evolution operator, is the linear operator with eigenbasis {n,} and eigenvalue
set {e —LE, th}:

Um, =e-iEythy, (n=1,2,..) (7-3)
So specifying H determines U, and hence the time-evolution of the system’s state vector.

If in Eq. (7-2) we expand Wy in the H-eigenbasis, and then use the fact that U; is linear and
statisfies Egs. (7-3), we obtain
W, =U, Zn Ny (N, Wo) = Zu U, (n,,Wo) = zn e~ ik, thn, (n,,Wo),
or
W, = Zn rIn[e—iE'lt/ﬁ (nn,"Po)l. (7-4)
This is evidently an explicit formula for the time-evolving state vector in terms of the Hamiltonian’s
eigenbasis and eigenvalue set.

With the result (7-4) it is straightforward to use Rules 1 through 4 to formulate a general answer
to the Fundamental Problem of Mechanics. In the FPOM, we measure some observable A at time 0,
note the result, and then let the system evolve to some time ¢ when we measure some observable B. To
predict the result of the B-measurement, we reason as follows: When we measure A at time zero, we
will obtain some A-eigenvalue Aj, thereby leaving the system in the corresponding A-eigenstate a;.
The state vector then evolves to time ¢ according to Eq. (7-4) with Wo=a,. At time ¢, a B-measurement
will yield any B-eigenvalue By with probability

Prob{B=Battimet, given A=A;at time 0} = |(8,,W|2, (k=1,2,...) (7-5)

where f3, is the B-eigenbasis vector corresponding to B;. Substituting Eq. (7-4), with Wy=a, into
Eq. (7-5), we obtain the key result of our theory:
Prob{B=Bj at time t, given A=A at time 0}

= |2, Benn) e—Enth(nua)fr.  k=1,2,...)  (7-6)

b 7.2 (Optional) The Schrodinger Equations

It may happen that Fq. (7-6) is computationally inconvenient. This would be the case if the
system’s Hamiltonian operator H is specified in some way other than by calling out its eigenbasis and
eigenvalues, and those then turn out to be analytically so complicated that the right side of Eq. (7-6)
becomes difficult to evaluate. In such cases, it is useful to have an alternate way of finding the time-
varying state vector from the system’s Hamiltonian operator. To that end, consider the time-
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derivative of the state vector W,, which we define by the usual rule

dw g _y
—t = lim 2t im ((At)“tp

+ (—At)“ll’t).
dt A At At—0

t+ At

(The last expression shows that the quantity we are taking the limit of is simply a linear combination
of two vectors in our generalized vector space.) Let’s see what we get by evaluating this derivative
using the formula (7-4). We have

dWy/dt = (d/de) (2, n,le —iEnt (n,, W) ) [by Eq. (7-4)]
= X, n, (d/d)[e—iEh] (n,, WPo) [differentiation is a linear operation|
= Z, 0, (—iEB)le-iEnth] (n,,Wo) [by Eq. (1-10)]
= (1/ik) 2, En, e —1E Ltk (n, Wo) [since —i=1/i]
= (1/ik) Z,, Hn, e —iE th (n,,, W) [by Eq. (7-1)]
= (Vit)H Z,, nple—iEpth (n,, Wo)l [H is a linear operator]
= (l/ik)HY,. {by Eq. (7-4)]

Thus we have derived the differential equation
itdWydt = HY,. (7-7)

which is to be solved for W, subject to the initial condition W;—¢=W,. This prescription for finding
the time-evolving state vector is of course fully equivalent to Eqs. (7-2) and (7-4).

Eq. (7-7) is called the time-dependent Schrédinger equation, and Eq. (7-1) is called the time-
independent Schriodinger equation. It is important that the similarity in the names of those two
equations not obscure the fundamental difference between their roles: The time-independent
Schradinger equation (7-1) is the eigenvalue-eigenvector equation for the total energy operator H. As
such, it defines the energy eigenbasis {n,,} and eigenvalue set {£,, } in those circumstances when H has
been specified in some other way. The time-dependent Schrodinger equation (7-7), on the other hand,
is the fundamental time-evolution equation for the system’s state vector. It’s purpose is to determine
W, from Wy in those circumstances in which the computations required by Eq. (7-4) happen to be
inconvenient to carry out. Notice that if we do find W, by solving Eq. (7-7) instead of by evaluating
formula (7-4), then to compute an answer to the FPOM we would want impose the initial condition
W,-p=aqa, and use Eq. (7-5) instead of Eq. (7-6).

In practical applications, the Schriodinger equations are nearly always expressed in “component
form” relative to the eigenbasis of some convenient observable operator. To derive the A-component
form of the time-independent Schrédinger equation (7-1), we first observe that

Hn, = H Zj Qa; (ajyfln) = 2} Haj (ijnn);
thus, Eq. (7-1) can be written

zjj Ha,(aj,n,) = Exnp.
Now taking the a,-component of this equation and invoking the linearity property, we get

Zj(ap,Haj) (ajn,) = Epla,n,).  (k=1,2,..;n=1,2,...) (7-17)
This is the "A-component form” of the time-independent Schrédinger equation (7-1). In it, the set of
complex numbers {(ag,n,) for k=1, 2, ... } “represents” the vector n, relative to the A-eigenbasis, and
the set of complex numbers {(az,Ha)) for j=1, 2, ... and k=1, 2, ... } “represents” the operator H
relative to the A-eigenbasis. If H is defined by specifying the set of numbers {(ag,Ha))}, then we can
solve Eq. (7-1) for the set of numbers {{(ag,n,)} and the number £,, — 1i.e,, for n, and its associated
eigenvalue. Similar manipulations applied to the time-dependent Schrédinger equation (7-7) will
show that its A-component form is (optioral exercise!)

ifi d(ap, Wyidt = L, (ag,Ha)) (;,WP).  (k=1,2,...) (7-7')

This is a set of coupled, first order differential equations for the A-components {(a,,¥,)} of the state
vector W, and these equations can in principle be solved if we know the set of numbers {(ak,Haj)}.
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p 7.3 The Free Particle

Perhaps the simplest of all dynamical systems is the free particle, a particle of mass m on which no
forces act. You know the solution to this problem offered by classical mechanics: The particle moves
with constant velocity, say along the x-axis. More precisely, if the particle’s initial position and
momentum are xg and pg, so that its initial velocity is pg/m, then its position and momentum at any
later time ¢ will be

x(8) = xg + pgt/m, plt) = pg. (7-8)
To see how the free particle is analyzed in quantum mechanics, we first recall from Lecture 5 that .
in quantum mechanics we represent the observables “position” and "momentum” for any particle,

free or otherwise, by two linear operators X and P, which are defined as follows: The eigenvalue sets
of both X and P are all the real numbers, and their eigenbases {6\} and {¢,}, which satisfy

X6, = x6; (—o<x<w), P¢,=pp, (—wp<x), (7-9)
are defined by the prescription
(O, pp) = re—twh  (—ow<x,p<o) (7-10)

But what about the observable “total energy”? What shall we take to be the Hamiltonian operator H
for a free particle? You will recall that in classical mechanics the total energy of a free particle of
momentum p is given by the formula im(p/m)2=p2/2m. Well, the physicist’s "IHandbook of Tried-
and-True Hamiltonian Recipes” declares that the Hamiltonian operator for the free particle is
H = (1/2m)P2, (7-11)
Fair enough, but what do we mean by the "square” of the operator P? We mean simply this: If p is
any vector, then to find the vector P2y we first operate on ¢ with P to get the vector Py, and we then
operate on that vector with P. So for the operator H in Eq. (7-11), the vector Hy is
Hy = (1/2m)P2yp = (172m){(P(Py)).
With this definition, we see that the free-particle Hamiltonian is indeed a well-defined operator:
furthermore, this definition implies the following important result:
- For the free particle, the eigenbasis of H is the momentum eigenbasis {¢,}, and the
eigenvalue of H corresponding to the eigenbasis vector ¢, is p2/2m.

The proof of this assertion goes as follows: For any momentum eigenbasis vector ¢, we have
(172m)P2¢, = (112m)(P(P¢,)) = (1/2m)(P(pdy)) = (p/2m)(PP,) = (p/2m)(pdy).

Thus, for the free particle we indeed have the eigenvalue-eigenvector relation
Ho, = (p2/2m)¢,. (—o<p<w) (7-12)

® Exercise 7-1. Of the three free-particle observables “position,” “momentum” and “energy,”
which pairs are compatible and which are incompatible?

Since for the free particle the vector ¢, is an eigenbasis vector of H with eigenvalue p¢/2m, then it
follows from Eq. (6-8) that

Yy = (pp = W, = (])pe—i(p:/erz)Uh, (t>0) (7-13)
the latter being a “stationary state” of the system. Therefore, ifthe free particle is in state ¢, at time
0, then at any later time t>0 an energy measurement on the particle would yield the certain value

p2/2m, and a momentum measurement would yield the certain value p; however, a position
measurement would yield any real number with equal probability.

® Exercise 7-2. Prove the three assertions in the last sentence by applying Rule 3 to the state
vector W, in (7-13).

So we see that if we initially measure the momentum of a free particle, then the particle’s momentum
value and energy value will be sharply fixed thereafter; however, the particle cannot thereafter be
said to have a position value.
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To calculate W, for initial states W other than one of the vectors {@p}, we must resort to formula
(7-4). Making the appropriate substitutions there, namely

Nn—> ¢p, E,— p2/2m, Zn - [dp,
we see that the general formula for the time-varying state vector of the free particle is

0 . 2
'{’t — I ¢p [e—lP t/2mh (¢p,‘po)]dp- (7-14)

Since we’ll be especially interested in position measurements at time ¢, let’s take the §,-component of
this vector equation. We get

” —ip2t/2mh
0= (s, | 8,167 g woiap)

w 9
N S —ip t12mh
= !-m (éx’d)p) e (d)p,‘{’o) dp .

Using Eq. (7-10), and recalling that (§,,¥,) is just the position wave function Wx(x,¢), this is

2
—ixpth —ip t2mh
e 1xp e ip t12m

l!’X(x,t) =r [ (gbp,‘l’o) dp. (7-15)

This X-basis version of Eq. (7-14) is useful for predicting the results of position measurements on the
free particle because, as you will recall from Lecture 5 [see Eq. (5-8a)], |¥x(x,0)|2dx gives the
probability that a position measurement at time ¢ will give a result between x and x+ dx.
Let’s evaluate Eq. (7-15) for the particular initial state Wy=4§,, which corresponds. to the free.
particle having position value a at time 0. Eq. (7-15) says that
Wo=6, = Wix,h=Glxtm,a), (7-16)
where for reasons that will become clear shortly we have introduced the function

: lxﬂ‘i p t2mh

Glx,t,ma) =r J (q)p,é'a) dp. (7-17)

Surprisingly, we can evaluate G(x,t,m,a) up to an unimportant multiplicative constant without
actually performing any integration! Here’'s how: Remembering that

(¢p:6a) = (é‘m‘pp)* = retiaplh,
and also that eivelv=eilu+v) we get from Eq. (7-17),

® . 2 .

Lp 1p~t iap
ctmar=re|* wol -2 ),
x,t,ma)=rr B Xp . Py~ ; p

o [7 it 5 2 —a)"
rzj ' exp{———l (pz+ ____pm(x w)}dp
o 2mfl

2 [ ” [ it ( N m(x—a))2+ it <m(x—a) (Z}d
r expy — ——
P T \PT T 2mh\ ¢ ) P

9 {im(x—a)z} Jm { it ( N m(.t—a))Q}d
e —— x — .
SR NPT ORI T oma P ‘ P

il
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Changing the integration variable from p to
1/2

_( ¢ )1/2( +m(x—a)“ d _( t'> P
“T\omn/) \P ‘ ) ““loma/ P

9 im(Jc—a)2 2mh \2 [ —id?
G(x,t,m,a) = rexp ) e du

this becomes

2ht ¢

The u-integral here is evidently just some complex constant; thus we conclude that

172

. 2
im(x—a) } (7-18)

m
Glx,t,m,a) = c( 7)

where c is a complex constant whose precise value will not concern us here.

If we now substitute the result (7-18) into (7-16), and then take the square modulus, we conclude:
Wo=6, = |¥Px(x,02=]|c|2(m/t). (7-19)
® Exercise 7-3. Show in detail how Eq. (7-19) follows from Eqgs. (7-16) and (7-18).

The fact that the right side of Eq. (7-19) is independent of both x and a is the key result here. It means
that if the free particle has the precise position a at time 0, then a position measurement at any
finitely later time will yield any x-value with equal probability. So a free particle, if localized to one
point, will immediately and completely “de-localize” itself!

Holding this surprising and peculiar result in abeyance for the moment, let’s now consider what
would happen if the intial state were Wy=4,+8_,. That initial state corresponds to a situation in
which a time-zero measurement of position would produce, with equal probability, either x=a or
x= —a. Substituting this initial state into Eq. (7-15) gives

. 2
—ixpth  —ip t12mh
e Xy e ip t2m

‘PX(x,t) =r ] (¢p, é'a+é'__a) dp

—_0

= Glx,t,m,a) + G(x,t,m,—a),
where we first expanded the component in the usual way and then invoked our definition (7-17) of G.
Taking the square modulus of this function gives, using the identity (1-8b),
|Wx(x,0|2 = | Glx,t,m,a) + Gx,t,m,—a)|2
= |Glx,t,m,a)|2 + |G(x,t,m,—a)|2 + 2Re{G(x,t,m,a) G*(x,t,m,—a)}.
Substituting our result (7-18) for G into this expression and simplifying algebraically, we conclude:.

Wo=38,+6_a = |Wx(x,0)|2 =|c|2(m/t) 201 + cos(2max/ht)}. (7-20)

®Exercise 7-4.
(a) Show in detail how Eq. (7-20) follows from the preceding equation and Eq. (7-18). [Hin¢:
Besides the identities developed at the end of Lecture 1, you’'ll need to recall the trigonometric
identity for cos(u—~v).1

(b) Show that the x-distance between an adjacent maximum and minimum of the function in
Eq. (7-20) is

Al) = nht/2ma. (7-21)
Fig. 7-1 shows plots of the free-particle position probability density function |Wx(x,)[2 for the two

initial states Wo=¢, and Wy=6,+d_,, as given in Egs. (7-19) and (7-20). These quantum
predictions for the [ree particle are quite bizarre compared to the classical prediction (7-8). But we
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A [Wx(x,t)|2, in units of [c|2 (m/8).

\DAV/\VAV.
VA LA v

FIG. 7-1. Plot of |Wx(x,t)|2 for the free particle, given the two initial states Wy=4, and
Wo=0,+0d_,. Thedistance A(¢) is as given in Eq. (7-21).

are now going to show that these seemingly absurd quantum predictions successfully explain the
results of the double-slit experiment that we described back in Lecture 1.

» 7.4 Explanation of the Double-Slit Experiment

The set-up of the double-slit experiment is sketched in Fig. 7-2. An electron of mass m and
horizontal momentum pg is incident on a vertical screen Sy, which is opaque except for two narrow
slits. We measure vertical distance on screen S| by the variable y, and we’ll take slit 1 to be at y=a
and slit 2 to be at y= —~a. A distance L beyond screen S is a second vertical screen So, this one coated
with a phosphor that enables us to record the point of impact of any electron. We'll measure vertical
distance on screen Ss by the variable z, with z=0on the same level as y=0.

i
y z
g
s \electron’s impact
incident
electron y=a (slit 1)
—_— b 2=0
(mass m, y=—a (slit2)
momentum pg)
- I »
screen Sy screen So

FIG. 7-2. Geometry of the double-slit experiment. (See Fig. 1-2))

The key to understanding the double-slit experiment in terms of the dynamics of a one-
dimensional free particle is this: In quantum mechanics, just as in elassical mechanics, the horizontal
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and vertical components of the motion of a free particle are independent of each other. Thus, any
electron that makes it through screen S; retains its horizontal momentum component py until it
strikes screen Sg. But the vertical momentum component is drastically effected by screen S;; in fact,
any electron passing through screen S; with only slit 1 open is forced into the vertical position state
0q, while any electron passing through screen S; with both slits open is forced into the vertical
position state §, +d_,. Since the horizontal velocity in either case is pg/m, then the electron will in
either case reach screen Sy at a time

t = Lipg/m) = mL/pg (7-22)

after it leaves screen Sy. Therefore, screen Sy is essentially measuring, at time ¢ = mL/pg, the vertical
position of an electron that was prepared at time ¢=0 in the vertical position state &, if only slit 1 was
open, or in the vertical position state J,+d_, if both slits were open. So in terms of our quantum
model of a free particle confined to the x-axis, the y-axis on screen S; in Fig. 7-2 corresponds to the x-
axis at time t=0, while the z-axis on screen Sg corresponds to the x-axis at time ¢ = mL/pg.

x-axis at T x-axis at T \/-/

time ¢=0 time ¢=mL/pq “« ),

>

x=a \' |¥x(x,mL/py)|2
|- —Lai

N

A

(relative units)

ANA

\Dlz
—

FIG. 7-3. Quantum free-particle predictions for the double-slit experiment, assuming the slit
openings are infinitesimally narrow. Curve Dj is for only slit 1 open, and curve Dy3 is for both slits
open, both as deduced from Fig. 7-1.

screen Sy screen So

In Fig. 7-3 we show the consequent quantum predictions of Fig. 7-1, as given by |Wx(x,t= mL/py)|2,
for the electron hit probability patterns on screen So; curve Dy is the predicted pattern when only slit
1 isopen, and curve Djg is the predicted pattern when both slits are open. Notice from Eqs. (7-21) and
(7-22) that the distance A* between an adjacent maximum and minimum of curve Dy is predicted by.
quantum mechanics to be

nh [ mL"° nhl
—) (7-23)

A* = At=mLip) = -
Py

2ma 2a P,
Now let’s compare these quantum predictions with the experimental results sketched in Fig. 1-2.
We immediately notice an apparent discrepancy: Whereas the experimental curves Cy and Cy» die off
in amplitude with increasing distance from the center line, our theoretical curves D and D9 have
constant amplitudes. But if we were to repeat our experiment with smaller slit openings, we would
actually find that the curves C; and C9 would then die off more slowly. And we would infer that in
the idealized limit of zero-width slits, which we assumed for the sake of mathematical simplicity in
our quantum calculations, curves C; and C;9 would not die off at all. So, for comparison purposes, we
may ignore the amplitude tail-offs in curves C{ and C{2. When we do that, the two sets of curves seem
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to match rather well. In each case, the two-slit curve oscillates smoothly between about 0 and 4, on a
scale where 1 is the constant amplitude of the one-slit curve.

A crucial test is provided by comparing the wavelengths of the oscillations of the two-slit curves.
Remember in our first lecture, we said that the experimental curve looked like the two-slit intensity
interference pattern of a wave with wavelength A=2nr#/py. In Fig. 7-4 we show the condition defining

/)\/2

LB Il ® s WS e o

Central maximum

2a (if \<a) First minimum

A

screen Sy screen So

FIG. 7-4. Two-slit diffraction of an ordinary wave, showing the condition for
the location of the first minimum in the intensity interference pattern.

the location of the first minimum in such an interference pattern: d is such that the difference in the
distances to the two slits is M2, resulting in destructive interference at that point. For the
experimental condition A <a, we have by similar triangles that

(M2)/(2a) = d/L.
Solving for d, and then invoking the aforementioned result A =2n#/py, we get
_ LA L (Znh _ nhL

“nulo)

B 2ap0'

This agrees exactly with our quantum prediction for A* in Eq. (7-23)!

Our conclusion: Quantum mechanics provides an accurate description of the double-slit
experiment — an experiment that defies a plausible description in terms of classical mechanics. On
that optimistic note, which is echoed again and again for the other systems on Nature’s amazing
microscale, we shall conclude our brief look at the theory of quantum mechanics.

8L xercise 7-5.

(a) Suppose the electron in the double-slit experiment acquires its horizontal momentum pg by
being accelerated through a potential difference V, thus acquiring a kinetic energy eV, where ¢ is
the electron’s charge. Write the formula for the distance 4* in Fig. 7-3 in termsof m, e and V.

{b) If V=10 volts and L=10 meters, what should a be in order to make A*=1 millimeter?
[Answer: About 100 angstroms, which is why this experiment is so hard to do.|

(c) With the values of V, L and a as in (b), suppose the electron were a “macroscopic” particle, say
of mass 10—-5 grams. Calculate A* for that case. Would the oscillations in the two-slit curve be
detectable in this macroscopic case?



