The shooting method!'

Besides the infinite square well, there aren’t many potential energy functions U(x)
for which you can solve the time-independent Schrodinger equation (TISE) exactly,
using pencil and paper. Nowadays, however, that’s hardly a handicap because we
have powerful computer systems that can solve the TISE numerically for virtually
any U(z). Here I'll describe one way to do this, using Mathematica.

For any given U(z) and energy E, the TISE relates the value of the function ()
at each point to its second derivative at that point:

2 m
= 2 (B~ Ua))w(a). (1)

If we happen to know the values of ¢ and its first derivative di/dz at some particular
point, along with the corresponding energy value E, we can use the TISE to calculate
the second derivative d?v/dx?, that is, the curvature of the function v at that point.
From this curvature (and the value of ¢ and its slope), we can make a good estimate
of ¢ and dip/dx at a nearby point, a little to the left or right. We can then use the
TISE again to recalculate the curvature at that point, and repeat the process, moving
along in tiny steps, to numerically construct the full function ¥ (z).

The Mathematica function NDSolve (ND for Numerical Differential equation) does
exactly that. We provide it with a differential equation such as the TISE, along with
the values of ¢ and di/dx at some starting point. It then constructs a table of ¢
values over whatever interval we like, for later evaluation or plotting.

You may be wondering how to find the two starting values ¢ (z) and dvy/dz, as
well as how to deal with our initial ignorance of the allowed energy values E. T’ll
address these issues in the context of a concrete example.

The finite square well

To illustrate the method, let me pick a specific U(x): the finite square well, pictured
in Figure 1 and defined as

(2)

Ulx) = {0 for —a/2 < x < a/2,
Uy elsewhere.
This is the same potential as for the infinite square well, with oo replaced by Up; I've
shifted the well to center it at x = 0 because the resulting symmetry will slightly
simplify the computer code and the description of the solutions. (This is actually
an example that can be solved exactly, aside from the need to numerically solve a
transcendental equation to match the wavefunction at the well boundary. But here I'll
use it to illustrate the much more general method of numerically solving the TISE.)

! Adapted from Notes on Quantum Mechanics by Daniel V. Schroeder, physics.weber.edu/
schroeder/quantum/

0 T
—a/2 0 a/2 z

Figure 1: The finite square well potential, centered on z = 0 for convenience.

Natural units

Before typing a physics equation into a computer, you should almost always rewrite
it in a system of units that is “natural” to the problem being solved. Doing so will
free you from working with numbers that are awkwardly large or small, and from
having to supply numerical values for parameters that turn out to be irrelevant to
the mathematics. For example, in this problem the natural unit of distance is a, the
width of the well, so I'll set @ = 1 in my computer code. I will also set m/h? = 1;
this combination has dimensions of (energy)~!(distance) ™2, so setting it equal to 1
determines our unit of energy: all energies will now be measured in units of 42/ma?.

Note that after making these choices, we do not have the freedom to also set
Up = 1. In other words, different Uy values (in these units) represent different prob-
lems to solve, and we’ll have to choose a specific Uy before solving the problem on
a computer. And what would be some interesting Uy values to choose? Well, recall
that for an infinite square well, the energy eigenvalues are h?n?/8ma?. Plugging in
h = 2mh and setting h?/ma? = 1, this becomes (72/2)n? ~ 5n2, so the lowest energies
in our units would be roughly 5, 20, 45, 80, and so on. The most interesting Uy values
should be in this range; values much less than 5 would barely trap the particle at
all, while values much more than 100 start looking similar to infinity (at least for the
low-energy states). I'll use Uy = 50.

Mathematica code

Without further ado, here is some Mathematica code for solving the TISE for a finite
square well, using the units just described, with Uy = 50:

ulx_] := If[Abs[x] < 0.5, 0, 50];
xMax = 1.5;
Plot[ulx], {x, -xMax, xMax}, Exclusions -> None]

First I define the potential energy function ulx_] (using lower case to avoid conflicts
with built-in Mathematica functions, which always start with capital letters). Then I
define a constant xMax for the maximum x value that I'll ask the computer to look at
(so the range of x values will be -xMax to xMax). Just to be sure everything is working
so far, I plot u[x] (with an option to connect the plot across the discontinuities).

After checking that the plot of u[x] looks correct, I continue with the code to
solve the TISE:

energy = 5;
solution = NDSolve[{psi’’[x]==-2(energy-ulx])psilx],

psil-xMax]==0, psi’[-xMax]==0.001}, psi, {x, -xMax, xMax}];
Plot[psilx] /. solution, {x, -xMax, xMax}]

First I choose an arbitrary initial guess for the energy, roughly equal to the ground
state energy of an infinite well. Next comes the NDSolve function itself. It requires
a list (in curly braces) of the differential equation(s) and the boundary condition(s).
Note that these equations are defined using double == signs, and that derivatives
are denoted by primes (’). For a second-order differential equation, the required
boundary conditions are the value and the first derivative of the function, both at the
same point. My assumption is that the value of ¥ and its derivative are both very
small at z = —1.5, so I've set the value to zero and the derivative to 0.001. (I could
have done this the other way around, or used small nonzero values for both, but I
can’t make them both exactly zero because then we’d get a trivial solution that’s
zero everywhere.) After this list of equations, I supply the name of the function
to solve for and a list consisting of the independent variable and its beginning and
ending points. The result from NDSolve is stored in the variable solution as what
Mathematica calls an interpolating function; the last line of code plots a graph of
this function.

Results for the finite square well

If you execute the preceding code, you'll get a plot of a function that rises gradually
from left to right, peaks a little to the left of z = 0, then falls gradually and crosses
the = axis a little to the left of the edge of the well at z = 0.5. The function then
becomes negative, but soon reaches x = 0.5 where it begins curving away from the
horizontal axis, blowing up exponentially in the negative direction. This is not a
normalizable wavefunction, and it teaches us a lesson: You can solve the TISE for
any energy F, but not all energy values allow solutions that are normalizable.

The procedure, then, is to rerun the code with different £ values until you get a
solution that “lies down flat” to the right of the potential energy well. It’s essentially
a trial-and-error process, but with a little practice you can zero-in on an energy value
that works, to several significant figures, in about 20 trials. Figure 2 shows three
trials, one with the energy too low, one with the energy too high, and one with the
energy just right to give the one-bump (ground-state) wavefunction. In the same
way, I found the next three energies and wavefunctions, shown in Figure 3

Notice that all of these solutions are sinusoidal inside the well and exponential
outside it. (Because the exponential fall-off is so gradual with the last of these
wavefunctions, I increased xMax to 4.0 to get a consistent result—though I still cut
off the plot at +1.5.) Notice also that the energies are all significantly less than
the corresponding infinite square well energies, (72/2)n? ~ 4.93,19.74,44.41, 78.96;
that’s because the finite well lets part of the wavefunction “spill out” beyond the
edges, allowing the wavelength inside to be longer for the same number of bumps.
There are no further normalizable solutions with £ < 50. For E > 50, the solutions
are sinusoidal even outside the well, like the solutions for a free particle. Thus,
this particular potential well admits exactly four bound-state solutions to the time-
independent Schrodinger equation. Figure 4 shows all four bound-state wavefunctions

E =3.40

B =3.41357
1.0 15

-1.5 -1.0 -0.5 0.5

E =343

Figure 2: A combined plot showing the results of three numerical solutions to the TISE for
the finite square well with Uy = 50. Each numerical integration starts with a negligibly
small function at the far left, as described in the text. For most E values the solution is
not normalizable, blowing up to +0o or —oo in the classically forbidden region at the right.
Fine-tuning the energy to E ~ 3.41357, however, produces a normalizable solution.

0.5 1.0 1.5 0.5 10 1.5
L i L h 1
-15 -10 05 =15 -1.0 -05 0.5 10 1.5 -15 -10 =05

Ey =13.4757 FEs =29.4523 Ey =48.1435

Figure 3: The first three excited states for a finite square well with Uy = 50, obtained by the
same numerical method as in Figure 2. The third excited-state wavefunction (with energy Ej)
extends much farther into the classically forbidden regions, so I set xMax to 4.0, even though
the plot extends only to £+1.5.

and their energies, comparing to those of the infinite square well.

I haven’t labeled the vertical axes in Figures 2 and 3, because the vertical scales
are determined by my arbitrary choice of di)/dx = 0.001 at the extreme left edge. To
obtain normalized wavefunctions, we would have to compute [[9|2dz in each case,
and divide ¥ by the square root of the result.

There’s one more thing to notice about the four solutions pictured in Figures 2
and 3: Each of them is either an even or odd function of . This will be true whenever
U(z) is an even function, so for all such potentials there’s actually a better choice of
boundary conditions: Instead of starting far out along the —z axis, start at x = 0
and either set ¢ = 1 and dy/dz = 0 to obtain the even functions, or set ¢y = 0 and
dy/dx = 1 to obtain the odd functions. (In both cases, the “1” is arbitrary; any
other nonzero value will do.) Then both “tails” of the wavefunction will “wag” as
you vary the energy, lying down flat when the energy is tuned to an eigenvalue. These
boundary conditions avoid the awkwardness that arises when the starting point isn’t
far enough to the left. In this example I used the more awkward boundary conditions

E
80 I—]
70]
60]
90 M_/ TW
40 1
30- i e S K
20 —]
o 7__//\//—— T V2
| /\
0 " O T7/11
T T

Infinite well Finite well

Figure 4: Comparison of the energy levels and eigenfunctions of infinite and finite square
wells with the same width. All energies are measured in natural units of 42/(ma?), where m
is the particle mass and a is the well width. The depth of the finite well is 50 in these units.
Note that the vertical scale for the wavefunction graphs is unrelated to the energy scale.
The energies in the finite well are lower than those in the infinite well because the finite
well allows the wavefunctions to “spill out” into the classically forbidden regions, resulting in
longer wavelengths.

because this method works even when U(x) isn’t symmetric.

The algorithm that I've just described, in which we start at a point with a known
boundary condition and adjust the energy until the other boundary condition is
met, is called the shooting method, because it is reminiscent of repeatedly shooting
projectiles while tuning the launch speed (or angle) to hit a fixed target. The shooting
method is extremely accurate and computationally efficient, though it can be a bit
tedious, finicky, and difficult to automate.

