Entanglement Isn't Just Spin

Dan Schroeder, Weber State University, 19 July 2016

Context: First example of a QM problem in more than one dimension, e.g., 2-D square infinite square well...

A separable wave function

 $\psi(x, y) = \sin(2\pi x)\sin(3\pi y)$

Misconception #1:

All multidimensional wave functions are separable. (At least when the potential energy is symmetric.)

Another solution to the TISE

 $\psi(x, y) = \\ \sin(2\pi x)\sin(3\pi y) \\ +\frac{1}{2}\sin(3\pi x)\sin(2\pi y)$

Measuring *x* tells you something new about *y*

→ Entanglement!

Another entangled solution to the TISE

 $\psi(x, y) = \\ \sin(7\pi x)\sin(1\pi y) \\ +\sin(5\pi x)\sin(5\pi y)$

Misconception #2:

Every wave function is a solution of the timeindependent Schrödinger equation.

(see, e.g., work of C. Singh)

Another perfectly valid wave function

$$\psi(x, y) = e^{-(x-a)^2} e^{-(y-b)^2} + e^{-(x-b)^2} e^{-(y-a)^2}$$

Two particles in one dimension

$$\psi(x_1, x_2) = e^{-(x_1 - a)^2} e^{-(x_2 - b)^2} + e^{-(x_1 - b)^2} e^{-(x_2 - b)^2}$$

Measuring x_1 tells you something new about x_2

→ Entanglement!

Misconception #3:

Every particle has its own wave function.

Yet another perfectly valid wave function

$$\psi(x,y) = ???$$

Feel free to replace:

$$(x,y) \longrightarrow (x_1,x_2)$$

y ↑

Yet another perfectly valid wave function

$$\psi(x, y) = e^{-(x-a)^2} e^{-(y-b)^2} e^{-iky} + e^{-(x-b)^2} e^{-(y-a)^2} e^{+iky}$$

Feel free to replace:

$$(x,y) \longrightarrow (x_1,x_2)$$

Why teach entanglement?

Google Books Ngram Viewer

Why teach entanglement?

- Explosive growth of quantum information science.
- Today's students have already heard the term and are naturally curious.
- Probably essential for understanding the meaning of "measurement".

My suggestions:

- Put some entangled wave functions into your quantum course!
- Use the word "entanglement" early and often!