
The shooting method1

Besides the infinite square well, there aren’t many potential energy functions U(x)
for which you can solve the time-independent Schrödinger equation (TISE) exactly,

using pencil and paper. Nowadays, however, that’s hardly a handicap because we

have powerful computer systems that can solve the TISE numerically for virtually

any U(x). Here I’ll describe one way to do this, using Mathematica.

For any given U(x) and energy E, the TISE relates the value of the function  (x)
at each point to its second derivative at that point:

d2 

dx2
= �2m

~2
�
E � U(x)

�
 (x). (1)

If we happen to know the values of  and its first derivative d /dx at some particular

point, along with the corresponding energy value E, we can use the TISE to calculate

the second derivative d2 /dx2, that is, the curvature of the function  at that point.

From this curvature (and the value of  and its slope), we can make a good estimate

of  and d /dx at a nearby point, a little to the left or right. We can then use the

TISE again to recalculate the curvature at that point, and repeat the process, moving

along in tiny steps, to numerically construct the full function  (x).
The Mathematica function NDSolve (ND for Numerical Di↵erential equation) does

exactly that. We provide it with a di↵erential equation such as the TISE, along with

the values of  and d /dx at some starting point. It then constructs a table of  
values over whatever interval we like, for later evaluation or plotting.

You may be wondering how to find the two starting values  (x) and d /dx, as
well as how to deal with our initial ignorance of the allowed energy values E. I’ll

address these issues in the context of a concrete example.

The finite square well

To illustrate the method, let me pick a specific U(x): the finite square well, pictured
in Figure 1 and defined as

U(x) =

(
0 for �a/2 < x < a/2,

U0 elsewhere.
(2)

This is the same potential as for the infinite square well, with 1 replaced by U0; I’ve

shifted the well to center it at x = 0 because the resulting symmetry will slightly

simplify the computer code and the description of the solutions. (This is actually

an example that can be solved exactly, aside from the need to numerically solve a

transcendental equation to match the wavefunction at the well boundary. But here I’ll

use it to illustrate the much more general method of numerically solving the TISE.)

1Adapted from Notes on Quantum Mechanics by Daniel V. Schroeder, physics.weber.edu/
schroeder/quantum/
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Figure 1: The finite square well potential, centered on x = 0 for convenience.

Natural units

Before typing a physics equation into a computer, you should almost always rewrite

it in a system of units that is “natural” to the problem being solved. Doing so will

free you from working with numbers that are awkwardly large or small, and from

having to supply numerical values for parameters that turn out to be irrelevant to

the mathematics. For example, in this problem the natural unit of distance is a, the
width of the well, so I’ll set a = 1 in my computer code. I will also set m/~2 = 1;

this combination has dimensions of (energy)
�1

(distance)
�2

, so setting it equal to 1

determines our unit of energy: all energies will now be measured in units of ~2/ma2.
Note that after making these choices, we do not have the freedom to also set

U0 = 1. In other words, di↵erent U0 values (in these units) represent di↵erent prob-

lems to solve, and we’ll have to choose a specific U0 before solving the problem on

a computer. And what would be some interesting U0 values to choose? Well, recall

that for an infinite square well, the energy eigenvalues are h2n2/8ma2. Plugging in

h = 2⇡~ and setting ~2/ma2 = 1, this becomes (⇡2/2)n2 ⇡ 5n2
, so the lowest energies

in our units would be roughly 5, 20, 45, 80, and so on. The most interesting U0 values

should be in this range; values much less than 5 would barely trap the particle at

all, while values much more than 100 start looking similar to infinity (at least for the

low-energy states). I’ll use U0 = 50.

Mathematica code

Without further ado, here is some Mathematica code for solving the TISE for a finite

square well, using the units just described, with U0 = 50:

u[x_] := If[Abs[x] < 0.5, 0, 50];

xMax = 1.5;

Plot[u[x], {x, -xMax, xMax}, Exclusions -> None]

First I define the potential energy function u[x_] (using lower case to avoid conflicts

with built-in Mathematica functions, which always start with capital letters). Then I

define a constant xMax for the maximum x value that I’ll ask the computer to look at

(so the range of x values will be -xMax to xMax). Just to be sure everything is working

so far, I plot u[x] (with an option to connect the plot across the discontinuities).

After checking that the plot of u[x] looks correct, I continue with the code to

solve the TISE:
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energy = 5;

solution = NDSolve[{psi’’[x]==-2(energy-u[x])psi[x],

psi[-xMax]==0, psi’[-xMax]==0.001}, psi, {x, -xMax, xMax}];

Plot[psi[x] /. solution, {x, -xMax, xMax}]

First I choose an arbitrary initial guess for the energy, roughly equal to the ground

state energy of an infinite well. Next comes the NDSolve function itself. It requires

a list (in curly braces) of the di↵erential equation(s) and the boundary condition(s).

Note that these equations are defined using double == signs, and that derivatives

are denoted by primes (’). For a second-order di↵erential equation, the required

boundary conditions are the value and the first derivative of the function, both at the

same point. My assumption is that the value of  and its derivative are both very

small at x = �1.5, so I’ve set the value to zero and the derivative to 0.001. (I could

have done this the other way around, or used small nonzero values for both, but I

can’t make them both exactly zero because then we’d get a trivial solution that’s

zero everywhere.) After this list of equations, I supply the name of the function

to solve for and a list consisting of the independent variable and its beginning and

ending points. The result from NDSolve is stored in the variable solution as what

Mathematica calls an interpolating function; the last line of code plots a graph of

this function.

Results for the finite square well

If you execute the preceding code, you’ll get a plot of a function that rises gradually

from left to right, peaks a little to the left of x = 0, then falls gradually and crosses

the x axis a little to the left of the edge of the well at x = 0.5. The function then

becomes negative, but soon reaches x = 0.5 where it begins curving away from the

horizontal axis, blowing up exponentially in the negative direction. This is not a

normalizable wavefunction, and it teaches us a lesson: You can solve the TISE for

any energy E, but not all energy values allow solutions that are normalizable.

The procedure, then, is to rerun the code with di↵erent E values until you get a

solution that “lies down flat” to the right of the potential energy well. It’s essentially

a trial-and-error process, but with a little practice you can zero-in on an energy value

that works, to several significant figures, in about 20 trials. Figure 2 shows three

trials, one with the energy too low, one with the energy too high, and one with the

energy just right to give the one-bump (ground-state) wavefunction. In the same

way, I found the next three energies and wavefunctions, shown in Figure 3

Notice that all of these solutions are sinusoidal inside the well and exponential

outside it. (Because the exponential fall-o↵ is so gradual with the last of these

wavefunctions, I increased xMax to 4.0 to get a consistent result—though I still cut

o↵ the plot at ±1.5.) Notice also that the energies are all significantly less than

the corresponding infinite square well energies, (⇡2/2)n2 ⇡ 4.93, 19.74, 44.41, 78.96;
that’s because the finite well lets part of the wavefunction “spill out” beyond the

edges, allowing the wavelength inside to be longer for the same number of bumps.

There are no further normalizable solutions with E < 50. For E > 50, the solutions

are sinusoidal even outside the well, like the solutions for a free particle. Thus,

this particular potential well admits exactly four bound-state solutions to the time-

independent Schrödinger equation. Figure 4 shows all four bound-state wavefunctions
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Figure 2: A combined plot showing the results of three numerical solutions to the TISE for

the finite square well with U0 = 50. Each numerical integration starts with a negligibly

small function at the far left, as described in the text. For most E values the solution is

not normalizable, blowing up to +1 or �1 in the classically forbidden region at the right.

Fine-tuning the energy to E ⇡ 3.41357, however, produces a normalizable solution.

Figure 3: The first three excited states for a finite square well with U0 = 50, obtained by the

same numerical method as in Figure 2. The third excited-state wavefunction (with energy E4)

extends much farther into the classically forbidden regions, so I set xMax to 4.0, even though

the plot extends only to ±1.5.

and their energies, comparing to those of the infinite square well.

I haven’t labeled the vertical axes in Figures 2 and 3, because the vertical scales

are determined by my arbitrary choice of d /dx = 0.001 at the extreme left edge. To

obtain normalized wavefunctions, we would have to compute
R
| |2dx in each case,

and divide  by the square root of the result.

There’s one more thing to notice about the four solutions pictured in Figures 2

and 3: Each of them is either an even or odd function of x. This will be true whenever
U(x) is an even function, so for all such potentials there’s actually a better choice of

boundary conditions: Instead of starting far out along the �x axis, start at x = 0

and either set  = 1 and d /dx = 0 to obtain the even functions, or set  = 0 and

d /dx = 1 to obtain the odd functions. (In both cases, the “1” is arbitrary; any

other nonzero value will do.) Then both “tails” of the wavefunction will “wag” as

you vary the energy, lying down flat when the energy is tuned to an eigenvalue. These

boundary conditions avoid the awkwardness that arises when the starting point isn’t

far enough to the left. In this example I used the more awkward boundary conditions
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Figure 4: Comparison of the energy levels and eigenfunctions of infinite and finite square

wells with the same width. All energies are measured in natural units of ~2/(ma2), where m
is the particle mass and a is the well width. The depth of the finite well is 50 in these units.

Note that the vertical scale for the wavefunction graphs is unrelated to the energy scale.

The energies in the finite well are lower than those in the infinite well because the finite

well allows the wavefunctions to “spill out” into the classically forbidden regions, resulting in

longer wavelengths.

because this method works even when U(x) isn’t symmetric.

The algorithm that I’ve just described, in which we start at a point with a known

boundary condition and adjust the energy until the other boundary condition is

met, is called the shooting method, because it is reminiscent of repeatedly shooting

projectiles while tuning the launch speed (or angle) to hit a fixed target. The shooting

method is extremely accurate and computationally e�cient, though it can be a bit

tedious, finicky, and di�cult to automate.
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