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Physics students now have access to interactive molecular dynamics simulations that can model

and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other

weakly at short distances but repel strongly when pressed together. Using these simulations,

students can develop an understanding of forces and motions at the molecular scale, nonideal

fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the

arrow of time, and much more. This article summarizes the basic features and capabilities of such a

simulation, presents a variety of student exercises using it at the introductory and intermediate

levels, and describes some enhancements that can further extend its uses. A working simulation

code, in HTML5 and JAVASCRIPT for running within any modern Web browser, is provided as an

online supplement. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4901185]

I. INTRODUCTION

The atomic theory of matter is a pillar of modern science.
Richard Feynman said it best:1–3

If, in some cataclysm, all of scientific knowledge
were to be destroyed, and only one sentence passed
on to the next generations of creatures, what state-
ment would contain the most information in the
fewest words? I believe it is the atomic hypothesis
(or the atomic fact, or whatever you wish to call it)
that all things are made of atoms—little particles
that move around in perpetual motion, attracting
each other when they are a little distance apart,
but repelling upon being squeezed into one
another. In that one sentence, you will see, there is
an enormous amount of information about the
world, if just a little imagination and thinking are
applied.

Experienced physicists can readily apply “just a little
imagination and thinking” to this view of matter, to arrive at
a qualitative, microscopic understanding of gas pressure,
phase changes, thermal equilibrium, nonequilibrium states,
irreversible behavior, and specific phenomena such as fric-
tion, thermal expansion, surface tension, crystal dislocations,
and Brownian motion. With further analysis and calculation,
physicists can also quantify much of this understanding in
terms of the laws of thermodynamics, Boltzmann statistics,
kinetic theory, and so on.

Non-experts, however, do not automatically imagine and
think about these phenomena correctly. For example, many
students find it difficult to picture atoms in perpetual motion,
colliding elastically with no loss of energy over time—even
though this picture is essential to understanding how a gas
can exert a steady pressure.4–6 Physics students gradually
learn quantitative approaches to thermodynamics and statis-
tical mechanics, but their qualitative understanding can lag
behind their symbol-pushing skills. Moreover, at the under-
graduate level, the thermal physics curriculum tends to be
restricted to a disappointingly narrow range of systems:

• “ideal” gases in which the particles do not attract or repel
each other at all; and/or

• systems in equilibrium (so that the fundamental assump-
tion of statistical mechanics applies); and/or

• very large systems (in the “thermodynamic limit”), for
which fluctuations and surface effects are negligible.

Of course, these restrictions are usually necessary in order to
perform accurate pencil-and-paper calculations.

To study systems that are free of these restrictions,
researchers often use molecular dynamics simulations.7–9 In
their basic form, these simulations integrate Newton’s sec-
ond law numerically to determine the motions of a moder-
ately large number of classical particles. In this approach,
there is no difficulty with incorporating forces between the
particles, or with studying nonequilibrium states. Simulating
very large systems is computationally expensive, so fluctua-
tions and surface effects are necessarily apparent (for better
or for worse) in practical simulations.

Molecular dynamics is gradually making its way into sci-
ence education, from two directions. At the elementary level,
there are now simulations with animated graphics that are
intended to give precollege students and chemistry students a
qualitative understanding of the atomic view of matter, and
especially of the differences between solids, liquids, and
gases.10–14 Meanwhile, at a more advanced level, a growing
number of text materials15–18 for computational physics and
statistical physics are presenting molecular dynamics tem-
plate codes and encouraging students to modify them and
use them to perform quantitative numerical “experiments.”

The purpose of this article is to encourage more wide-
spread use of molecular dynamics simulations in physics
instruction at all levels, so that more students will understand
the atomic view of matter and learn to apply it, both qualita-
tively and quantitatively, to a wider variety of phenomena.
There are especially many opportunities to incorporate
molecular dynamics simulations into courses in introductory
physics and thermal physics. In these courses the students
rarely have time to do their own coding, yet they are ready to
appreciate the principles behind a molecular dynamics simu-
lation and, with sufficiently flexible software, to use it to
gain solid qualitative understanding and to conduct serious
numerical experiments. Software intended for this type of
student use does exist,3,19,20 but it is not widely used and in
my opinion there is a need for a greater diversity of software
options. In an attempt to partially fill this need, I have written
an interactive molecular dynamics simulation with animated
graphics in HTML5/JAVASCRIPT, which is provided as an online
supplement to this article.21 Readers may wish to run this
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simulation while reading the rest of the article. There is no
need to view the source code of this simulation, but I have
tried to make the code easy for beginning programmers to
read, in the hope that curious students will look to see how it
works, and in the hope that other instructors will modify and
adapt it to fulfill a still wider variety of educational needs.

The next two sections summarize the Lennard-Jones
model that is widely used in molecular dynamics simula-
tions, and discuss some details of implementing the model
on a computer. These sections mostly review material that
can readily be found elsewhere but are included for com-
pleteness. Section IV then briefly summarizes some of the
qualitative behavior of the simulated Lennard-Jones system.
Section V lists several user interface features that facilitate
extensive and open-ended exploration of the system’s behav-
ior. A collection of 20 student exercises is presented in Sec.
VI, and further enhancements to a basic molecular dynamics
simulation are briefly described in Sec. VII.

II. THE LENNARD-JONES MODEL

In the simplest molecular dynamics simulations, the model
consists of N classical, spherically symmetrical particles
interacting pair-wise. A commonly used form for the interac-
tion7–9,15,16 is the Lennard-Jones 6-12 potential energy
function,

u rð Þ ¼ 4�
r
r

� �12

� r
r

� �6
" #

; (1)

where r is the distance between the centers of the two par-
ticles and r and � are constants. This function is plotted in
Fig. 1, where we see that the potential reaches a minimum
value of �� at r ¼ 21=6 r and rises very steeply for r < r.
Thus we can think of r as a rough measure of the diameter
of the particles. The attractive r�6 term in Eq. (1) represents
the long-range behavior of the van der Waals force between
uncharged, nonpolar molecules.22 There is no good theoreti-
cal or experimental basis for the exact form of the repulsive
r�12 term, which is chosen for computational convenience.
In any case, this pair-wise potential is a reasonable semi-
quantitative model for the interactions of noble gas atoms.23

Computational physicists generally use (with no loss of
generality) a natural system of units in which the Lennard-
Jones parameters r and � are both equal to 1, along with the
particle mass m and Boltzmann’s constant kB:

r ¼ � ¼ m ¼ kB ¼ 1: (2)

This article and the accompanying code also use this natural
unit system, even though the intent is to reach students who
may have never worked physics problems in non-SI units.
Working in natural units and converting between unit sys-
tems are essential skills that all scientists and engineers must
learn at some point. Still, in some educational settings it will
be appropriate to work in more familiar units. Table I lists
some approximate values of Lennard-Jones parameters that
can be used to model different noble gases, including the nat-
ural units of temperature (�=kB), velocity (
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), and time
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).

To keep the particles from drifting outward indefinitely, a
simulation must either use periodic boundary conditions or
provide an additional confining force. While the former
choice is preferable for many research studies, students find
it easier to conceptualize molecules that bounce off of
walls.24 Using walls also offers some other advantages, as
described below.

It would be most natural to model atoms moving in three-
dimensional space, and we could then make quantitative
comparisons to experimental data for real three-dimensional
noble gases and their condensed phases. However, a two-
dimensional simulation can demonstrate most of the impor-
tant physical principles equally well and is preferable for
many educational purposes. Then the student can see all the
simulated atoms at once on a graphical display and interact
with them in a natural way using a mouse or other pointing
mechanism. Both graphics and pointing interactions become
awkward, though certainly not impossible, with a three-
dimensional simulation. A two-dimensional simulation also
typically requires fewer particles, so it can run at a faster ani-
mation rate.

In summary, this article is primarily about two-
dimensional dynamical Lennard-Jones simulations with
fixed-wall boundary conditions.

III. COMPUTATIONAL DETAILS

For those who are interested in understanding the compu-
tational algorithms of a molecular dynamics simulation, and
perhaps coding their own simulations, abundant resources
are available.7–9,15,16 The following remarks merely provide
a brief overview and highlight a few important issues.

To integrate Newton’s second law for the N-particle
Lennard-Jones system, a common (and easy) approach is to
use the velocity Verlet algorithm. The program stores the
positions (~ri), velocities (~vi), and accelerations (~ai) of the NFig. 1. The Lennard-Jones 6-12 potential energy function, Eq. (1).

Table I. Approximate sizes of natural units of the Lennard-Jones system,

when this system is used to model various noble gases. Values of r and � are

adapted from Ref. 23, p. 582. The � values can vary by 10% or more,

depending on what experimental data are used to fit the Lennard-Jones

function.

Mass Length Energy Temp. Velocity Time

m r � �=kB

ffiffiffiffiffiffiffiffi
�=m

p
r
ffiffiffiffiffiffiffiffi
m=�

p
(u) (nm) (eV) (K) (m/s) (ps)

Helium 4.0 0.264 0.00094 10.9 150 1.76

Neon 20.2 0.274 0.0035 41.2 130 2.10

Argon 39.9 0.335 0.0122 142 172 1.95

Krypton 83.8 0.358 0.0172 199 141 2.55

Xenon 131.3 0.380 0.0242 281 133 2.84
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particles, and repeatedly steps these variables forward by
small time increments (dt) in the following sequence:

1. Use the current velocities and accelerations to update all
of the positions to second-order accuracy:
~ri  ~ri þ~vi dtþ 1

2
~aiðdtÞ2.

2. Use the current accelerations to update all of the veloc-
ities by half a time step:~vi  ~vi þ 1

2
~ai dt.

3. Compute the new accelerations from the updated posi-
tions, using the Lennard-Jones force law, i.e., the gradient
of Eq. (1).

4. Use these new accelerations to update the velocities by
another half time step: ~vi  ~vi þ 1

2
~ai dt. (Thus, steps 2

and 4 together update the velocities by a full time step to
second-order accuracy in a symmetrical way, using the
average of the old and new accelerations.)

The simulation will run faster with a larger value of dt, but
this also reduces the accuracy and, worse, can lead to a run-
away instability (with exponentially increasing total energy)
if dt is too large. In practice, dt � 0:01 (in natural units) usu-
ally produces good results under the conditions that are of
most interest.

The system’s total energy can be calculated at any time,
using Eq. (1) to calculate the potential energy. The total
energy should be conserved, so monitoring the energy is a
good way to check the accuracy of the simulation.

If the system is in thermal equilibrium, then its tempera-
ture T should be related to the total kinetic energy K by the
equipartition theorem,

hKi ¼ d

2
NkBT; (3)

where h i denotes an average and d is the dimensionality of
space. In two dimensions, and in units where kB¼ 1, the tem-
perature is just the average kinetic energy per particle.
Importantly, however, this interpretation is accurate only for
systems in thermal equilibrium. As the system evolves from
a nonequilibrium state toward an equilibrium state the
“temperature,” computed from Eq. (3), will drift. Even after
equilibrium is reached, for the relatively small systems
(N�1000) considered here, the instantaneous “temperature”
will fluctuate significantly and so a time average is needed to
obtain an accurate temperature measurement.

With fixed-wall boundary conditions, the instantaneous
pressure is simply the total force per unit area (or per unit
length in two dimensions) exerted on (or by) the walls. This
too will fluctuate significantly, so a time average is necessary
to get a good pressure measurement.

Molecular dynamics simulations are computationally inten-
sive, so programmers must pay attention to calculation times
and optimization opportunities. Traditionally, these simula-
tions are coded in FORTRAN or C, but today it is also feasible to
use interpreted languages, such as JAVA or JAVASCRIPT, so long
as the interpreter employs just-in-time compilation with good
optimization.25,26 On a personal computer it is now fairly easy
to simulate and draw 1000 Lennard-Jones particles at aestheti-
cally pleasing animation rates, and even the current generation
of higher-end smartphones and tablets can feasibly simulate
and animate hundreds of particles.

The computational bottleneck is in step 3 of the algo-
rithm, which calculates the Lennard-Jones force between
each interacting pair of particles. The number of pairs is
NðN � 1Þ=2, so the calculation time (per simulated time

step) grows in proportion to N2 when N is large.
Programmers using C-derived languages should compute
the powers of r in the Lennard-Jones force using repeated
multiplication, rather than the much slower “pow” function.
Another easy optimization is to truncate the Lennard-Jones
interaction at a cutoff of r � 3:0 (in natural units), setting
both the force and the potential energy to zero beyond the
cutoff (and adding a small constant to the energy within the
cutoff, to eliminate the resulting discontinuity); then there
is no need to calculate the force for pairs that are separated
by more than the cutoff. The use of a cutoff also makes it
possible27 to organize the force calculations in such a way
that the calculation time grows only in proportion to N
rather than N2.

IV. EQUILIBRIUM AND NONEQUILIBRIUM

STATES

Any Lennard-Jones simulation, if it includes graphical
output and a way to generate an assortment of initial states,
can quickly demonstrate a wide variety of interesting
behaviors.

Figure 2 shows snapshots of several equilibrium states of
the two-dimensional Lennard-Jones system. In each case, the
system was simply left to evolve (with constant energy,

Fig. 2. Equilibrium states of a two-dimensional Lennard-Jones system. In

this and subsequent images, the particles are drawn as circles of diameter r,

colored according to speed with lighter colors corresponding to higher

speeds.
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volume, and number of particles) until its macroscopic prop-
erties appeared to be stable. The gas, liquid, and solid phases
are readily apparent at suitable densities and temperatures.
The gas phase can be far from ideal, with small clumps of
atoms constantly forming and breaking apart. A hexagonal
crystal structure spontaneously forms to give the rigid solid
phase, but forms only partially, over short distances, in the
non-rigid liquid phase. Under many conditions, this fixed-
volume system will settle into an inhomogeneous mixture,
with a condensed crystal or droplet constantly exchanging
atoms with a surrounding gas. At one special density (about
0.35 particles per unit volume) and temperature (about 0.50),
density variations occur on all possible length scales; this is
the critical point.

Fascinating as these equilibrium states are, however, they
are just the beginning. With suitable initialization, a
Lennard-Jones simulation can also show a huge variety of
nonequilibrium states and their subsequent evolution toward
equilibrium. Figure 3 shows just a few of the possibilities.

Exploring the evolution of nonequilibrium states can give
students a vivid understanding of the arrow of time.

Naturally, none of the configurations in Fig. 3 will ever recur
spontaneously after the system has equilibrated.28 An espe-
cially instructive exercise is to reverse all the atoms’ veloc-
ities after the system has evolved toward equilibrium for a
short time, and observe whether the original nonequilibrium
state is restored. Tiny numerical round-off errors, amplified
by the chaotic behavior of the system, will almost always set
a time limit beyond which the behavior cannot be reversed.
Chaotic behavior occurs even when there are as few as two
atoms, as is easily demonstrated using simple configurations
such as that shown in Fig. 4.

V. USER INTERFACE

In order to explore configurations like those shown in
Figs. 2–4, students must have ways to put the Lennard-Jones
system into a wide variety of initial states. The easier this
process is, the more different behaviors they can discover.
Directly manipulating the state of the system can also make
the simulation more interactive and enjoyable. Of course,
there can be good pedagogical reasons to restrict the range of
possible configurations, in order to focus students’ attention
on certain phenomena. For a simulation to come across as
more than a mere movie, however, students should be able to
carry out at least some of the following actions:

• Add and remove atoms.
• Change the volume of the container.
• Change the system’s energy, e.g., by multiplying all the

velocities by a given factor.
• Drag an individual atom around and/or pull it with a simu-

lated force, using mouse/pointer/touch interactions.
• Reverse the motions of all the atoms.
• Exert a uniform “gravity” force that pulls all the atoms

downward.
• Save and restore the state of the system.
• Edit the detailed numerical position and velocity data, or

import data from a spreadsheet.

There are many possible ways to implement each of these
features. For example, the code that accompanies this arti-
cle21 uses a slider to control the number of atoms, inserting
each new atom at the first available open space in a grid;
LJfluidApp20 instead requires the user to select the number
of atoms from a menu before initialization; Atoms in

Fig. 3. Some nonequilibrium states of a two-dimensional Lennard-Jones sys-

tem. (a) A gas that fills only the central portion of the region, about to

expand freely into the surrounding vacuum; (b) hot and cold solids drifting

toward one another, which will soon merge and allow heat to flow from one

to the other; (c) a fast-moving atom heading toward a frozen crystal, where

it will stick and set the crystal into vibrational motion; (d) an elongated crys-

tal drifting uniformly, which will collide with the container walls and begin

rotating and vibrating, eventually settling into chaotic Brownian motion; (e)

a collection of small crystals, obtained by cooling a gas quickly, which will

drift into each other and warm as potential energy is converted to kinetic

energy; and (f) a solid that has cooled and crystallized quickly, forming met-

astable dislocations and domain boundaries.

Fig. 4. A simple demonstration of chaos. Left: Two diatomic Lennard-Jones

“molecules” start in identical states of pure horizontal motion, separated ver-

tically so they do not interact with each other. The molecules subsequently

bounce back and forth off the vertical walls, with each bounce converting

energy between translational, rotational, and vibrational forms. Right:

Although the motions of the two molecules appear to be perfectly synchron-

ized at first, after several bounces they diverge greatly. This divergence is

caused by the exponential growth of tiny numerical round-off errors.
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Motion12 uses buttons to add atoms at random locations one
at a time; Virtual Molecular Dynamics Laboratory3 uses
mouse clicks to place added atoms; and States of Matter13

shows a simulated bicycle pump that sprays new atoms into
the container. Each of these design choices has its advan-
tages and disadvantages, and these choices can have signifi-
cant effects on the ways that the simulation will be used.

Since the early days of graphical user interfaces, however,
experts have recognized qualities of good interface design
that help users feel comfortable with software. Among
these qualities are responsiveness, permissiveness, and con-
sistency.29 Responsiveness means that user inputs produce
immediate, rather than delayed, effects, so the user can
quickly learn what the controls do. Permissiveness means
that the software lets the user perform any reasonable action
at any time, rather than imposing arbitrary restrictions,30 so
the user feels in control of the software rather than the other
way around. And consistency means that user interface con-
trols are easily recognizable, so the user does not need to
guess at meanings or read lengthy instructions. While some
physicists may consider these qualities to be irrelevant to the
content of a simulation, for a student they can make the dif-
ference between doing the bare minimum to complete an
assignment, and actively engaging to explore widely and
learn deeply.

If students are to perform quantitative numerical experi-
ments, the user interface must also include data output. This
output can be as simple as pressure and temperature read-
outs, or as detailed as a complete dump of all the atoms’
position and velocity values. The exercises in the following
section assume that the software provides a means of collect-
ing the required data.31

VI. STUDENT EXERCISES

The following exercises are designed for use in undergrad-
uate courses at the beginning and intermediate levels. They
illustrate and reinforce the concepts of thermal physics using
numerical data for a nontrivial system, and highlight the
idealizations ordinarily made in undergraduate courses, often
showing when and how these idealizations break down.
Some of the exercises could be developed further into
advanced projects.

All of these exercises can be carried out using the software
that accompanies this article.21 Some of them can also be
done using other existing software, and further software
options will undoubtedly become available in the future. In
most cases, instructors should supplement the exercises with
software-specific instructions for configuring the system and
acquiring the needed data.32 The exercises use natural units,
but could be augmented by asking students to convert results
to conventional units (see Table I), or adapted for use with
software that uses conventional units. Many of the exercises
require that students use a spreadsheet program or other plot-
ting software.

1. Basic phase behavior. Run the simulation under a vari-
ety of conditions, adjusting the number of atoms, vol-
ume, and energy, and waiting for the system to
equilibrate at each setting, until you have produced each
of the following states of matter: (a) a pure gas, with
plenty of space around most atoms and no large clumps;
(b) a pure liquid, with little space between atoms but no
long-range order; (c) a pure solid, with all the atoms in

orderly rows; (d) a liquid droplet surrounded by gas; and
(e) a solid crystal surrounded by gas. For each of these
states, write down the following data: number of par-
ticles, volume (actually area in two dimensions), total
energy, kinetic energy, potential energy, temperature,
and pressure. Summarize your results in a paragraph,
describing the appearance of each phase and any other
interesting behavior that you notice.

2. Comparison to an ideal gas. Set the number of particles
(N) to 100 and the volume (V, actually an area in two
dimensions) to approximately 5000. Add or remove
energy until the temperature (T) remains stable at
approximately 1.0, then note the pressure (P) and com-
pute the ratio PV=NkBT (remembering that in the natural
units used by the simulation, kB¼ 1). What is this ratio
for an ideal gas, and how does your result compare?
Repeat (using the same N and V) for T � 0:5 and
T � 0:3, being sure to remove enough energy for the
system to equilibrate at these approximate temperatures.
Describe the way in which this system’s behavior differs
from that of an ideal gas, and explain the reason for this
difference, noting the visual appearance of the system at
each temperature.

3. Free expansion. Set up an experiment in which a nearly
ideal gas (perhaps 100 atoms with an initial volume of
about 5000) expands into a vacuum to approximately
double its volume. If the initial temperature is about 2.0,
what is the final temperature, and why? Repeat the
experiment with a smaller initial volume (perhaps 1000),
and explain the results. Then try it with a smaller initial
temperature as well (perhaps 1.0), and again explain the
results.

4. Heat capacities and equipartition. Use the simulation
to measure the heat capacity (at constant volume) of the
Lennard-Jones system when it is (a) a nearly ideal gas,
and (b) a single solid crystal, with at least 100 atoms in
each case. For each of these measurements you will need
to measure the temperatures at two slightly different
energies (E), then subtract these nearby values to obtain
DE and DT. Compare your results to the predictions of
the equipartition theorem, thinking carefully about how
many degrees of freedom the system has. (Don’t expect
perfect agreement, but don’t expect enormous disagree-
ments either.)

5. Heat capacity at constant pressure. Use the simulation
to measure the heat capacity at constant pressure of the
Lennard-Jones system when it is (a) a nearly ideal gas,
and (b) a single solid crystal. In each case you will have
to increase the volume by a small percentage, then add
energy until the pressure reaches its previous value. In
calculating the results, be sure to include the P dV term
in CP ¼ ðdEþ P dVÞ=dT. For the gas, compare your
result to the exact formula derived in textbooks. For the
solid, check that CP>CV.

6. Pressure and energy as functions of temperature. For
a simulated system of 100 atoms or more, with the vol-
ume fixed in the range of 10–20 units per atom, measure
the total energy, temperature, and pressure over the full
range of temperatures from 0 to 1.0, in intervals of 0.1 or
less. Be sure to let the system equilibrate at each temper-
ature before recording your data. Then plot a graph of
pressure vs temperature and another graph of energy vs
temperature (see Fig. 5 for an example solution).
Comment on the portions of these graphs that can be
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understood in terms of the ideal gas law and the equipar-
tition theorem, and on the portions that cannot be so
simply understood (and why). How does the low-
temperature behavior of the heat capacity differ from
that of a real-world solid?

7. Heat capacity and entropy. From your data in the pre-
vious problem, construct a graph of the heat capacity at
constant volume, CV , as a function of temperature. You
may have to do some smoothing to reduce the effects of
noise in the data. Then construct a table and graph of
CV=T vs T, and numerically integrate this function (to an
accuracy of one or two significant figures) to determine
the entropy as a function of temperature, relative to the
entropy at T¼ 0.1. Why can’t you determine the abso-
lute entropy, relative to T¼ 0? Why doesn’t this limita-
tion affect real-world materials?

8. Critical point. Set the number of atoms to at least 1000
(more is better) and the volume, in natural units, to
approximately three times the number of atoms. Add
and remove energy to carefully explore the behavior of
the system over the temperature range from about 0.4 to
0.7, and describe how its appearance changes over this
range. What is your best estimate of the critical tempera-
ture of this system, and what is the corresponding
pressure?

9. Phase diagram. Map out the approximate phase dia-
gram of the two-dimensional Lennard-Jones system, by
adjusting both the temperature and the volume to find
the various phase boundary lines (where two phases
coexist in equilibrium). Keep the number of atoms fixed

(preferably at 500 or more). It’s easiest to start at a large
volume and low temperature, so the system consists of a
single solid crystal surrounded by a low-density gas.
Add energy gradually, letting the system equilibrate at
various temperatures and noting the temperature and
pressure after each equilibration. Be sure to note the ap-
proximate triple point, where the solid crystal (with
atoms in orderly rows) melts into a liquid (with no long-
range order). The critical point is the subject of the pre-
vious problem. Finally, reduce the volume (and the
energy) to try to locate the solid-liquid phase boundary
at pressures somewhat above that of the triple point. Plot
all of your pressure-temperature measurements, sketch-
ing in the approximate phase boundary lines and anno-
tating the plot with descriptions of the system’s
appearance under the various conditions.

10. Phase boundary ambiguities. Phase boundary lines are
sharp (because the properties of the system across a
boundary are discontinuous) only in the limit of an infin-
itely large system. As a follow-up to the previous prob-
lem, explore how the phase boundary locations depend
on the volume of the system and on the number of
atoms. For example, try plotting the liquid-gas phase
boundary for systems with different sizes but similar av-
erage densities. Explain the results qualitatively, by con-
sidering what fraction of the atoms in the liquid droplet
are near the surface.

11. Velocity distribution. Record the instantaneous veloc-
ities (x and y components) for 1000 or more atoms in
equilibrium at a temperature of about 0.5 in natural
units. Using a spreadsheet or other software, plot a histo-
gram of the vx values, using about 20 bins to cover the
velocity interval �2.0 toþ 2.0. Do the same for the vy

values. Also plot the expected results according to the
Maxwell-Boltzmann velocity distribution, which for

either component vi is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2pkBTÞ

p
expð�mv2

i =2kBTÞ.
(This is the function that, when multiplied by any small
velocity interval dvi, gives the probability of finding a
single atom within this interval. To compare it to your
simulation results, you will have to take into account the
number of atoms and the sizes of the histogram bins.)
Repeat this whole procedure for a different temperature
(adjusting the histogram range if necessary) and discuss
the results. Does it matter whether the simulated material
is in a solid, liquid, or gas state?

12. Speed distribution. As in the previous problem, record
the instantaneous velocity components of 1000 or more
atoms in equilibrium. Use a spreadsheet to calculate the
speed of each atom, plot a histogram of the speeds, and
compare to the theoretical prediction (i.e., the two-
dimensional Maxwell speed distribution). (See Fig. 6 for
an example solution.) Why does the speed distribution
equal zero at v¼ 0, whereas the distributions for vx and
vy have their peaks at vx¼ 0 and vy¼ 0?

13. Gas density in a gravitational field. Set the size of the
container to 100� 100, the number of atoms to 500, the
gravitational constant to 0.02, and the temperature to
about 1.0. The system is now an “atmosphere” whose
density decreases with altitude. How does the typical
gravitational energy compare to the typical kinetic
energy? Record the positions of all the atoms at one
instant and use a spreadsheet (or other software) to plot a
graph of relative density (q) as a function of altitude,

Fig. 5. Pressure (top) and energy per particle (bottom) as functions of tem-

perature for a simulated system of 100 Lennard-Jones particles in a two-

dimensional volume of 1600. All quantities are in natural units. The straight

lines show the ideal gas pressure NkBT=V and the equipartition predictions

for the heat capacities C of a solid (C=N ¼ 4ð1=2ÞkB) and an ideal gas

(C=N ¼ 2ð1=2ÞkB). See Exercise 6.
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dividing the full height of the container into ten bins.
(For better statistics you may want to combine data from
several “snapshots” of the system.) Fit an exponential
function to this data (perhaps plotting it on a semi-log
scale), and compare the result to the standard formula
for an isothermal atmosphere: q / expð�mgy=kBTÞ. Is
this system isothermal? Would you expect it to be? Why
or why not? What happens if you reduce the temperature
to 0.5?

14. Thermal expansion. Devise a numerical experiment to
measure the thermal expansion of a two-dimensional
Lennard-Jones solid. Explore the temperature range
from 0 up to about 0.10, being sure to acquire enough
data to see the signal through the statistical noise. Does
the expansion depend linearly on temperature over this
range? What is the approximate thermal expansion coef-
ficient? How does this behavior compare to that of real
solids at low temperatures?

15. Brownian motion. Set up a simulation of approximately
50 atoms arranged in a stable crystalline shape (not nec-
essarily symmetrical), surrounded by plenty of empty
space so the overall volume per atom is 10 or so. Add or
remove energy until the temperature is between 0.06 and
0.08, and run the simulation for a while. You should see
the crystal bounce around randomly, with each bounce
off of a wall changing its overall velocity as energy is
exchanged between its macroscopic and microscopic
degrees of freedom. Then measure the system’s total
momentum (x and y components) repeatedly, at regular
intervals that are long enough for at least one or two
bounces, on average, to occur between measurements.
Make at least 100 such measurements (more is better).
From this data set, calculate the average values of p2

x and
p2

y , and compare them to the prediction of the equiparti-
tion theorem. Also plot histograms of the px and py val-
ues and compare them to the prediction of the Maxwell-
Boltzmann distribution.

16. Brownian bouncing ball. As in the previous problem,
set up a simulation of a small solid crystal surrounded by
empty space. This time, to minimize the effects of the
crystal’s orientation, it is best to make it as nearly round
as possible. Freeze the crystal’s overall motion when it
is near the middle of the region, then turn on a down-
ward gravitational force of 0.001 in natural units. Run
the simulation to let the crystal bounce off the bottom
surface a few times, then adjust the temperature to

somewhere in the range between 0.06 and 0.10. Measure
the system’s total gravitational energy at regular inter-
vals (far enough apart in time for the crystal to move a
significant distance). After making at least a few hundred
such measurements, plot a histogram of the gravitational
energy values and compare to the prediction of the
Boltzmann distribution.

17. Fluctuations. The simulation calculates temperature by
taking a time average of the average kinetic energy per
particle. The time average is needed because the instan-
taneous average kinetic energy per particle fluctuates
significantly for such a small system. To study these
fluctuations, start with about 50 atoms in a volume of
about 250, at a temperature of about 0.4, so the system
consists of a liquid droplet surrounded by gas. While the
simulation runs, measure the average kinetic energy per
particle about a hundred times, and calculate the stand-
ard deviation of these measurements. Then repeat this
process for systems of about 100, 200, and 500 particles,
keeping the density and temperature approximately
fixed. How does the standard deviation vary with N?
Next, hold N fixed and repeat the process at lower and
higher temperatures where the system is entirely solid or
entirely gaseous. Describe and interpret your results as
completely as you can.

18. Reversibility and chaos. Set up configurations similar
to those shown in Figs. 3(a)–3(c) and watch how each
evolves over time. Reverse the motion after a short time
and check whether the reversed motion restores the ini-
tial configuration (at least approximately). In each case,
determine the approximate time limit beyond which a re-
versal will not restore the initial state. Then set up the
configuration of Fig. 4 and determine the approximate
number of bounces before the motions of the two mole-
cules are no longer (approximately) synchronized.

19. Thermal conductivity. Fill the simulated space with a
solid of several hundred atoms, with the left half at a
temperature of about 0.1 and the right half at T¼ 0.
Starting with this out-of-equilibrium state, step the sys-
tem forward by small time increments and watch it equi-
librate. Save the state periodically during this process
and use a spreadsheet to calculate the average tempera-
ture separately for the left and right halves of the system
at each time. Plot these temperatures vs time and deter-
mine the approximate initial value of the slope dT/dt
of each graph. Finally, use this result to estimate the
thermal conductivity kt of the two-dimensional Lennard-
Jones solid. This quantity is defined by the two-
dimensional version of the Fourier heat conduction law,
Q=Dt ¼ �ktL dT=dx, where x is the coordinate along
which the temperature varies, L is the cross-sectional
length of the material (measured perpendicular to x), and
Q is the amount of heat that flows across the boundary in
time Dt. You will need to know the heat capacity of the
material, which you can determine from your data or
from Exercise 4 or 6 above.

20. Diffusion. Configure the simulation to model a fluid of
1000 atoms, in a volume of 1600, at a temperature of
approximately 1.0. Select one atom that is initially near
the center of the container and as the simulation runs, re-
cord its position at regular intervals of one time unit, for
at least 200 time units. (If it reaches the edge of the con-
tainer in less than 200 time units, discard the data and try
again.) Then, using a spreadsheet or other computing

Fig. 6. Histogram (shown as columns) of the instantaneous speeds of 1000

simulated atoms with T¼ 0.50, compared to the prediction of the Maxwell

distribution in two dimensions. See Exercise 12.
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environment, compute the squared displacement,
ðDxÞ2 þ ðDyÞ2, for each of the (200 or so) one-unit time
intervals in your data set. Average these values to obtain
the mean squared displacement (MSD). Similarly, use
the same data set to calculate the MSD for time intervals
(Dt) of 2, 5, 10, and 20 units. Plot the MSD vs Dt and
notice that the graph is approximately linear; this is the
characteristic behavior of diffusive motion (or a so-
called random walk). The slope of the line is closely
related to the diffusion constant D; in two dimensions,
the MSD is 4DDt. Estimate the diffusion constant from
your data, then repeat the analysis, holding the fluid den-
sity fixed, at temperatures of approximately 0.5 and 2.0.

VII. ENHANCEMENTS

As the preceding sections illustrate, the pure Lennard-
Jones system exhibits a rich variety of physical behaviors
that can keep students occupied almost indefinitely. Still,
there are sometimes good reasons to go beyond the pure
Lennard-Jones system.

Atoms in Motion,12 for example, can simulate arbitrary
mixtures of Lennard-Jones particles of five different types,
with sizes, masses, and interaction strengths chosen to model
helium, neon, argon, krypton, and xenon. States of Matter13

cannot simulate mixtures, but can separately simulate four dif-
ferent types of molecules: two different noble gases, a rigid
diatomic species (“oxygen”), and a rigid triatomic species
(“water”). Molecular Workbench14 includes an option for
modeling charged ions that exert long-range Coulomb forces.

In the spirit of encouraging interactive exploration, the
software accompanying this article21 allows the user to con-
nect any two atoms together with an elastic “bond” that adds
a spring-like force to the Lennard-Jones force. This feature is
quite versatile and was easy to code. It is not an accurate
model of actual covalent bonds, because there is no limit on
the number of bonds per atom, there are no constraints on
the angles between bonds, and the bond stiffness, for compu-
tational reasons, is unrealistically low. Still, even this crude
model of bonds enables some interesting demonstrations and
experiments, such as measuring the heat capacity of a dia-
tomic gas (including the contribution of vibrational potential
energy), watching the Brownian motion of a large object
bombarded by fast-moving atoms, and observing the friction
of one solid object sliding over another (see Fig. 7).

The same simulation also incorporates a second ad hoc
feature: the ability to anchor an atom so that it is fixed in
space. In this way the user can build barriers and even simu-
late nano-scale “machinery” such as a version of the famous
Brownian ratchet.33 If nothing else, such demonstrations viv-
idly illustrate how the nano-scale world, with its van der
Waals forces and perpetual jiggling motions, differs from the
macroscopic world we are used to.

VIII. DISCUSSION

In summary, an interactive molecular dynamics simulation
can augment the teaching of thermal physics and related
topics in a variety of ways, complementing the more tradi-
tional approaches and highlighting some of the idealizations
that those approaches require.

On the other hand, any computer simulation incorporates
its own set of idealizations and limitations. The simulations

described in this article are limited to a rather small number
of particles (no more than a few thousand), living in a two-
dimensional world. These simulations are reasonably accu-
rate at modeling only noble gas atoms, and make no attempt
to model chemical reactions.

A critical yet intrinsic limitation is that these simulations
do not incorporate any quantum effects. This limitation
means that their low-temperature behavior is never realistic,
because quantum effects are responsible for the “freezing
out” of degrees of freedom and other phenomena related to
the third law of thermodynamics. Other approaches34 can be
used to introduce students to thermodynamic systems at low
temperature, at least when the systems are in equilibrium.

No “canned” simulation can offer students the same
opportunities for open-ended exploration as writing their
own code. It is my hope that, after a certain amount of time
spent with the interactive simulations described here—and
reaching the limits of what their graphical user interfaces
allow—students will be motivated to take the next step and
begin modifying the code, or writing their own, to conduct
further explorations.

Finally, we should remember that no simulation or numer-
ical “experiment” is a substitute for carrying out real experi-
ments on real physical systems. Rather, a simulation can
help bridge the gap between theory and experiment, and of-
ten, for thermodynamic systems, between the microscopic
and the macroscopic.

Fig. 7. A few of the configurations that are possible with a molecular dy-

namics simulation that allows connecting atoms together with “bonds” and

anchoring atoms at fixed locations.
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