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Preface

Introductory physics courses are full of simplifications: projectiles fly without air
resistance, pendulums swing only at small angles, orbits are always circular, and
no more than two particles move at any time. These kinds of simplifications are
necessary and appropriate when you’re first trying to understand the basic laws of
nature. But the real world is far more complex, and far more interesting. Because
the ultimate goal of physics is to understand the real world, students deserve a
course that applies the laws of physics to more complex situations.

Fortunately, modern electronic computers make it possible to perform extremely
lengthy calculations in a negligible amount of time. These days, therefore, comput-
ers offer the best avenue toward applying the basic laws of nature to complex and
realistic physical systems. A computer program that models the behavior of a
physical system is called a computer simulation. Creating and using computer
simulations is an integral part of modern science and engineering.

This lab manual is intended for a hands-on introductory course in computer
simulations of physical systems, using the Java programming language. The goals
of the course are as follows:

• Learn enough of the Java language to write programs that do numerical calcu-
lations with graphical output;

• Learn some special techniques for doing mathematical calculations (such as solv-
ing differential equations) on a computer;

• Gain a better understanding of Newton’s laws and other physical principles;

• Study a variety of physical systems that are too complex for simple pencil-and-
paper calculations, and see what sorts of phenomena emerge in such systems.

Prerequisites

Before taking this course you should have completed a semester of introductory
physics, covering Newton’s laws of motion, conservation principles, and a bit of
thermodynamics. You should also have taken at least one semester of calculus.
Prior experience in programming a computer is not required, but you should be
fairly comfortable using word processing and spreadsheet software.
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Preface 5

Required Materials

Naturally, you’ll need a computer. You should have access to a computer lab with
suitably equipped computers. If you would like to use your own computer instead
(or in addition), you’ll need to install and configure the needed software—the Java
language and a programmer’s text editor—as described in Project 1. Any rea-
sonably new computer running Windows, Macintosh OS X, or Linux should work
fine.

You’ll also need a convenient way of backing up your programs and other files. I
recommend a USB flash memory device; even the smallest available sizes are more
than adequate.

Finally, you’ll need a few low-tech materials such as scratch paper, pencils, and
a 3-ring binder to hold this manual.

How To Use This Manual

This manual is divided into nine chapters, corresponding to nine separate projects.
In each project you will write a computer program or (more often) a small number
of closely related computer programs. Rather than giving you complete programs
to run, this manual provides only code fragments and general instructions on how
to write your programs. This way, once you have completed each program, it will
be yours.

As you create your computer programs, you will inevitably have questions and
encounter difficulties. While you should try to think things through for yourself
whenever possible, don’t spend too much time being stuck and getting frustrated.
Ask your instructor or your classmates for help. This is not a test.

Exercises and questions are sprinkled among the instructions in this manual,
with space for you to write your answers. Please work each exercise and answer
each question immediately, before you read on.

The general premise of this manual is that you’ll learn more by trying some-
thing than by reading a comprehensive explanation of it. Computer languages are
like ordinary languages in this respect: We normally learn new words by hearing,
reading, and using them in context, not by studying a dictionary. But whenever
you want to see a term clearly defined, be sure to consult the glossary at the end
of this manual. There’s some other reference material there as well.

Computer programming is fun because it’s so open-ended. You’ll constantly
think of things to try that go beyond the explicit instructions in this manual. By
all means, try anything you want! If you’re not sure how to add a certain feature to
one of your simulations, or if you’re not sure whether it’s practical to do so within
a limited amount of time, be sure to ask your instructor.

When you finish a project, remove its pages from this manual and staple them
together with any printed output from your programs. This stapled packet, together
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with the source code of your computer programs, will be your “lab report.” Your
instructor will tell you how to electronically submit the programs themselves.

What This Manual Is Not

This manual is not a comprehensive introduction to the Java programming language.
Many features of the language are not needed for the types of simulations we’ll be
doing, so I’ve ignored them. Several other features (for example, exception handling
and anonymous inner classes) are used once or twice but never fully explained.

The current distribution of Java includes libraries containing about 4000 stan-
dard classes for performing various common tasks. The projects in this manual use
only about 30 of them.

At some point you might want to distribute your “finished” Java software as
applets, double-clickable applications, or packages. This manual won’t tell you how
to do that.

I’ve tried to design the examples in this manual to illustrate good programming
practices that are appropriate to the relatively small scale of the projects. This
manual is not a treatise on the principles of professional software design.

This manual is not a textbook on numerical analysis, nor is it a recipe book
of numerical algorithms. We’ll try out just a few algorithms, make some crude
comparisons, and leave it at that.

The projects in this manual touch on some fascinating fields of physics, includ-
ing nonlinear dynamics, celestial mechanics, and phase transformations. But this
manual is not a textbook on any of these subjects.

Perhaps most importantly, this manual is not intended to be of any use what-
soever to someone who merely reads it without actually working through all the
projects and exercises.

Why Java?

Choosing a computer language always involves trade-offs. Fortunately, there are
more choices today than ever before.

An obvious choice for this course would be one of the traditional computer lan-
guages like Fortran, C, or C++. These languages are widely used for scientific
computation due to their flexibility and speed. The languages are defined by stan-
dards committees rather than by commercial vendors, and free versions are avail-
able. However, they have grown quite complex over the years, as features have been
added while maintaining compatibility with older versions. Another disadvantage
is that none of these languages include built-in support for graphics, and add-on
graphics libraries tend to be awkward and platform-dependent.

The Basic programming language was specifically designed to be easy to learn,
and current versions of Basic have kept this feature. Because Basic is widely used by
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students and hobbyists, all modern versions include built-in, easy-to-use graphics
support. Some versions (True Basic and Real Basic) are cross-platform, but the
most widely used version, Microsoft’s Visual Basic, runs only on the Windows
operating system. The fragmentation of Basic into multiple versions, each with its
own ideosyncracies, is a major disadvantage. Programs written in Basic also tend to
run rather slowly. Most versions of Basic are sold commercially, though the prices
are generally reasonable.

A more modern easy-to-learn language is Python, which is available free for
virtually any platform. As an interpreted language Python is not particularly fast;
nor does it include built-in graphics support. However, a great variety of add-on
modules are available, including modules for scientific computing and graphics.

For mathematical calculations, the most convenient choice is often a special-
ized mathematical programming environment such as Mathematica, Maple, or
Matlab. These packages contain sophisticated, speedy, built-in routines for a great
variety of mathematical tasks, but their high overhead can make them rather slow
and awkward when you need to program a custom step-by-step algorithm. Because
they are commercial products aimed at relatively narrow markets, these packages
tend to be expensive. (However, there is a free product called Octave that is very
similar to Matlab.)

Java is a relatively new computer language, introduced by Sun Microsystems
(now Oracle) in 1995 and distributed free of charge. Though the Java language
superficially resembles C and C++, it is simpler and easier to learn because it does
not try to incorporate every feature of these languages. A product of the internet
age, Java was designed from the beginning with networks in mind. It is available
for most current-model computers and operating systems, and most code written
in Java will run equally well on all platforms. Java comes with a large standard
library of routines for performing common tasks, including platform-independent
graphics (an essential feature for this course) and graphical user interfaces. Java
has a sophisticated set of security features, which have the side effect of making
errors (“bugs”) easier to locate and far less likely to crash your computer.

Naturally, Java has a few disadvantages. Its platform independence and secu-
rity features result in a performance penalty, with calculation-intensive programs
typically taking 50% longer to run than in Fortran or C or C++. Consequently,
Java will never be the language of choice for performance-limited computational
research. In many cases, however, Java’s longer running time is more than offset
by the shorter time spent writing a Java program. (After all, what matters is your
time, not the computer’s.) Java is still much faster than Basic or Python, though
it is somewhat harder for beginners to learn.

Given the choice of the Java language, many further decisions remain. In decid-
ing exactly how to use Java, I’ve tried to keep in mind the goals and prerequisites
of this course. Those who are familiar with Java will be interested to know that
this manual uses only the AWT package for graphical user interface elements, not
the newer, more sophisticated Swing package. This is because AWT has everything



8 Preface

we need, it’s slightly simpler to use, and even programmers who will move on to
Swing need to learn most of AWT first. In addition to about 30 of the built-in Java
classes, the projects in this manual make use of two custom classes that I’ve written:
Plot (for plotting results on graphs) and DoubleScroller (for adjusting variables
at run-time). These classes free the student from certain mundane programming
chores, yet are small and simple enough that beginning students can learn to use
them quickly and even read and understand their source code. I’ve resisted the
temptation to use more elaborate custom libraries for graphics, controls, and math-
ematical algorithms, because any time spent learning to use such libraries would
leave less time to learn Java, and to learn physics.
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Name

Project 1: Hello, World!

Writing and Running a Java Program

The first goal in learning any new programming language is always the same: Write
and run a program to print (or display) the words “Hello, world!”.

Why bother with such a boring program? Because the steps required to write
and run even the most trivial program can be quite intricate. These steps can
include some or all of the following:

• finding a computer with suitable hardware and a suitable operating system;

• installing the programming language on your computer, that is, installing the
compiler (or interpreter) and any other needed software;

• correctly typing the program into a text editor or similar software;

• saving the program with an appropriate name, in an appropriate place;

• compiling the program, that is, translating it into the computer’s native “ma-
chine language”;

• telling the computer to run the program;

• arranging for the program’s output (“Hello, world!”) to end up in a place where
you can see it;

• troubleshooting the many sorts of problems that can crop up while carrying out
any of these steps.

The number of things that can go wrong during these steps is remarkably large.
Furthermore, different people prefer different computers running different operating
systems and different text editors and other programming tools, set up in differ-
ent configuations, so it’s nearly impossible for writers of manuals to give specific
instructions and to anticipate all the types of problems that can arise.

But I have to try. So in the space below, I’ll give a set of basic instructions for
compiling and running a “Hello, world!” program in the Java language. I’ll assume
that you’re using a computer running either Mac OS X or Windows. (If you’re
using Linux, you’re enough of a computer geek to figure out how to adapt these
instructions.) I’ll also assume that you’ll use a text-editing program to write your
Java programs, and that you’ll use a command-line interface to compile and run
them. (If you know what an IDE is and prefer to use one, you’re again on your own.)
Finally, I’ll assume that the Java compiler and run-time environment are already

11



12 Project 1 Hello, World!

installed on your computer. (All Mac OS X systems have these installed by default,
but if you’re using your own Windows computer, you’ll probably need to download
Java from Oracle’s web site; see the appendix to this chapter for instructions.)

The first step is to launch your text-editing program. If your computer has
a programmer’s text editor installed (such as TextWrangler or JEdit), please use
it. Otherwise, you can get by for now with TextEdit on a Macintosh (found un-
der Applications/Utilities), or with Notepad on Windows (under Start-Programs-
Accessories). If you use TextEdit, go immediately to the Format menu and select
“Make Plain Text.” All of these text editors function in basically the same way as a
word processing program (such as Microsoft Word), but without all the unnecessary
features to control fonts and other formatting. You could even use a word processor
to type your programs, saving them in plain text format, but I don’t recommend
it.

After launching your text editor, open a new document and type in the following
lines:

/* A program to print "Hello, world!" */
class Hello {

public static void main(String[] arg) {
System.out.println("Hello, world!");

}
}

Here are a few things to keep in mind as you type:

• Be careful with upper and lower case. Everything in Java is case-sensitive, so,
for instance, string is not equivalent to String.

• Well, not quite everything. The first line of this program is a comment, meant
to be read only by humans, not by the computer. So it can contain any text
at all, or can be omitted entirely. The comment is delimited by the /* and */
character combinations.

• Java gives you a great deal of freedom in deciding how much space to put between
words and symbols, and in deciding where to start a new line. Generally, you
should use new lines and indentation to make the structure of your program as
clear as possible to human readers. For now, please follow the examples in this
manual. You may use the tab key for indentation.

After typing this short program and checking it for accuracy, save it with the
name “Hello.java” (again, case matters) in an appropriate folder. You’ll want to
keep all your work for this course in a single folder (I’ll call it “java”), located on
your hard drive in an appropriate place. On a Macintosh, the best place for your
java folder is inside your home folder. On Windows, the best place is on the C
drive. Either way, it’s most convenient to put the java folder immediately at this
level, not nested within other folders. If your computer doesn’t already have a java
folder, please create one at this time.
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Now you need to tell the computer to compile and run your program. To do
so you will use a command-line application, which lets you type commands to
the computer like everyone did back before graphical user interfaces. On Mac
OS X, the command-line application is called Terminal, and is found under Appli-
cations/Utilities. On newer versions of Windows, the command-line application is
called Command Prompt, found under Start-Programs-Accessories.

When you launch your command-line application you should see a window dis-
playing a brief message followed by a cryptic sequence of characters that ends with
> or % or $. This character sequence is called a prompt; it indicates that the
computer is ready for you to type a command.

The commands that you’ll use will vary somewhat, depending on your computer’s
operating system. Mac OS X is actually a version of Unix, so its commands are usu-
ally referred to as Unix commands. Windows is the successor to a command-based
operating system called DOS, so its commands are usually called DOS commands.
Start by typing either the Unix command ls (for list) or the DOS command dir
(for directory), to list the contents of what’s called the “current” directory. All
command-line environments use the concept of a current directory, which is where
the computer will look for things by default. On Mac OS X this is initially your
home folder, while on Windows it is initially the C drive. Either way, one of the
items listed should be your java folder.

Since your files live in the java folder, the next step is to make this folder your
current directory. The command to do this is the same in Unix or DOS:

cd java

Here cd stands for change directory. Notice that the prompt changes to reflect your
new current directory. Type ls or dir again to list the contents of this folder, which
should include your Hello.java program.

Before you can run your program, you need to translate it from the Java lan-
guage into something closer to the computer’s native language. This step is called
compiling the program, and is accomplished with the javac command (c for com-
pile). So type “javac Hello.java” to compile your program. If all goes well, the
command window should simply display another prompt on the next line after a
few seconds. If you get an error message, it probably means that you mistyped
something in the program. Mistakes in the code of a computer program are called
bugs, and fixing them is called debugging. Go back and debug your program
if necessary, then try to compile it again. You can use the up-arrow key in the
command application to automatically retype the most recent command.

After your program compiles without errors, type ls or dir again. You’ll now
see a new file called Hello.class. This is the compiled version of your program.
It is in a format that is virtually unreadable by humans, so don’t bother trying to
examine its contents. With most languages, the compiled code is in the native ma-
chine language of a particular type of computer. This means that you cannot run
a compiled program on a different type of computer, and the compiler itself must be
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different for each type of computer. Java is unusual in that the compiled code is in a
machine-independent format called bytecode. Thus, your compiled Hello.class
file can be run on a machine with any operating system (e.g., Macintosh, Windows,
Linux) and any processor chip (e.g., Intel, PowerPC). The drawback of this arrange-
ment is that additional software, called the Java Virtual Machine (JVM) or the
bytecode interpreter, is required to run your program. (See Figure 1.1 for an
overview of the process of compiling and running a Java program.)

Figure 1.1. Overview of the process of compiling and running a Java program. First
the source file is compiled to produce a class file in bytecode format. Then the Java
Virtual Machine (or bytecode interpreter) translates the bytecode into machine code
and passes this code to the computer’s processor for execution.

The final step, then, is to invoke the Java Virtual Machine to run your compiled
program. You do this by typing the command “java Hello”, which tells the JVM
to run the code contained in the file Hello.class. (Notice that the “.class” is
understood, so you don’t type it explicitly. I’m not sure why the compiler doesn’t
similarly assume that the source code file name ends in “.java”.)

If all goes well, your program should type the words “Hello, world!” in the
command window. The program then finishes running and the command window
displays another prompt. Congratulations! You have successfully written, compiled,
and run your first Java program!

If all hasn’t gone well, and you can’t think of any obvious fixes, please consult
your instructor. Again, the number of things that can go wrong during this whole
process is quite large, so it wouldn’t be practical to provide a complete troubleshoot-
ing guide in this manual.
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For future reference, here’s a summary of the commands needed to compile and
run a Java program:

cd java
javac Hello.java
java Hello

(Use ls or dir commands as desired to check the contents of the current folder,
and use the up-arrow key to automatically retype the previous command.)

Exercise: Try the Unix/DOS command “cd ..” (note the space between the cd
and the two dots), and describe what it does.

Exercise: Another useful Unix command is “rm *.class”; the DOS version is
“del *.class”. Try the appropriate version of this command (after cd’ing back
to your java directory) and describe what it does. What do you think “rm” (or
“del”) stands for? (Warning: Be very careful using this command, since it cannot
be undone. Never type something like “rm *”.)

The “Hello, World!” Program

Now that you know how to create, compile, and run a “Hello, world!” program,
let’s look at the code of the program itself. Here it is again, without the initial
comment line:

class Hello {
public static void main(String[] arg) {

System.out.println("Hello, world!");
}

}

Java programs are made up of major units called classes (see Figure 1.2). The
code that you typed defines a single new class called Hello, and also mentions
two of Java’s built-in classes: String and System. Technically, the Hello program
includes not just the code you typed, but the code of these built-in classes as well.
But I’ll often use the word “program” more loosely to mean just the classes that
you write, not including the built-in classes that they use.

Classes, in turn, are made up of code blocks called methods, each of which
carries out a particular task. The Hello class defines only a single method, called
main, but it also uses a built-in method called println. (Don’t worry just yet about
which class println belongs to.)
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Figure 1.2. The code of a Java program is grouped into classes, each of which is
made up of code blocks called methods.

Curly braces, { and }, are used in Java programs to enclose all the code that
belongs to a certain class or method or smaller unit. In the file Hello.java, the
outer pair of curly braces encloses the body of the Hello class, while the inner
pair encloses the body of the main method. In each case, the stuff that appears
immediately before the opening brace is called the declaration of the class or
method. In these declarations we’re telling Java that the name Hello represents a
class and that the name main represents a method (with certain properties called
public, static, and void).

Every Java program must contain at least one method called main, where execu-
tion of the program will begin. More precisely, the command java Hello tells the
Java Virtual Machine to begin execution at the main method of the class Hello.

Besides the declarations of the Hello class and the main method, the only non-
trivial line in our program is the one that contains println. We say that this line
calls the println method, passing the characters “Hello, world!” to it. Java
then executes whatever code is in the println method; apparently this code some-
how causes these characters to be displayed in the command window. Fortunately,
we needn’t worry about how it does this.

Notice that the line containing println ends with a semicolon. This is our way
of telling Java that the statement is finished. Java requires such a symbol because
the end of a line has no significance whatsoever; it’s perfectly legal for a statement
to span two or more lines, or for multiple statements to be combined on a single
line. The only statements that don’t end in semicolons are those that are followed
by a block of code in curly braces, like class and method declarations.

Methods are like machines that can input and output data. The inputs are called
parameters of the method, and are placed in parentheses immediately after the
method name. So the parameter that our program gives to the println method
is the sequence of characters that we want printed, i.e., “Hello, world!”. (The
quotation marks are not part of the sequence; they are merely a signal to the
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compiler to treat what is enclosed as a single object, called a string.) You’ll learn
about the parameter of the main method in the following project. You’ll also learn
there about methods that “return” a value; such methods are also called functions.
Although both the main and println methods produce the side-effect of displaying
the phrase “Hello, world!” in the command window, neither returns any data to
the method that called it. This is the meaning of the word void in the declaration
of the main method.

Exercise: Try changing println to simply print, and describe what happens.

Besides classes and methods, we also need to give names to pieces of data.
Any named piece of data in Java is called a variable. In this course most of our
variables will represent numerical data. The Hello class doesn’t use any numerical
data, but it still contains two variable names: arg and out. Neither of these is
worth explaining in detail at this stage.

So “names” can refer to classes, methods, and variables. And what, exactly,
constitutes a “name”? In Java we can use almost any name we like for the things
we create, so long as it starts with a letter and contains only letters, numerals, and
the underscore character (_). The only exceptions are the 50 or so reserved words
that are part of the Java language itself, such as class, public, static, and void.
Here are a few examples of valid Java names:

x x1 x_1 positionOfBall position_of_ball

Remember that Java is case-sensitive, so the names Hello and hello are just as
distinct (to Java) as Hello and Goodbye.

It is conventional (not required but highly recommended) in Java to begin all
class names with capital letters, and to begin all method and variable names with
lower-case letters. This convention allows humans to tell at a glance what is a class
and what isn’t. I sometimes violate this convention for single-letter variable names
such as T for temperature, since physics has its own notational conventions.

Exercise: List all the words that appear in the Hello program. For each, indicate
whether it is the name of a class, method, or variable, or a part of the Java language,
or part of a string of text.
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Exercise: If you’re using a programmer’s text editor, it probably uses different
colors to distinguish comments, strings, names, and words that are part of the Java
language. Describe your editor’s color scheme. (If you don’t like your editor’s color
scheme, you can probably change it via a Preferences or Settings menu command.
If you’re still using TextEdit or Notepad, now would be a good time to switch to a
programmer’s text editor; see the end of this chapter for some specific suggestions.)

Dynamic Java

Before we leave the Hello program, I’d like you to make a modification to it. This
modification won’t affect the program’s behavior, but it will better illustrate some
of Java’s most important features. It will also help you develop better programming
habits.

So please go back to your source code and modify it to read as follows:

/* A dynamic program to print "Hello, world!" */
class Hello {

Hello(String name) { // constructor method
System.out.println("Hello, " + name + "!");

}
public static void main(String[] arg) {

new Hello("world"); // create a new Hello object
}

}

Compile and run this program, verifying that it produces the same output as before.

Here’s an explanation of the new features of this version of Hello:

• This version illustrates a second type of comment, which starts with // and
continues to the end of the line.

• The Hello class now contains two methods. The new method, also called Hello,
is of a special type called a constructor. A constructor method must have
the same name as its parent class (thus requiring an exception to the usual
capitalization convention), and its declaration never includes the modifier void
(or any other modifier to indicate the data type returned).

• The body of the main method now contains only “new Hello("world");”, a
statement that calls the constructor method of the Hello class (which then
prints the desired message). Constructor methods are always called with the
word new in this way; this process is called creating a new instance of the Hello
class, or instantiating an object of type Hello. An object is a particular
instance of a class, created while the program is running.
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• Rather than always having the Hello method print “Hello, world!”, we’ve
made this method a bit more general. The method has a parameter called name
(a variable), of type String. When we call the Hello method from main, the
variable name is set equal to the value we provide, in this case “world”. In the
println statement, we use the + symbol to combine (“concatenate”) this string
with two others to form the longer string that will be printed.

Exercise: To make your code more readable, insert a blank line before and after
each method.

Exercise: Instead of concatenating everything into a single string, you could use
three separate print and println statements to print “Hello ”, name, and “!”,
respectively. Show exactly how you would do this in the space below. If you’re even
a little bit unsure, try it. (Note that within a given method, Java executes your
code statements sequentially, from top to bottom.)

Exercise: The variable name “name” is completely arbitrary. Think of another
good name for this variable, and change it in your code. Write your new variable
name here:

As we’ll see in later examples, the use of constructors and new gives the Java
language a great deal of power and flexibility. For example, a program itself can
determine, while it is running, what objects it needs to create. To describe this
feature we say that Java is a dynamic language.

The opposite of dynamic is static, a modifier used in Java to denote variables
and objects that cannot be created dynamically during run-time. A static method
can create objects using new, but cannot explicitly mention any nonstatic variables.
Static methods have their uses, and Java requires that the main method be static.
Sometimes in a simple program you can get away with putting all your program
statements in the main method, as we did in the first version of Hello. But this
is a bad programming habit, because static methods are so restrictive. The better
practice is to put as little code as possible into main—often just a single instantiation
statement to transfer control to a nonstatic method.

Exercise: A method can have any number of parameters, or none at all. In the
latter case, the parentheses are still required even though nothing goes between
them. Modify the Hello program to eliminate the parameter of the constructor
method, putting the entire string to be printed explicitly into the parameter of
println as before. After checking that the program still works, please change it
back.
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Exercise: Add a line to the main method to create a second Hello object. Instead
of passing the string “world” to the constructor, give it the name of someone else
you would like to greet. Then add a third such line, and more if you wish. Compile
and run the modified program, and describe the output.

Exercise: Interchange the Hello and main methods in your code, so main is above
Hello instead of below it. Does this affect the program’s behavior? (Please put
them back where they were before turning in your source code.)

Exercise: As a review, describe the use or meaning of each of the following symbols
in the Hello program.

/* */

//

;

" "
{ }

( )

Question: Describe one bug that you’ve had to fix during this project, and describe
the error message (if any) that alerted you to the bug. If you’re a perfect typist
and haven’t had to fix any bugs, introduce one on purpose (perhaps by leaving out
a symbol) and describe what happens when you try to compile the program.

Question: What words have you looked up so far in the glossary to this manual?
What words should be in the glossary that aren’t?
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Appendix: Text Editors

I strongly recommend that you create your Java programs using a programmer’s
text editor, rather than a generic text editing program like TextEdit or Notepad.
A programmer’s text editor will provide many small but useful features such as line
numbering, automatic indentation, highlighting matching delimiters, and syntax-
directed text coloring.

Here is a list of some good programmer’s text editors and where to get them.

Macintosh OS X

• TextWrangler from Bare Bones Software is my first recommendation. This
is the latest incarnation of what used to be called BBEdit Lite, a stripped-
down version of their commercial product, BBEdit. It is a free download from
www.barebones.com.

• irEdit from Idea Resources is another nice editor without too many frills. You
can download it from idearesources.com, but after the 30-day trial period it costs
$25. Site licenses are available.

• JEdit (www.jedit.org) is a versatile, cross-platform, open-source editor written
in Java. The Macintosh version works fine, but isn’t as “Mac-like” as native Mac
applications.

• Xcode is a full-blown IDE (integrated development environment) from Apple
that includes a good programmer’s text editor plus a bewildering array of com-
mands for organizing, compiling, and debugging large software projects. If you
aren’t easily distracted by these other features, Xcode may be for you. Xcode
is provided free with every copy of OS X as part of the “developer tools.” It is
not installed on new machines by default, but you can easily install it from the
OS X installation disk.

• Emacs is a Unix text editor that has been ported to Mac OS X. Unix geeks love
it, but it isn’t easy to learn. A number of distributions are available, for various
versions of OS X.

Windows

• JEdit (www.jedit.org) is a versatile, cross-platform, open-source editor written
in Java. It seems to be fairly popular with Windows users.

• Notepad2 by Florian Balmer (www.flos-freeware.ch) is nice and simple—and
free.

• Notepad++ (notepad-plus-plus.org) is a free, open-source editor with more
features than Notepad2.

• TextPad by Helios Software (www.textpad.com) is a very nice editor that is
distributed as shareware (free to download and evaluate) for about $30.

• EditPlus by ES-Computing (www.editplus.com) is another full-featured editor
that is distributed as shareware ($35), with a 30-day free trial period.
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Linux

• If you’re a Unix/Linux geek then you probably already use either Vi or Emacs,
or can at least figure out where to get them.

Appendix: Installing Java

The Java compiler and virtual machine are already installed by default on all Macin-
tosh OS X computers. If your computer runs Windows or Linux, chances are you’ll
have to download and install Java yourself. The download is free from Oracle’s web
site, java.oracle.com.

Oracle’s web site is confusing because it offers so many different Java-related
products. You want the “standard edition” (SE), as opposed to the enterprise/server
(EE) or micro (ME) edition. Also, you want the Java “development kit” (JDK),
which includes the compiler, as opposed to the runtime environment (JRE), which
would only let you run programs that are already compiled. Don’t worry about
version numbers: Java’s version numbers are extremely confusing, and even the
oldest version on the web site will be much newer than what is required for the
projects in this manual.

You’ll want a fast internet connection for the download, which is about 80
megabytes for the most recent versions of Java. You’ll also need about 200 MB
of disk space. You should perform the installation from an account with adminis-
trator privileges.

The installation process is fairly self-explanatory; follow the instructions on the
web site. (You may need to hunt around a bit for the instructions. As of this writing,
the instructions for Windows are at http://download.oracle.com/javase/7/docs/
webnotes/install/windows/jdk-installation-windows.html.) Pay attention to the lo-
cation where the Java programs and files are installed.

After installing Java, you’ll still need to tell your command-line environment
where to find it. On either Windows or Unix/Linux, this information is stored
in a variable called PATH (or Path). Oracle’s installation instructions explain in
detail how to set the Path variable for various versions of Windows. For Windows
XP/2000, the procedure is to right-click on My Computer and select Properties,
then select the Advanced tab and then Environment Variables. Look for “Path”
under System variables, then click Edit. The Path variable is a long string of text
consisting of several directory paths separated by semicolons. What you want to do
is add to this list the directory where java.exe and javac.exe have been installed.
By default, that directory will be something like

C:\Program Files\Java\jdk1.6.0_02\bin

(though probably with a different version number). Unless this directory is already
part of the Path variable, add a semicolon followed by this directory path to the
end of what’s already in Path. Then click OK, launch or relaunch the Command
Prompt application, and try compiling and running your Hello program to test that
your computer now knows where to find Java.
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Project 2: Range of a Projectile

You’re now ready to learn how to use Java to manipulate numbers. Rather than
discussing this subject in the abstract, let’s again jump right in with an actual
program:

/* Program to calculate the range of a projectile,
neglecting air resistance. */

class RangeCalc {

RangeCalc(double speed, double angleInDegrees) {
double g, angleInRads, range; // declare three variables
g = 9.8; // SI units
angleInRads = angleInDegrees * Math.PI / 180;
range = 2 * speed * speed *

Math.sin(angleInRads) * Math.cos(angleInRads) / g;
System.out.println("Range = " + range + " meters");

}

public static void main(String[] arg) {
new RangeCalc(20,45); // launch at 20 m/s, 45 degrees

}
}

Exercise: Type this program into your text editor and save it as RangeCalc.java.
Compile and run the program as before, fixing any bugs if necessary. Write the
program’s output below, then try some different values of the launch speed and
angle, and again write down the output.

Notice that this program has the same general structure as the dynamic version
of Hello.java: a single class containing a constructor method and a main method,
with main simply calling the constructor. The program’s output is again displayed
using println. The program also includes comments of both types, and a few blank
lines for readability.

23
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Storing and Manipulating Numbers

The major new element in this program is its use of five numerical variables,
all of type double. Two of these (speed and angleInDegrees) are parameters of
the constructor method, while the other three (g, angleInRads, and range) are
declared and used within the body of the constructor. Notice that all five variables
have names chosen to convey their meanings—a practice that makes no difference
to Java, but greatly assists humans who may be trying to read and understand
the program. Also notice that all five variable names start with lower-case letters,
obeying the convention that only class names start with capitals.

Each of these five variables represents a storage location that can hold a real
number. Java actually provides two primitive data types for real numbers, depend-
ing on the range of values and precision that are required. In this course we’ll
always use type double, which stands for double precision. The allowed range of
values for this type extends to about ±10308, and the precision is about 15 decimal
digits—more than you’re ever likely to need.

Before you can use a variable in Java, you must declare it, in order to tell
Java what type of data the variable will store. To do this you simply put the
type name (e.g., double) in front of the variable name, as in the first statement in
the constructor method. This statement also shows how you can declare multiple
variables of the same type using a comma-separated list. Each variable must be
declared exactly once.

To assign a value to a variable (that is, to put some data into its storage location),
you use a statement with an equals sign, putting the variable name on the left and
the desired value on the right. So, for example, the statement “g = 9.8;” stores the
numerical value 9.8 in the variable called g. Although the RangeCalc program never
changes the value of g again, Java permits you to change the value of a variable as
many times as you like.

For brevity, Java also allows you to combine a variable’s declaration with its first
assignment statement. Thus,

double g; // declaration
g = 9.8; // initial assignment

can be replaced with simply

double g = 9.8; // combined declaration and initial assignment

Most people, most of the time, prefer the latter form—but the choice is really a
matter of taste.

Exercise: Delete the declaration line from the constructor method of RangeCalc,
and instead add the word double to declare each of the three variables in its as-
signment statement.

The value assigned to g (namely, 9.8) is what we call a literal number. By con-
trast, the values assigned to angleInRads and range are computed from formulas,
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also called expressions. Java lets you put an expression just about anywhere you’re
allowed to put literal value. Notice that multiplication and division are denoted by
the symbols * and /. (You can guess the symbols for addition and subtraction.)
These expressions also make use of a built-in Java class called Math, which provides
the static variable Math.PI and the static methods Math.sin and Math.cos. These
are our first examples of methods that return a value, in this case of type double;
calls to such methods can appear in expressions anywhere a variable of that type is
allowed. In general, whenever you want to access a static variable or method that
belongs to a different class, you use a dot (that is, a period or decimal point) to
combine the class name with the variable or method name. Other useful methods
in the Math class are summarized on the Quick Reference Sheet provided with this
manual. One of these is Math.pow(x,y) for raising x to the power y, which is espe-
cially useful since Java provides no exponentiation symbol (though for small integer
powers it’s better to just multiply).

The particular expressions used to compute angleInRads and range are no great
mystery. In conventional notation, these expressions are

θrads = θdegrees ·
π

180
and range =

2|~v0|2 sin θ cos θ

g
. (2.1)

The latter formula is found in most introductory physics textbooks, or you may
wish to derive it from the familiar equations for projectile motion with constant
acceleration. The formula assumes that the launch point and landing point are at
the same height.

Exercise: Use the range formula and a pocket calculator to calculate the range of
a projectile launched at an initial speed of 20 m/s and an initial angle of 45◦. Write
the result here, and compare to the result printed by Java.

The code that calculates the range also illustrates how it’s perfectly legal to split
an expression into two lines. Java lets you put extra spaces, tabs, and new lines
anywhere you want, except in the middle of a word or a quoted string or a symbol
combination such as //. Spaces around symbols such as = and + are optional, but
are usually a good idea to make the code easier to read.

Exercise: In the space below, write a line of Java code to calculate the position (y)
at time t of a projectile thrown vertically from the origin with an initial velocity of
vy0. Use the standard formula from introductory physics, y = vy0t− 1

2
gt2. (In Java,

as in standard math notation, multiplication and division are normally performed
before addition and subtraction. You can use parentheses when you need to override
this rule, or just to make the order of operations more clear to human readers.)
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Input and Output Refinements

The next few exercises ask you to modify and extend the RangeCalc program to
produce more refined output, and to accept input when it is run.

Exercise: Modify the constructor method to print not just the range, but also the
speed and angle that were supplied. The output should look something like this:

Speed = 20.0 m/s; Angle = 60.0 degrees; Range = 35.35 meters

You can do this either with a single long println statement, or (more elegantly)
with a couple of print statements followed by a println.

In the example output that I just quoted, I conveniently rounded the range to
two decimal places in order to fit the line on the page. You’re probably getting
tired of seeing so many insignificant figures yourself. Fortunately, Java comes with
a built-in class called DecimalFormat that can format a number for output in almost
any way you like.

To use DecimalFormat, you first have to put the line

import java.text.DecimalFormat;

above the class declaration near the top of your program. Java’s 4000 or so built-
in classes are grouped into packages; this line of code tells Java to look in the
java.text package for the DecimalFormat class. (The System, String, and Math
classes are in the java.lang package, which is automatically available without
using import.) Next, you have to create a DecimalFormat object and initialize it
to produce the type of output you want. To create a format that rounds a number
to two decimal places, put the following line of code into your constructor method,
somewhere before you start printing the output:

DecimalFormat twoDecPlaces = new DecimalFormat("0.00");

The string "0.00" is a pattern or template that describes the format we want. No-
tice that in addition to creating the DecimalFormat object with the new operator,
I’ve also assigned it to a variable named twoDecPlaces (declared as type Decimal-
Format, of course). The name doesn’t have to be twoDecPlaces, but you do need
a name; otherwise, you would have no way of using it later.

The DecimalFormat class includes lots of methods, but we need only one of
them: format, which converts any double variable into a String that is formatted
according to our pattern. To call the format method using our particular format,
you could say something like:

aString = twoDecPlaces.format(aDouble);

Notice that instead of putting the class name before the dot (as in Math.sin), you
need to use the name of the particular instance of the class. This is because format
is not a static method—it needs to access information that belongs only to our
particular DecimalFormat, not all DecimalFormats. In the RangeCalc program,
though, there’s no need to store the formatted string in a variable. Instead you can
just wrap twoDecPlaces.format() around range inside the println statement.
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Exercise: Modify your RangeCalc program as just described, to round all printed
output to two decimal places. Check that you get the desired output.

Next, suppose you’d like to choose the projectile’s initial speed and angle when
you run the program, rather than before you compile it. In modern GUI (graphical-
user-interface) software, you would normally do this by interacting with some type
of graphical control, such as a scrollbar. You’ll learn how to set up scrollbars in
Project 4; for now, I’ll explain a simpler method.

Whenever you launch a Java program using the java command, you can option-
ally provide the program with additional information by typing that information
after the program’s name, before hitting return. Let’s set up the RangeCalc pro-
gram to accept values for the speed and angle in this way, so you could type

java RangeCalc 20 45

to set the speed to 20 m/s and the angle to 45◦. The values 20 and 45 are called
command-line arguments, and are automatically passed as parameters to the
program’s main method. If the parameter of main is called arg (the name is actually
arbitrary), then you can access the first command-line argument as arg[0], the
second argument as arg[1], and so on. (The arg object is actually a list of values,
called an array. You’ll learn all about arrays in a future project. For now, just
note that square brackets are used to access the entries in the list, and that the first
entry is numbered 0, not 1.)

Unfortunately, you can’t get the first command-line argument into the variable
speed by saying simply

double speed = arg[0]; // doesn’t work

This doesn’t work because arg[0] is stored as a string of text characters (which
we hope are numerals), not as a number. You just learned how to use Decimal-
Format to convert a number to a string of digits; to do the reverse, you can use the
Double.parseDouble method:

double speed = Double.parseDouble(arg[0]);

The Double class (note the capital D) provides a variety of methods for dealing
with variables of type double. It’s in the java.lang package, so you don’t need to
import it.

Exercise: Add this line to your main method, and a similar line to grab the angle
from the next command-line argument. Then pass the speed and angle variables as
parameters to the constructor method, instead of using literal constants. Compile
your program and test it for several values of the speed and angle. For a given
speed, what angle yields the maximum range?

Although entering numbers as command-line arguments in this way seems easy
enough, the process is fraught with peril—as you may have already learned.
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Exercise: What happens now if you include nonnumeric characters (such as letters)
in your command-line arguments, instead of just digits?

Exercise: What happens now if you omit one or both command-line arguments
when you run the program:

As you can see, your program doesn’t handle unexpected input very gracefully. A
more robust approach would be to provide a default value of each variable whenever
the command line doesn’t contain a valid value. Here is a chunk of code that
accomplishes this for the first argument:

double speed = 10; // default value to use if...
try {speed = Double.parseDouble(arg[0]);}
catch (ArrayIndexOutOfBoundsException e) {} // ...no arg
catch (NumberFormatException e) {} // ...or invalid arg

The try-catch construction is Java’s handy way of trapping and handling what
are called exceptions. But the empty sets of curly braces after each catch say
to simply do nothing in the case of either error. This is fine since we’ve already
supplied a default value of speed. Optionally, you could put println statements
inside the empty curly braces to notify the user that the input was invalid so the
default value was used.

Exercise: Modify your program to handle these error conditions in this way, for
both the speed and angle arguments. Check that it works as expected, whether or
not you supply valid input on the command line.

Conditions and Loops

Sometimes you want a program to execute some code only under a certain condition.
Here’s a rather trivial example of how to do this in Java:

if (range >= 40) {
System.out.println("Nice throw!");

} else {
System.out.println("Try again.");

}

Exercise: Add this code to the RangeCalc method in your program, right after
the lines that print the numerical data. Test your program to be sure that the
appropriate phrase is printed in either case.

The general form of the if-else construction should be fairly clear. The condi-
tion to be tested is always placed in parentheses after the word if. If the condition
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holds, the code in the next set of curly braces is executed. Any group of statements
enclosed in curly braces like this is called a block; the curly braces are actually
optional when the block contains only one statement. If the condition does not
hold, the block of code following else is executed instead. The else clause can be
omitted, in which case the whole statement does nothing if the condition doesn’t
hold.

The symbol combination >= is called a comparison operator, and its meaning
should be apparent by now. Java’s six comparison operators are

> >= < <= == !=

with the last two meaning equals and does not equal, respectively. You can also
modify and combine comparisons using && for and, || for or, and ! for not.

Question: Why do you think Java uses a double == sign for the “equals” compar-
ison operator, instead of a single = sign?

One of the most powerful (and necessary) features of computer languages is the
ability to execute a block of code repeatedly. Such a construction is called a loop.
Suppose, for instance, that you want your program to calculate the range for all
angles between 0◦ and 90◦, in 5◦ increments. You can do this using a while loop,
as follows:

double angle = 0;
while (angle <= 90) {

new RangeCalc(speed,angle);
angle += 5;

}

The block of code within the curly braces is then executed over and over again,
as long as the condition (angle <= 90) holds. The statement “angle += 5” is
a shortcut for “angle = angle + 5”; the shortcut operators -=, *=, and /= work
similarly.

Exercise: Put this block of code into your program’s main method, replacing
the code to extract the angle from the second command-line argument. (Instead
of simply deleting the unneeded code, just put the comment symbols /* and */
around it. This is called commenting-out the code.) Your program should now
print out a whole list of range values. If you haven’t noticed a pattern in the values
already, you should notice one now. What is the pattern?
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Exercise: Most programmers consider it bad practice to put too much code into
the main method. Therefore, modify your program to put a while loop in the
constructor method instead of in main. The program’s output should be the same
as before. (Hint: The constructor method should now have only one parameter
instead of two.)

An alternative to the while loop, useful when the loop is controlled by a single
variable that gets changed only at the end of the block, is the for loop. Here’s a
for loop that’s equivalent to the while loop shown above:

for (double angle = 0; angle <= 90; angle += 5) {
// code to be executed for each angle goes here

}

Within the parentheses following for you have to put three statements, separated
by semicolons: an initialization statement for the variable that controls the loop;
a condition to be tested before each time through the loop (such that the loop
terminates when the condition no longer holds); and a statement to be executed at
the end of each loop iteration, normally incrementing the value of the loop variable.
Although the for construction is less flexible than while, and takes a little more
getting used to, most programmers prefer it due to its brevity.

Exercise: Comment-out the while loop in your program and replace it with a for
loop. Check that you get the same output as before.

Your RangeCalc program is now complete. Before turning it in, please be sure
that the formatting of the code is consistent and readable—and that it includes
plenty of comments.

Exercise: Describe three different uses of parentheses in Java. (Pick three that
are as different as possible.)

Graphics!

Getting tired of seeing your program’s output only as text? Much of the usefulness
of computers is in their ability to help us visualize what’s going on.

Java comes with a sophisticated collection of built-in classes for displaying graph-
ics on your computer screen. You’ll learn to use some of these classes directly in
future projects. What we really need for now, though, is an easy-to-use class that
plots points on a graph. I’ve written such a class, called Plot; you should have a
copy of its source code, Plot.java, in your java directory. (If you don’t have a
copy, ask your instructor how to get it or download it from the author’s web site.)
Open this source file in your text editor now, and briefly scan its contents. A few
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lines from the bottom, within a method called printThePlot, you should see the
following line:

g.drawString(plotTitle + ", printed by XYZ on " + today,0,-10);

Edit this line to replace XYZ with your name or initials. Then save the file and
compile it. You won’t need to modify this file again.

The Plot class is not particularly fancy, but is relatively easy to use and un-
derstand. To create a new Plot object you call the constructor method, which has
seven parameters. Here is an example:

Plot myPlot = new Plot("Plot of y vs. x",0,10,1,-1.5,1.5,0.5);

The first parameter is a string to put at the top of the plot window as a title. The
next two parameters are the minimum and maximum values for the plot’s horizontal
coordinate, and the fourth parameter is the interval for this coordinate at which to
draw grid lines. The last three parameters are the minimum, maximum, and grid
interval for the vertical axis. All of the numerical parameters are of type double.

After creating a Plot object, you add points to it with the addPoint method.
This method takes two parameters of type double, for the point’s horizontal and
vertical coordinates, respectively. For example,

myPlot.addPoint(4.2,0.42);

The Plot class also provides methods for changing the size, shape, and color of the
plotted points, but you won’t need any of these features for this project.

Exercise: Create a new Java program called RangePlot, which calculates and plots
the range of a projectile (using the same formulas as in RangeCalc) as a function
of angle, for a given launch speed of 20 m/s. Use the same program outline as in
RangeCalc, with most of the code, including the loop, in the constructor method.
Use either a while loop or a for loop to plot points for all angles from 0◦ to 90◦, in
1◦ increments. Spend some time fine-tuning the program until both the code and
the plot look reasonably nice. Be sure to include a few comments in your code. Use
the plot’s Print button to print it, and label the printed page with any important
information that isn’t already on it, such as the scales and units of the axes and
the value used for the launch speed.

Hey, wait a minute! Why does your RangePlot program keep running, long
after the code that you wrote has finished executing? Notice that the plot window
doesn’t disappear, and you don’t get a new prompt in the command window, until
you click on the window’s close button, or use the Quit menu command (Mac OS
only), or type control-c in the command window. For that matter, where is the
code that responds to mouse events such as clicking buttons and moving the plot
window across the screen?

The answer is that the Java graphics classes used by the Plot class are doing
an awful lot behind the scenes. Most importantly, these classes set up a separate
thread of execution, a sort of separate mini-process that runs in parallel with the
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thread that executes your code. (On a computer with more than one processor chip,
multiple threads can literally run at the same time. On a computer with just one
processor, the operating system normally switches back and forth between threads
so fast that to a human, they might as well be running simultaneously.) So even
when the thread that executes your code has nothing left to do, the background
graphics thread is still running, responding to certain types of mouse events. In
Project 5 you’ll learn how to set up your own threads.

Exercise: If you haven’t already, make the initial speed in your RangePlot program
a parameter of the constructor method, so you can use whatever value you like in
your new statement. Then add a second new statement with a different value of
the initial speed. Did the second data set appear in the same plot window or in a
different one? Explain why.

There’s actually an easy way to change the behavior you just discovered, as
described in the next exercise.

Exercise: Move the line of code that declares and initializes the Plot object to
the space above the constructor method, so it’s inside the class RangePlot but not
inside any method. Then add the adjective static at the beginning of this line of
code. Compile and run your program, and describe the results.

In the preceding exercise you changed your Plot from a local variable to a class
variable. A local variable is declared inside a method; it gets created whenever the
method is called, and it cannot be accessed from other methods. Local variables
are the easiest to understand, so you should use them whenever possible. But if you
need to share a variable between two or more methods (or preserve its data over
multiple calls to the same method), you can declare it at the class level, outside of
any method; it is then an instance variable that gets created when you create an
instance of the class (using new), and that can be accessed from any of the class’s
nonstatic methods. (Since RangePlot’s only nonstatic method is its constructor
method, there’s no point in giving it any instance variables.) However, if you
declare a variable at the class level with the word static, then it becomes a class
variable—which gets created once and for all when the code for that class is loaded
into the computer’s memory. (Also, a class variable is accessible from any of the
class’s methods, even static ones.) The differences between local, instance, and
class variables are extremely important in Java, and we’ll come back to this topic
(called variable scope) repeatedly.

As I said, the Plot class isn’t particularly fancy. It doesn’t let you label the
axes or interactively resize the plot or zoom in or out. But it’s easy to use and it
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gets the job done. You’ll be using it repeatedly during this course. Should you ever
need a fancier plotting class, others are available.

Your RangePlot program is now finished. Please clean up its code if necessary,
to make the formatting consistent and add sufficient comments.

Exercise: As a review, list all the Java language words that you’ve used so far in
your programs. (Include only language words, not names of classes, methods, or
variables.)

Exercise: Now list all the built-in Java class names that you’ve used so far.

Postscript: You’re now ready to understand the construction

System.out.println()

which I never bothered to explain in Project 1. System is a built-in class that pro-
vides several important utility functions. System.out is a (static) class variable be-
longing to the System class, whose type is another built-in class called PrintStream.
A PrintStream is a type of object that allows information to be converted to text
and “printed” to some output device (or file). The System.out object is set up by
default to send the output to your command window (though the destination can be
changed if you ever need to). The PrintStream class provides print and println
methods for printing strings and other objects. Thus, System.out.println() calls
the println method of the out object of the System class.

You may also be wondering why it’s legal to say something like
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System.out.println("Range = " + range + " meters");

when range is a double, not a String. The answer is that Java is smart enough
to convert any data type to a string, if it appears in a context where a string is ex-
pected. So range gets converted to a string automatically (using a default format),
and this string is then concatenated with the two others to form the string that
gets passed to println. While this automatic conversion is certainly convenient, it
can also be confusing. You may be reassured to learn that Java has very few such
ad hoc features. (If you like features like this, you’ll love the Perl programming
language.)
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Project 3: Adding Sine Waves

The previous project introduced the essential low-level building blocks of a computer
program: variables, expressions, conditions, and loops. In Java, these building
blocks are grouped at a higher level into methods and classes to make a complete
program.

The main purpose of this project is to give you more practice at assembling a
program out of its basic components. You’ll also learn a couple of new variations on
those components, and you’ll make the computer work quite a bit harder, doing cal-
culations that are much too lengthy to perform by hand. The results will illustrate
a deep mathematical principle that comes up over and over again in physics.

One Sine Wave

Exercise: Write a Java program called Wave.java which plots a graph of the
function y = sinx, where x ranges from 0 to 4π. (Note that x is in radians. Don’t
bother to start with degrees and convert.) Use our standard program outline, with
all the interesting stuff in the constructor method and a main method that merely
calls the constructor. Use a for loop to determine the set of x values to plot. Spend
a bit of time adjusting the scales and grid intervals on the plot so it looks nice.

Exercise: The Plot class provides several additional methods that give you more
control over the plot’s appearance. Referring to your Quick Reference sheet for ex-
amples, try out each of the following, one at a time: setPointSize, setPointShape,
setColor, and setConnected. These settings affect subsequent plotting; they have
no effect on points that have already been added to the plot. Print one version of
your graph showing a set of non-default options, and attach the printout to your
report. As always, label the printout by hand to indicate exactly what is being
plotted (including the range of values for each axis).

Two Sine Waves

Exercise: Now modify your Wave program to plot instead the following function,
formed by adding two sine functions of different wavelengths:

y = sinx +
1
3

sin(3x). (3.1)

35
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Make a printout of the plot, and show with some additional sketching how its shape
comes about by adding the two terms. (Sketch at least a portion of the separate
functions sinx and 1

3
sin(3x), and point out where they add and where they cancel.)

For all but the simplest functions, it’s a good idea in Java to put the function
definition into its own method. In fact, any method that returns a value (i.e., is
not void) is also called a function. To define a function for our sum of two sine
functions, you can use the following code:

double wave1(double x) {
double y = Math.sin(x) + Math.sin(3*x)/3;
return y;

}

Notice that in place of “void”, a function definition begins with the type of value
that it returns (in this case, double). The return statement tells Java what value
to return. You can now use the function wave1(x) in any expression where a double
value is expected—for instance, in a call to Plot.addPoint.

Exercise: Modify your Wave program to move the function definition into its own
method, as just described. Put this function definition in between the constructor
and main methods. Check that the plotted graph is unchanged.

Fourier Series

If you add up sine functions of shorter and shorter wavelengths, using just the right
coefficients on each, you can produce periodic functions with various regular shapes.
One example is the series

y = sinx +
1
3

sin(3x) +
1
5

sin(5x) + · · · =
X

odd k

sin(kx)
k

. (3.2)

This is an example of a Fourier series. Adding up more than a few terms in
the series by hand is quite a chore, but a computer will add up hundreds of terms
without complaining!

Although you could use a variable of type double for the integer k that appears
in formula 3.2, it’s better to tell Java that k is an exact integer rather than a real
number. Java provides several different integer data types, with different maximum
values (determined by the amount of storage space used). For most purposes you
can get by with the int data type, which can store integers in the range of about
±2× 109.

Exercise: Modify the definition of your wave1 function to add up an arbitrary
number of terms in the series 3.2. Use a for loop contolled by a variable k of type
int, being sure to sum only over odd values of k. Cut off the sum at a maximum
value kMax. Try several values of kMax ranging from 5 up to a few hundred. For
large values of kMax, you’ll also want to make sure that your code plots the function
at x values that are spaced close enough together.
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Exercise: Modify your program to make kmax a command-line argument, so you
won’t have to recompile the code every time you want to change kMax. To convert
the typed digits to an integer, use the built-in Integer.parseInt method (rather
than Double.parseDouble). You’ll need to pass kMax as a parameter (of type int)
from your main method to your constructor method, then pass it as a (second)
parameter from the constructor to the wave1 function. After all this is working,
explore some more values of kMax and print out a plot for kMax = 100.

Question: As you’ve seen by now, this Fourier series approaches the form of a
“square wave” in the limit kMax →∞. What is the approximate value of y, in this
limit, on the positive portion of the square wave? (Please obtain an answer that’s
accurate to at least three significant figures, and explain how you know the answer
is this accurate.)

Other Shapes

Exercise: Add a second function definition to your Wave program called wave2,
which is the same as wave1 except that it sums over all integer k values, even as
well as odd. Add code to plot this function in a separate window (don’t delete the
code that plots wave1). Run your program for several values of kMax and describe
the results.

Here is another Fourier series that produces a nice symmetrical shape:

y = sinx− 1
9

sin(3x) +
1
25

sin(5x) + · · · =
X

odd k

(−1)(k−1)/2 · sin(kx)
k2

. (3.3)

Exercise: Add a wave3 function to your program to calculate series 3.3. Also add
code to plot this function, in the third window. Again, describe the results.
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Question: You’ve probably noticed that the Fourier series for wave3 converges to
its final shape much more rapidly than the series for wave1 and wave2—so you can
obtain a good graph of the approximate final shape using a much smaller value of
kMax. Why is this? That is, what feature of wave3 makes it converge more rapidly?

Exercise: Add a fourth wave function, and a fourth plot, to your Wave program.
This time, make up your own formula for the coefficients of the sine functions in
the Fourier series. Spend some time trying various formulas until you find one that
you like. Then clean up the code of your Wave program (if necessary), making sure
it has plenty of comments.

There is a mathematical theorem that states that any periodic function, with
period 2π, can be broken down into an infinite sum of sine and cosine functions of
the form

°
a1 sinx + a2 sin(2x) + · · ·

¢
+

°
b1 cosx + b2 cos(2x) + · · ·

¢
, (3.4)

for some set of coefficients ak and bk. In this project you’ve used only sine terms (all
the bk’s have been zero), but cosine terms are also needed if the periodic function
isn’t odd under the operation x → −x. For most periodic functions there is no
simple pattern for the coefficients ak and bk, but there is a formula for computing
these coefficients (one at a time) from the periodic function that one wishes to con-
struct. Determining the coefficients to construct a given function is called Fourier
analysis.

Fourier series and Fourier analysis have endless applications in physics. The
functions of interest could be audio signals (sound waves), electrical signals, elec-
tromagnetic fields, quantum mechanical wavefunctions, or any other functions that
represent periodic phenomena. Breaking down a complex signal into its sinusoidal
components gives us a simple and powerful tool for understanding these phenomena.
In the case of audio signals, the first sine wave in the series is called the fundamen-
tal, while the higher-frequency waves are called overtones. The relative strengths
of the overtones determine the tone quality of a musical note.

Exercise: As a review, list all the Java language words used in your Wave program.
(Include only language words, not the names of classes, methods, or variables.)

Exercise: List all the built-in Java class names used in your Wave program.
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Project 4: Simulating Projectile Motion

You now know enough Java to write your first simulation program.

The idea of a simulation is to program the laws of physics into the computer,
and then let the computer calculate what happens as a function of time, step by
step into the future. (The range calculation in Project 2 wasn’t really a simulation
because we merely programmed in a formula for the final answer. In more compli-
cated situations no such formula exists, so we need to go back to the basic laws of
physics.)

In this project you’ll simulate the motion of a projectile, first in one dimension
and then in two dimensions. When the motion is purely vertical, the state of the
projectile is defined by its position, y, and its velocity, vy. These quantities are
related by

vy =
dy

dt
≈ ∆y

∆t
=

yfinal − yinitial

∆t
. (4.1)

In a computer simulation, we already know the current value of y and want to
predict the future value. So let’s solve this equation for yfinal:

yfinal ≈ yinitial + vy ∆t. (4.2)

Similarly, we can predict the future value of vy if we know the current value as well
as the acceleration:

vy,final ≈ vy,initial + ay ∆t. (4.3)

These equations are valid for any moving object. For a projectile moving near
earth’s surface without air resistance, ay = −g (taking the +y direction to be
upward). In general, ay is given by Newton’s second law,

ay =
P

Fy

m
, (4.4)

where m is the object’s mass and the various forces can depend on y, vy, or both.

In a computer simulation of one-dimensional motion, the idea is to start with
the state of the particle at t = 0, then use equations 4.2 through 4.4 to calculate
y and vy at t = ∆t, then repeat the calculation for the next time interval, and the
next, and so on. Fortunately, computers don’t mind doing repetitive calculations.

But there’s one remaining issue to address before we try to program these equa-
tions into a computer. Equation 4.2 is ambiguous regarding which value of vy

appears on the right-hand side. Should we use the initial value, or the final value,
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or some intermediate value? In the limit ∆t → 0 it wouldn’t matter, but for any
nonzero value of ∆t, some choices give more accurate results than others. The eas-
iest choice is to use the initial value of vy, since we already know this value without
any further computation. Similarly, the simplest choice in equation 4.3 is to use the
initial value of ay on the right-hand side.

With these choices, we can use the following Java code to simulate projectile
motion in one dimension without air resistance:

while (y > 0) {
ay = -g;
y += vy * dt; // use old vy to calculate new y
vy += ay * dt; // use old ay to calculate new vy
t += dt;

}

This simple procedure is called the Euler algorithm, after the mathematician
Leonard Euler (pronounced “oiler”). As we’ll see, it is only one of many algorithms
that give correct results in the limit ∆t→ 0.

Exercise: Write a Java program called Projectile1 to simulate the motion of a
projectile moving in one dimension, using the Euler algorithm as written in the code
fragment above. Follow the same program outline as in the previous two projects,
putting most of the code in the constructor method (and as little code as possible
in main). Use a time step (dt) of 0.1 second. Start the projectile at time zero with
a height of 10 meters and a velocity of zero. Notice that I’ve written the loop to
terminate when the particle is no longer above y = 0. After the loop terminates,
have the program print out the time and the particle’s velocity. Test your program
and check that its results are approximately what you would expect. (Show your
calculation of what to expect in the space below.)

Exercise: Text output is boring, so modify your Projectile1 program to produce
a graph of y vs. t for the projectile’s motion. Describe how you modified the code
in the space below. When the program is working correctly, print your graph and
label it appropriately.
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Exercise: The time and velocity printed by your program do not apply at the
instant when the projectile reaches y = 0, because that instant occurs somewhere
in the middle of the final time interval. Add some code after the end of the loop
to estimate the time when the projectile actually reaches y = 0. (Hint: Use the
final values of y and vy to make your estimate. The improved time estimate still
won’t be exact, but it will be much more accurate than what your program has
been printing so far.) Have the program print out the improved value of t instead,
as well as an improved estimate of the velocity at this time. Write your new code
and your new results in the space below. Please have your instructor check your
answer to this exercise before you go on to the next.

Exercise: The inaccuracy caused by the nonzero size of dt is called truncation
error. You can reduce the size of the truncation error by making dt smaller. Try it!
How small must dt be to give results that are accurate to four significant figures?
Justify your answer. (Warning: If you make dt too small, your program will take
a long time to run. If necessary, you can interrupt it by typing control-c in the
command application.)

Air Resistance

There’s not much point in writing a computer simulation when you can calculate
the exact answer so easily. So let’s make the problem more difficult by adding
some air resistance. At normal speeds, the force of air resistance is approximately
proportional to the square of the projectile’s velocity. This is because a faster
projectile not only collides with more air molecules per unit time, but also imparts
more momentum to each molecule it hits. So we can write the magnitude of the air
force as

|~Fair| = c|~v|2, (4.5)

for some constant c that will depend on the size and shape of the object and the
density of the air. The direction of the air force is always directly opposite to the
direction of ~v (at least for a symmetrical, nonspinning projectile).
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Exercise: Assuming that the motion is purely in the y direction, write down a
formula for the y component of the air force, in terms of vy. Your formula should
have the correct sign for both possible signs of vy. (Hint: Use an absolute value
function.)

Exercise: Now modify your Projectile1 program to include air resistance. Define
a new constant called drag, equal to the coefficient c in equation 4.5 divided by the
projectile’s mass. Then add a term for air resistance to the line that calculates
ay. Java’s absolute value function is called Math.abs(). Run the program for the
following values of drag: 0 (to check that you get the same results as before), 0.01,
0.1, and 1.0. Use the same initial conditions as before, with a time step small
enough to give about four significant figures. Write down the results for the time
of flight and final speed below.

Exercise: What are the SI units of the drag constant in your program?

Question: How can you tell that your program is accurate to about four significant
figures, when you no longer have an “exact” result to compare to?

Exercise: Modify your Projectile1 program to draw a second plot showing the
velocity as a function of time. Run it again with drag equal to 1.0, and print the
velocity graph. Discuss the results briefly.
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Exercise: When the projectile is no longer accelerating, the forces acting on it
must be in balance. Use this fact to calculate your projectile’s terminal speed by
hand, and compare to the result of your computer simulation.

A Better Algorithm

Today’s computers are fast enough that so far, you shouldn’t have had to wait too
long for answers accurate to four signficant figures. Still, the Euler algorithm is
sufficiently inaccurate that you’ve needed to use pretty small values of dt, making
the calculation rather lengthy. Fortunately, it isn’t hard to improve the Euler
algorithm.

Figure 4.1. The derivative of a function at the middle of an interval (point B) is
a much better approximation to the average slope (AC) than the derivative at the
beginning of the interval (point A).

Remember that the Euler algorithm uses the values of vy and ay at the beginning
of the time interval to estimate the changes in the position and velocity, respectively.
A much better approximation would be to instead use the values of vy and ay at
the middle of the time interval (see Figure 4.1). Unfortunately, these values are not
yet known. But even a rough estimate of these values should be better than none
at all. Here is an improved algorithm that uses such a rough estimate:

1. Use the values of vy and ay at the beginning of the interval to estimate the
position and velocity at the middle of the time interval.

2. Use the estimated position and velocity at the middle of the interval to calculate
an estimated acceleration at the middle of the interval.
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3. Use the estimated vy and ay at the middle of the interval to calculate the changes
in y and vy over the whole interval.

This procedure is called the Euler-Richardson algorithm, also known as the
second-order Runge-Kutta algorithm.

Here is an implementation of the Euler-Richardson algorithm in Java for a pro-
jectile moving in one dimension, without air resistance:

while (y > 0) {
ay = -g; // ay at beginning of interval
ymid = y + vy * 0.5 * dt; // y at middle of interval
vymid = vy + ay * 0.5 * dt; // vy at middle of interval
aymid = -g; // ay at middle of interval
y += vymid * dt;
vy += aymid * dt;
t += dt;

}

The acceleration calculations in this example aren’t very interesting, because ay

doesn’t depend on y or vy. Still, the basic idea is to estimate y, vy, and ay in the
middle of the interval and then use these values to update y and vy. Although each
step of the Euler-Richardson algorithm requires roughly twice as much calculation
as the original Euler algorithm, it is usually many times more accurate and therefore
allows us to use a much larger time interval.

Exercise: Write down the correct modifications to the lines that calculate ay and
aymid, for a projectile falling with air resistance. (Be careful to use the correct
velocity value when calculating aymid!)

Exercise: One of the lines in the Euler-Richardson implementation above is not
needed, even when there’s air resistance. Which line is it, and why do you think I
included it if it isn’t needed?

Exercise: Modify your Projectile1 program to use the Euler-Richardson algo-
rithm. To declare all the new variables, you can either specify the type when each
variable is first used, or declare them all at once in a line such as

double ymid, vymid, aymid;

For a drag constant of 0.1 and the same initial conditions as before (y = 10 m,
vy = 0), how small must you now make dt to get answers accurate to four significant
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figures? (You should find that dt can now be significantly larger than before. If
this isn’t what you find, there’s probably an error in your implementation of the
Euler-Richardson algorithm.)

Your Projectile1 program is now finished. Please make sure that it contains
plenty of comments and is well-enough formatted to be easily legible to human
readers. Also, if you haven’t already, have the program round all printed numbers
to three decimal places.

Two-Dimensional Projectile Motion

Simulating projectile motion is only slightly more difficult in two dimensions than
in one. To do so you’ll need an x variable for every y variable, and about twice
as many lines of code to initialize these variables and update them within the
simulation loop. To calculate the x and y components of the drag force, it’s helpful
to draw a picture (see figure 4.2).

Figure 4.2. Assuming that the drag force is always opposite to the velocity vector,
the similar triangles in this diagram can be used to express the force components in
terms of the velocity components.

Exercise: Finish labeling this picture, and use it to derive formulas for the x and
y components of the drag force, written in terms of vx and vy. The magnitude of
the drag force is again given by equation 4.5. (Hint: This is not an easy exercise
if you’ve never done this sort of thing before. Do not simply guess the answers!
You should find that the correct formula for Fx involves both vx and vy. Have your
instructor check your answers before you go on.)
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Exercise: In the space below, write the code to implement the Euler-Richardson
algorithm for the motion of a projectile in two dimensions, with air resistance.
As mentioned above, for every line that calculates a y component, you’ll need a
corresponding line for the x component. Think carefully about the correct order
of these lines, remembering that to calculate the acceleration at the middle of the
interval, you need to know both vx and vy at the middle.

Exercise: Write a program called Projectile2 to simulate projectile motion in two
dimensions. Use the Euler-Richardson algorithm, with a time step of 0.01 s. Rather
than putting the simulation code into the constructor method, put it into a void
method called launch, with three parameters of type double: the drag constant,
the launch speed, and the launch angle in degrees. To simplify the program, take
the launch position to be x = y = 0 in all cases. The constructor method should
then simply call the launch method several times, with different parameters. At the
end of the launch method, have the program calculate the time when the projectile
crosses y = 0 and the value of x at this time, i.e., the range of the projectile. The
program should print out the launch speed, angle, time of flight, and range.

Exercise: Add a Plot of y vs. x to your Projectile2 program, using the same
scale for both coordinates. Think carefully about where in the code this Plot
should be declared and initialized. Recall that a local variable is declared inside a
method and is created whenever that method is called, while an instance variable
is declared outside of any method and is created when you use new to create a new
instance of its class. Which choice lets you plot multiple trajectories on the same
graph? Explain fully.
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Exercise: Check that your Projectile2 program gives the expected results when
there is no air resistance, and briefly summarize this check.

A Graphical User Interface

Are you tired of having to recompile your programs every time you want to change
one of the constants or initial conditions? In the previous two projects you avoided
this inconvenience by using command-line arguments to specify certain values. But
this technique still required you to rerun the program for every new set of arguments.
If you want to plot several runs on the same graph, you could instead have the
program repeatedly prompt you to type a set of constants, starting the simulation
over each time. But nowadays almost all computer software instead uses graphical
user interface, or GUI, elements to accept user input from a mouse or other
pointing device.

Creating a graphical user interface for a computer program can be a lot of work.
You need to plan out exactly how broad a set of options to offer the user who runs
your program, then design a set of graphical controls (buttons, scrollbars, menus,
etc.) to display those options, and finally write the code to draw the controls and
accept input from them. Fortunately, Java has an extensive set of built-in classes
to handle GUI’s.

Here is a short program that demonstrates some of Java’s basic GUI classes:

import java.awt.*;

class HelloButton {

HelloButton() {
Frame myFrame = new Frame("See the button!");
Panel myPanel = new Panel();
Button myButton = new Button("Press me!");
myFrame.add(myPanel);
myPanel.add(myButton);
myFrame.pack();
myFrame.setVisible(true);

}

public static void main(String[] arg) {
new HelloButton();

}
}
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Try typing in this program now, save it as HelloButton.java, and compile and run
it. Don’t be disappointed when clicking on the button produces no effect. Clicking
the window’s close button has no effect either, so to quit the program you’ll have to
use the Quit menu command (on a Macintosh) or type control-c in the command
window.

Java’s basic GUI classes live in a package called java.awt, where AWT stands
for abstract windowing toolkit. The import instruction in HelloButton tells
the compiler where to find these classes. This particular program uses just three
AWT classes: Frame, Panel, and Button. A Frame is just a window, complete with
a title bar that displays whatever string you supply to the constructor method. A
Panel is an invisible rectangular “container” for holding GUI components, which
you can place within a Frame or within another Panel. A Button is a standard
push-button that normally produces some effect when you click it. Notice how the
Frame and Panel classes provide add methods that allow you to insert things into
them. (You could add the Button directly to the Frame, skipping the intermediate
Panel, but in more complicated examples a Panel is usually needed to produce the
desired arrangement of GUI elements.) The pack method sizes the Frame to be
just large enough to hold everything in it, while the setVisible method causes the
Frame and its contents to be displayed on your screen.

Now let’s make the button do something when it’s pressed. Just below the line
that creates the Button object, add the following code:

myButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

System.out.println("Hello, world!");
}

});

(Be careful with all the parentheses and curly braces.) This code uses one of Java’s
trickiest features, an anonymous inner class, which I won’t try to explain here.
Suffice it to say that the actionPerformed method will automatically be called
when the button is pressed. The ActionListener and ActionEvent classes belong
to a standard Java package called java.awt.event, so you also need to add the
line “import java.awt.event.*;” at the top of the program.

Exercise: Add this code to your HelloButton program and check that it prints
“Hello, world!” whenever the button is pressed.

Exercise: Would you like your HelloButton program to quit when you click the
close button at the top of the window? If so, you can use another anonymous inner
class to respond to window-closing events:

myFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

});
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Insert this code immediately after the line that creates the Frame, and check that it
works. From now on it will be up to you to decide whether to include this feature
in your programs. It’s not really necessary when you launch programs from the
command line, or when you also use a Plot window which already has an active
close button. On a Macintosh it’s even less necessary, because of the Quit menu
command that’s built into the Mac implementation of the AWT classes.

Exercise: Now go back to your Projectile2 program. Add code to the con-
structor method to create a control window called controlFrame with a “Launch”
button, so that your launch method is called whenever the button is clicked. For
now, use any convenient constants for this method’s three parameters. Compile and
test your program.

The whole idea of the GUI is to let you adjust the three parameters of the launch
method before pressing the button. In a GUI program you can set a numerical value
either by typing digits into a text field, or by adjusting an analog control such as
a slider or scrollbar. The AWT package provides both TextField and Scrollbar
classes, which you could use directly. To simplify your programs, however, I’ve
written a class called DoubleScroller that includes both a scrollbar for adjusting a
number of type double, and a numerical readout of the current value. For example,
you can create a DoubleScroller for adjusting the launch angle with the following
code:

DoubleScroller angleScroller = new DoubleScroller(
"Launch angle in degrees = ",0,90,1,45);

The four numerical parameters of the DoubleScroller constructor are the mini-
mum value, maximum value, increment size, and initial value of the number being
adjusted. The DoubleScroller should be an instance variable, because you’ll need
to access it from two different methods.

To place a DoubleScroller in your control window, simply add it like any other
component: controlFrame.add(angleScroller). The DoubleScroller object is
actually a Panel that contains the scrollbar and text label, so it can be added
directly to a Frame without using another intermediate Panel. To retrieve the
current value at which the scrollbar is set, use the getValue method, which takes
no parameters and returns the double value: angleScroller.getValue().

Exercise: Make sure you have the source code of the DoubleScroller class in
your java directory. Browse through this source code (briefly), then compile it.
Add the lines just described to your Projectile2 program, passing the scrollbar’s
current value as the angle parameter to the launch method. Another nice touch is
to add the statement

controlFrame.setLayout(new GridLayout(0,1));

just after creating the Frame; this line causes the various Panels in the Frame to be
stacked vertically on top of each other. Compile and test your program.
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Exercise: Add two more DoubleScroller objects to your Projectile2 program,
for adjusting the drag coefficient and the launch speed. Let the drag coefficient
range from 0 to 2.0 in increments of 0.005 (in SI units); let the launch speed range
from 0 to 50 m/s in increments of 1 m/s. Compile and test your program.

Exercise: Temporarily modify your Projectile2 program so that the Button is
added directly to the Frame, with no intermediate Panel. Describe the result below,
then put the Panel back.

Exercise: Run your Projectile2 program, experimenting with various values of
the drag coefficient, launch speed, and launch angle. Check that it produces the
expected results when there is no air resistance. Print out a couple of plots showing
the trajectories for various settings (be sure to label the plots). For a drag coefficient
of 0.1 and a launch speed of 25 m/s, what launch angle gives the maximum range?
Record your data below and explain why you would expect the optimum angle to
be less when there is air resistance.

Exercise: The maximum speed of a batted baseball is about 110 mph, or about
50 m/s. At this speed, the ball’s drag coefficient (as defined in your program)
is approximately 0.005 m−1. Using your program with these inputs, estimate the
maximum range of a batted baseball, and the angle at which the maximum range
is attained. Write down and justify your results below. Is your answer reasonable,
compared to the typical distance of an outfield fence from home plate (about 350–
400 feet)? For the same initial speed and angle, how far would the baseball go
without air resistance?

Exercise: As a review, list all the built-in Java classes that you’ve used (directly)
so far in your programs. (Either write small or use a separate page.)
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Project 5: Pendulum

In this project you will explore the behavior of a pendulum. There is no better
example of a system that seems simple at first but turns out to hold intricate layers
of complexity.

Figure 5.1 shows the basic setup: a fixed pivot, a massless rod of length L, and
a point-mass m at the end, swinging in the plane of the page. It’s easiest to analyze
the motion in terms of torque and angular acceleration; recall that the angular
version of Newton’s second law is

X
τ = Iα. (5.1)

Here I is the rotational inertia of the object, simply mL2 for our pendulum. The
angular acceleration α is defined analogously to the ordinary acceleration:

α =
dω

dt
=

d2θ

dt2
, (5.2)

where ω is the angular velocity and θ is assumed to be in radians.

Figure 5.1. A simple pendulum of mass m and length L, acted upon by a gravita-
tional force ~Fg.

From the diagram we see that the torque due to gravity is

τg = −L|~Fg| sin θ = −Lmg sin θ, (5.3)
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where the minus sign indicates that the torque is negative (clockwise) when θ is
positive, and vice-versa. If there is no friction or other torque acting, then Newton’s
law (equation 5.1) says simply

−Lmg sin θ = mL2α, or α = − g

L
sin θ. (5.4)

Although I drew the diagram for a small positive value of θ, this equation is valid
for all angles—even angles greater than 90◦, if the rod is rigid.

With this equation in hand, it’s now straightforward to program a computer to
simulate the motion of a pendulum. Although we could choose any desired value
for the pendulum length, it’s simplest to choose L so that g/L equals 1. In SI units
this would imply a 9.8-meter pendulum. But there’s no law requiring that we use
SI units. No matter how long or short the pendulum is, there’s always some choice
of units for which g/L = 1. In fact, we can take L and g to equal 1 separately, by
choosing L as our unit of distance and by choosing some appropriate unit of time.

Exercise: Suppose that we take our unit of distance to be 1/2 meter; let’s call
this unit the ham. Define a corresponding unit of time, called the tic, such that
g = 1.0 ham/tic2. How many seconds are in a tic?

Exercise: Write a Java program called Pendulum1 to simulate the motion of a
pendulum swinging under the influence of gravity and no other torques. Use the
Euler algorithm, with the variables theta (in radians), omega, and alpha playing
the roles of x, vx, and ax in linear motion. The output of the program should be
a plot of θ vs. t. Use units where g = L = 1 (so you don’t need these variables at
all), and a time step of 0.01 in these units. Choose initial conditions such that the
amplitude of the swing will be fairly small. What is the approximate period of the
pendulum? Does this agree with what you learned in introductory physics?



Project 5 Pendulum 53

Accuracy Over Long Time Periods

Exercise: If you haven’t already, modify your Pendulum1 program so it runs for
about 100 units of time. Print your graph of θ vs. t, and explain what’s wrong with
it in the space below.

Exercise: Work out a formula for the total energy (kinetic plus gravitational) of the
pendulum, in terms of θ, ω, and constants. (Use a picture and some trigonometry to
relate θ to the height of the pendulum bob. Do not set g = L = 1 in this exercise.)

Exercise: Add some lines to your program to compute and print the total energy
of the pendulum at the beginning and end of the simulation. For the purpose of
this computation you may take L, g, and m all to equal 1 (in appropriate units).
Write the results below, and explain why something must be wrong.

Exercise: Run the simulation again with a smaller value of dt. How do the results
change? Is this what you would expect?

The preceding exercises illustrate a common problem with numerical calcula-
tions: small truncation errors can add up over time to produce large inaccuracies.
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When a quantity such as the total energy is supposed to be exactly conserved,
you should always monitor this quantity for any significant drift that might come
from compounded truncation errors. While using a smaller time step can provide a
brute-force solution to this problem, it’s usually better to switch to a more accurate
algorithm (if possible).

Exercise: Modify your Pendulum1 program to use the Euler-Richardson algorithm
instead of the Euler algorithm. For a time step of 0.01 and a total running time of
100 time units, how much does the total energy drift?

Large-Angle Motion

Now that you’ve minimized your program’s numerical inaccuracies, let’s examine
how the motion varies when the amplitude is changed.

Exercise: To avoid recompiling the program over and over, set it up to accept the
amplitude in degrees as a command-line argument. Then try a range of amplitudes
and observe the results. Print a graph of θ vs. t for an amplitude of 179◦. Why is
the period so much longer for large angles than for small angles?

Although you can read the approximate period of the pendulum from your graph,
it’s much more accurate to have the program calculate and print the period. Here’s
one way to do this: Introduce a variable called lastTheta, and set it equal to theta
just before each time theta is updated. After updating theta, check whether theta
and lastTheta have opposite signs (hint: check whether their product is less than
or equal to zero). If so, the pendulum has just crossed θ = 0. In this case, compute
the time when the crossing occurred (like when you computed the time the projectile
landed in the previous project) and remember this time in another variable. The
time between one crossing and the next equals half the period of the pendulum.

Exercise: Implement the algorithm just described for determining the period of
the pendulum. Run your program to find the period at a variety of angles ranging
from 1◦ to 179◦. Use a spreadsheet program to plot a graph of period as a function
of angle, and turn in a printout of your data and graph.
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Friction and Driving Forces

Now let’s add some further complications: Friction to slow the pendulum down,
and a periodic external torque that continually adds energy to the system.

A simple way to add friction is to subtract a term proportional to ω from the
right-hand side of equation 5.4 for the angular acceleration:

α = − g

L
sin θ − cω. (5.5)

A linear resistive force (or torque) of this form is called damping, and the coefficient
c is called the damping constant.

Exercise: Add a damping term to each of the lines that compute α in your Pen-
dulum1 program. Run the program for various values of the damping constant,
ranging up to about 2.0. Describe the results briefly.

Damping removes energy from the pendulum, so the motion dies out. But we can
keep the motion going by continually applying an external torque to the pendulum.
A simple yet interesting way to do this is to add a term to equation 5.5 that is
sinusoidal in time:

α = − g

L
sin θ − cω + A sin(ft). (5.6)

This additional term is called a driving term. Physically, it would represent a
smooth, back-and-forth twisting force that is unaffected by the pendulum’s position
and speed. The constants A and f represent the amplitude and angular frequency
of the driving torque.

Because the Euler-Richardson algorithm requires two calculations of α (one at
the beginning of the time interval and one at the middle), and because the formula
for α is getting rather complex, it’s a good idea to move this calculation into a
separate method (or function). Let’s call the function torque, which is the same
as angular acceleration in our system of units. This function should accept three
parameters— θ, ω, and t—and return the value of the torque. It’s best in this case
to declare and initialize the constants damp, driveAmp, and driveFreq as instance
variables, so they’re available to all nonstatic methods. Then the torque function
can be defined as follows:

double torque(double theta, double omega, double t) {
return -Math.sin(theta) - damp*omega

+ driveAmp*Math.sin(driveFreq*t);
}
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Exercise: Add this function definition to your program, and use it appropriately
each time your program computes the angular acceleration. (Be sure to pass the
correct time value to your torque function for the mid-point calculation!) Test
your program with the damping constant equal to 0.5, the drive amplitude equal to
0.5, and the drive frequency equal to 2/3. (In your code, write 2.0/3.0 instead of
2/3; otherwise Java will do integer arithmetic and throw away the remainder.) You
should find that after an initial “transient” behavior, the motion becomes periodic.
Print a graph showing this behavior. What is the period of the motion, and what
is the significance of this value?

Your Pendulum1 program is now complete, so you may wish to clean up its code
and add some comments if necessary.

Chaos!

Exercise: Now increase the drive amplitude to 1.2, and run the program again
(for about 100 time units). Print a graph of the motion, and describe the behavior
briefly.

When the drive amplitude is sufficiently large, the pendulum can swing over the
top of the pivot and the motion becomes much more complex. In some cases, such
as the one you just saw, the motion never settles down to become periodic. Because
the motion seems so unpredictable, the word “chaos” often comes to mind.

Chaos is actually a technical term in dynamics, used to describe behavior that is
unpredictable in practice because even a tiny change in the initial condition results
in an exponentially increasing change in the motion. A good way to test for chaotic
behavior is to run a simulation twice, with two slightly different initial conditions,
and monitor the difference in the motion as a function of time.
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Exercise: Create a new Java program called Pendulum2 to simulate the motion of
two damped, driven pendulums simultaneously. (That is, use two sets of variables
for the two separate pendulums, and simulate both motions using a single loop in
your code.) Feel free to copy code from your Pendulum1 program, but you can omit
the code for parsing the command-line argument and the code that generates text
output. Call the variables theta1 and theta2, omega1 and omega2, and so on. Plot
θ vs. t for both systems on the same graph. It’s a nice touch to use different colors
for the two systems; you can do so by adding

import java.awt.Color;

at the top of the program, then saying, for instance,

myPlot.setColor(Color.blue);

to change from one color to another. Start one system at θ = 0 and the other at
θ = 0.001 (radians), with ω = 0 initially for both. Use the same constants as in the
two previous exercises, and describe the results. Print the more interesting of the
two graphs.

Exercise: To better see how the motions of the two pendulums relate to each other,
modify your program to produce a second graph, plotting ln |θ2 − θ1| vs. t. The
Java function for the natural logarithm is Math.log. Run your program using the
same constants as before, including both values (0.5 and 1.2) of the drive amplitude.
Print the log-difference plot for both cases, and discuss it in some detail. Why do
both plots have several downward-pointing spikes?

The roughly exponential behavior of θ2 − θ1 as a function of time is a feature of
many dynamical systems. We can write this behavior as

θ2 − θ1 ≈ (constant)× eλt, (5.7)
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where λ is called a Lyapunov exponent. When λ is positive the system is chaotic:
even the smallest difference in initial conditions will grow over time until the two
systems have radically different behavior. Since we can never know the initial
conditions of a real physical system with infinite accuracy, it is effectively impossible
to predict the behavior of a chaotic system over long time periods. Although our
damped and driven pendulum is a somewhat contrived system, chaotic behavior is
also quite common in the real world.

Exercise: Estimate the Lyapunov exponent of the pendulum system for each of
the values of the contants used in the previous exercise. (Hint: Use a ruler to draw
a reasonable straight line to fit your logarithmic graphs of θ2 − θ1, ignoring the
downward-pointing spikes.)

Drawing

To further explore the chaotic behavior of the damped and driven pendulum, you’ll
need a simulation program that can run for longer periods of time, and that you
can interact with as it is running. It will also be helpful to add some graphics to
the program, to draw a picture of the pendulum itself. So let’s start over with a
new program called Pendulum3. Please type in the following code, compile it, and
run it to see what it does:

/* A pendulum simulation with graphics */

import java.awt.*;

class Pendulum3 extends Canvas {

Pendulum3() {
setSize(400,400); // the Canvas is 400 pixels square
Frame pictureFrame = new Frame("Driven, Damped Pendulum");
Panel canvasPanel = new Panel();
canvasPanel.add(this); // add the Canvas to the Panel
pictureFrame.add(canvasPanel);
pictureFrame.pack();
pictureFrame.setVisible(true);

}
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// Java calls this method when the Canvas needs to be drawn:
public void paint(Graphics g) {

g.drawString("Hello, world!",160,200);
}

public static void main(String[] arg) {
new Pendulum3();

}
}

This program uses one of the most important features of Java (and other object-
oriented languages): It extends an existing class (Canvas, another AWT class) to
create a new class (Pendulum3). The new class is then called a subclass, while
the class that it extends is called its superclass. When we do this, our subclass
inherits all the variables and methods of its superclass. For example, the Canvas
class (which provides a blank space where we can draw) has a setSize method,
which our class can automatically use as if it were its own. Our class, however, can
add its own new methods that do not belong to Canvas (such as main). We can
also override any of the existing methods of Canvas by writing our own versions of
them. The paint method is an example of this. Canvas already provides a paint
method, which merely draws the Canvas’s rectangle in the background color. In
our own paint method we can draw anything we like.

All classes in Java are part of a class hierarchy of superclasses and subclasses.
Figure 5.2 shows part of the class hierarchy, including several of the AWT classes.
The add method actually belongs to the Container class, from which Panel and
Frame inherit it. This method requires a Component as a parameter, but Java allows
you to substitute any subclass for its superclass in variable assignments. Ultimately,
all classes descend from Java’s most basic class, called Object. When you declare a
class without an extends clause, that class automatically becomes a direct subclass
of Object.

Figure 5.2. Part of Java’s class hierarchy, showing some of the AWT classes and
some of our own classes.
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Notice that to add our (extended) Canvas to the Panel, we use the Java language
word this, which always refers to the object in which it occurs.

The Java AWT classes will call our paint method whenever our Canvas needs
to be drawn. In order for them to do this, paint needs to be declared as public;
otherwise it could be called only from classes within its own package. The parameter
passed to paint is an object of type Graphics, another AWT class. This object
contains information about where our Canvas is located on the screen, and provides
a variety of methods for drawing rectangles, ovals, lines, and text; see your Quick
Reference Sheet for examples. These methods use a coordinate system in pixels,
with the origin at the top-left corner of the Canvas and the vertical coordinate
increasing downward (opposite to the usual convention in mathematics).

Incidentally, screen coordinates must be integers. In fact, they are always of type
int, which can hold any positive or negative integer whose absolute value is less
than about two billion (231). For those times when you need to work with larger
integers, Java also provides a type called long whose range extends to 263. To round
a double value to the nearest integer you can use the Math.round function, which
returns a long. To convert a long to type int, you need to precede it by “(int)”;
this is called a cast. Thus, a statement to round a double and store the result in
an int might look like this:

myInt = (int) Math.round(myDouble);

Exercise: Remove the drawString statement from your program’s paint method,
and replace it with code to draw a pendulum. Use a small circle in the center of the
Canvas to represent the pivot, a larger circle to represent the pendulum bob, and a
line (about 150 pixels long) to represent the pendulum’s rod. Introduce an instance
variable called theta for the current angle of the pendulum, and set theta equal
to 30◦ for now. Your paint method should work for any value of theta, using trig
functions to calculate the rectangular coordinates from theta and the pendulum
length. Refer to your Quick Reference Sheet for the needed graphics methods. Use
a bit of color to add some interest.

Animation

To bring your picture of a pendulum to life, you need to put the pendulum simu-
lation code into your program. Rather than putting the code into the constructor
method, please put it into a new method called run, as follows:

public void run() {
while (true) {

for (int i = 0; i < 0.1/dt; i++) {
// Euler-Richardson algorithm goes here

}
repaint();

}
}
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I’ll explain the reason for using a separate run method in a few paragraphs. The
condition “while (true)” simply tells Java to keep executing the loop forever (or
rather, until you interrupt the program). The repaint() method (another method
that belongs to the Canvas class) tells Java to call your paint method at the next
opportunity. But we don’t want to redraw the pendulum after every iteration of
the Euler-Richardson algorithm—that would be too slow. The for loop solves this
problem by using an integer variable i to count iterations before each repaint. I
suggest setting dt = 0.002, which should make the truncation error quite small;
in this case the pendulum will be redrawn only once for every 50 time steps. The
statement “i++” in the header of the for loop is a shortcut for “i += 1”; you can
similarly say “i--” to subtract 1.

Exercise: Add the run method, as just described, to your Pendulum3 program,
and call it at the end of the constructor method. Calculate the torque in the same
way as in your previous pendulum programs, using a separate function. Run the
program and describe the results.

On most computer platforms, the preceding exercise gives unsatisfactory be-
havior: The pendulum is redrawn erratically at best. This is because the paint
method is called by a separate thread (a thread created by Java’s AWT classes),
but your main program thread never pauses to relinquish control to other threads.
You can solve this problem by inserting the following code immediately after calling
repaint:

try {Thread.sleep(10);} catch (InterruptedException e) {}

The Thread.sleep method (a static method of the Thread class) tells your thread
to pause for the specified number of milliseconds, thus relinquishing control to the
graphics thread that calls your paint method.

Exercise: Insert this code as described. You should now find that the animation
is reasonably smooth. However, some fine tuning may help further. Try some other
values of the sleep duration and of the time between repaints (0.1 time units). What
values seem to produce the most pleasing results on your computer?

Although your program should now work fine, I’d like you to make a further
refinement in the interest of developing good programming habits. Your run method
contains an infinite loop, which never terminates unless interrupted. This means
that if you were to put any further code into your constructor method, after calling
run, that code would never get executed. The same goes for any further code that
you might put into main, after calling the constructor. However, some day you may
want to write code that starts a simulation and then goes on to do something else
while the simulation is running. More generally, it’s considered impolite in Java to
write a constructor method that never returns control to the method that calls it.
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Exercise: Add a println statement just after the constructor call in your main
method. Run the program and verify that this statement never gets executed.

So the preferred method of doing lengthy calculations in Java is to start your
own separate thread of execution, and run the calculation from that thread. To
do this, instead of calling run directly from your constructor method, put in the
following two lines of code:

Thread myThread = new Thread(this);
myThread.start();

Also, add the words “implements Runnable” to your class declaration, right after
extends Canvas. Runnable is an example of an interface, a special type of Java
entity that pretends to be a class but actually isn’t, because it declares one or
more methods but provides no code to implement them. When you declare that
your Pendulum3 class implements an interface, you are promising to provide code
for these methods. The Runnable interface, in particular, requires that any class
implementing it provide a public method called run. Thanks to your uncanny
foresight, your class already has such a method!

(You’ve actually implemented an interface already, when you wrote the code to
respond to Button pushes in the previous project. There you used an “anomyous
inner class” to implement the ActionListener interface.)

When you call the constructor of the Thread class, you must provide it with
the name of an object that implements the Runnable interface—in this case, your
Pendulum3 object itself. Calling the start method of the Thread object then starts
a separate thread running, which immediately calls your run method as desired. The
procedure is a bit tricky, but remarkably easy.

Exercise: As just described, modify your Pendulum3 program to run the simulation
from a separate thread. Check that the println statement in your main method
now does get executed. (You may then delete the println statement.)

Variable Scope

This is a good place to pause and review the concept of variable scope in Java
programs. Recall the three levels of variable scope:

Scope Declared Created Accessible to
Local Inside a method When method is called Only its own method
Instance At class level, When object is created Any nonstatic

not in any method using new method
Class At class level, When class’s code is Any method

with static loaded into memory

Notice that as you go down this list, there are fewer restrictions on how the variable
can be used. For this reason, beginning programmers often prefer class variables
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to instance variables, and prefer instance variables to local variables. But as you
write longer programs, you’ll discover that it’s easier to understand your code and
to avoid bugs if you develop the opposite tendency: Use local variables most of
the time, and promote them to instance or class variables only with good reason.
The big advantage of local variables is that you can completely forget about them
when you’re thinking about some other method. You can even use the same local
variable name in two different methods with no interference. The advantage of
instance variables over class variables is that they can take on different values for
different instances of the same class.

Question: Why doesn’t your Pendulum3 program need any class variables?

Exercise: Go through the code of your Pendulum3 program and make sure that
all the variables are local except those that need to be instance variables. Which
ones do need to be instance variables?

From now on, whenever you introduce a new variable in one of your programs,
think carefully about its scope. If in doubt, make it a local variable at first and
then later, if necessary, promote it to an instance or class variable.

One technicality that will come up in a moment is that the methods in an
anonymous inner class count as separate methods, for the purpose of variable scope,
from the method where the inner class is declared. So if an anonymous inner class
needs access to a variable, you’ll have to make it an instance (or occasionally a
class) variable.

Finishing Touches

Now that you have a working simulation with animation, you’re ready to dress it
up with GUI controls and plots. Let’s add a panel for controls at the bottom of the
program’s window:

Panel controlPanel = new Panel();
pictureFrame.add(controlPanel,BorderLayout.SOUTH);

(The second argument of the add method says that controlPanel should go at
the bottom of the window.) Then create a DoubleScroller object to adjust the
amplitude of the driving force, with the range varying from 0 to 2.0 in increments
of 0.01. Be sure to add code to your run method to periodically check the current
value of this control and set the drive amplitude variable accordingly. You could
optionally create additional scrollbars to adjust the drive frequency and the damping
constant, but for simplicity let’s leave these parameters at 2/3 and 0.5, respectively.
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Exercise: As just described, add a scrollbar to adjust the amplitude of the driving
force. Check that it works as desired.

Another useful feature to add is a button to start and stop the simulation. To
implement such a button you need to create a new variable, which your run method
can test to determine whether the simulation should be currently running. While
you could use any type of variable for this, Java provides a special data type, called
boolean, that’s especially suited to this task. A boolean variable can have only
two possible values, called true and false. So put the line

boolean running = false;

among the instance variable declarations at the top of your program, and put the
condition if (running) { } around everything inside your simulation loop except
the try-catch construction that calls the sleep method. (The comparison oper-
ators that you’re used to using with “if” yield boolean results; if you ever need
to, you can store the result of a comparison in a boolean variable, for example,
myBoolean = (a < b).) Finally, add code in your constructor method to create a
“Start” button and, when it is pressed, change the value of running to !running.
It’s also a nice touch to change the button to read “Stop” when the animation is
running; you can do this with the button’s setLabel method, whose parameter is
the string to be displayed on the button.

Exercise: Your Quick Reference Sheet has a fairly trivial five-line example of the
if-else construction. Write a single line of code that accomplishes the same thing,
without using if-else.

Exercise: As just described, add a Start/Stop button to your controlPanel, and
check to make sure it works.

Congratulations! You’ve now written your first Java program that uses low-
level graphics functions, threads, and animation. If you’d ever like to see another
working example of these features, there’s one on the author’s web site that you
can download: AnimationDemo.java. The demo program doesn’t do any physics,
but it does illustrate these program features in a fairly simple context.

Exercise: Add code to your program to produce a plot of ω (vertically) vs. θ
(horizontally). This is called a phase space plot. To keep the plotted points
confined to a limited area, add code to your simulation loop to shift θ by 2π whenever
necessary to keep θ between −π and π. To show more detail on the plot, set the
point size to one pixel. Run your simulation for several different values of the drive
amplitude, and print the corresponding phase space plots. (Be sure to clear the plot
after each time you change the drive amplitude.) Label each printout appropriately,
and describe the motion in a sentence or two. On a separate sheet of paper, or on
the back of one of the printouts, list the values of the drive amplitude for which the
motion is chaotic.
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Project 6: Orbits

In this project you will simulate the motion of planets orbiting the sun.

The only important force in this situation is gravity. According to Newton, the
gravitational force between two objects is always attractive, with magnitude

|~Fg| =
Gm1m2

r2
12

, (6.1)

where m1 and m2 are the masses of the two objects and r12 is the distance between
them.

We’ll start with a single planet orbiting the sun. Because the sun is so much
more massive than any planet, it’s a reasonable approximation to neglect the sun’s
motion. Then we can put the sun at the origin of our coordinate system, and the
formula for its force on the planet will simplify.

Exercise: Use equation 6.1 and an appropriate diagram to find the x and y compo-
nents of the sun’s gravitational force on a planet, in terms of the planet’s coordinates
x and y. Be sure that you have the correct formulas before you try to write any code!

Units

Rather than using SI units, it’s usually a good idea to choose units that are natural
for the problem being solved. In the case of planets orbiting the sun, a natural
unit of distance is the astronomical unit (AU), defined as the average distance
between the earth and the sun (about 150 million kilometers). A natural unit of
time is the year (3 × 107 seconds), and a natural unit of mass is the sun’s mass
(2× 1030 kg).
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Exercise: What is earth’s orbital speed in these natural units (assuming its orbit
to be circular)? (In this exercise and the next, do not start with SI units and then
convert; there’s a much easier method.)

Exercise: Find the value of G in these natural units, by applying Newton’s laws
to earth’s orbit.

A One-Planet Simulation

Exercise: Write a simulation program called Orbit1, for a single planet orbiting
the sun in the xy plane. Follow the same outline as in your previous simulations,
putting the simulation code into the constructor method. Use the Euler algorithm
for now, with a time step of 0.01 (in years). Start the planet at x = 1.5, y = 0, and
an initial velocity that should give a circular orbit. The program’s output should
be a plot of the orbit. Here and throughout this project, be sure that your plot uses
the same scale for x and y. Describe the result of your simulation for a running
time of four years. Try the simulation again with a time step of 0.001, and discuss
the implications of your results.
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Exercise: Add a totalE function to your program, which computes and returns
the planet’s total energy per unit mass. Recall that the gravitational potential
energy of a two-body system is −Gm1m2/r12. To compute the total energy, your
function will need to know x, y, vx, and vy; you could make these parameters of
the function, but it will be easier in the long run to simply make them instance
variables. Then add code both before and after your simulation loop to call the
totalE function and print out the result. Write down the results for a couple of
different values of dt, and comment briefly.

Exercise: By now you should be anxious to replace the Euler algorithm in your
simulation with something more accurate. Try the Euler-Richardson algorithm
next, and write down the results (initial and final energy) for a couple of values
of dt. Comment briefly.

The Verlet Algorithm

The Euler-Richardson algorithm is so much better than the Euler algorithm that
you may be tempted to settle for it. However, in problems such as this where the
force depends only on the positions of the particles (not on their velocities), there
is another algorithm that usually does significantly better still, and is no harder to
program.

You may have already noticed, while programming the Euler-Richardson algo-
rithm, that there’s no actual need to calculate the velocity at the interval’s midpoint
when this velocity won’t be needed to calculate the force. In this case, you could in-
stead combine this velocity calculation with the calculation of the updated position.
So, for the x components, the equations

vx,mid = vx,initial + 1
2
ax,initialdt and xfinal = xinitial + vx,middt (6.2)

can simply be combined into the single formula

xfinal = xinitial + vx,initialdt + 1
2
ax,initial(dt)2. (6.3)
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You should recognize this formula from introductory physics: It is the exact formula
for the motion of an object whose acceleration is constant. We’ll continue to use
it (for small dt) even when the acceleration isn’t constant, as we’ve already been
doing, in effect, with the Euler-Richardson algorithm.

Our improvement on the Euler-Richardson algorithm will be in the calculation
of the updated velocity. Once we’ve updated the position using equation 6.3, we
can use this updated position to calculate the acceleration at the end of the time
interval (so long as the force depends only on the position, not on the velocity). We
can then estimate the average acceleration as the average of the initial and final
accelerations, and use this average to update the velocity:

vx,final = vx,initial + ax,averagedt ≈ vx,initial +
≥ax,initial + ax,final

2

¥
dt. (6.4)

This estimate of the average acceleration is more symmetrical, and hence more
accurate in most situations, than the Euler-Richardson method of calculating ax

from an estimated value of xmid. The combination of equations 6.3 and 6.4 is known
as the Verlet algorithm, or alternatively as the second Taylor approximation
(STA).

The slick way to implement the Verlet algorithm is to break equation 6.4 into
two parts, separated by the calculation of the new acceleration, as follows:

0. Before the loop begins, calculate the initial acceleration.

1. Update the position using equation 6.3.

2. Update the velocity half-way, adding 1
2
axdt.

3. Update the acceleration, calculating it from the new position.

4. Finish updating the velocity, again adding 1
2
axdt.

5. Repeat steps 1 through 4 in each loop iteration.

Notice that this procedure requires only one evaluation of the acceleration for each
time interval. In the next project, where execution speed will be an issue, this will
be another significant advantage over the Euler-Richardson algorithm.

Exercise: Modify your Orbit1 program to use the Verlet algorithm. Since the
acceleration needs to be calculated once outside the loop and once inside it, move
this code into a separate method and call it from both places. Test your program
for the same initial conditions, running time, and values of dt that you used in the
previous exercise, and compare the accuracy to which the two algorithms conserve
energy.
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Kepler’s Laws

In the early 1600’s, Johannes Kepler was the first to discover simple mathematical
laws to describe the observed motions of the planets. Nowadays we number Kepler’s
important discoveries 1, 2, and 3; I like to throw in a 0th law that may have gone
without saying at one time, but isn’t at all obvious from a modern perspective:

0. Planetary orbits are closed paths; each planet returns to the same point after
one full orbit.

1. The shape of each orbit is an ellipse, with the sun at one focus of the ellipse.

2. The planets move faster when they are closer to the sun, in such a way that a
line drawn from the sun to any planet sweeps out equal areas in equal times.

3. The outer planets move slower than the inner ones, in such a way that the cube
of the length of the ellipse’s semimajor axis is proportional to the square of the
period of the orbit.

Later, in 1687, Isaac Newton published a book showing how all of Kepler’s laws (and
much more) can be deduced from his more fundamental laws of motion and gravity.
Even today, however, a rigorous deduction of Kepler’s laws from Newton’s laws
requires some sophisticated and lengthy calculations. On the other hand, you now
have a computer program that simulates planetary motion according to Newton’s
laws. Let’s check, then, whether the resulting motion obeys Kepler’s laws.

Exercise: (Kepler’s 0th Law.) If you haven’t already, try out some other initial
conditions for your simulated planet. A good way to start is to make the initial
values of x, y, and vx the same as for earth, and vary the value of vy from slightly
lower than earth’s speed to slightly higher. Describe the results in the space below.
Does your simulated planet obey Kepler’s zeroth law? How small a value of dt must
you use to obtain consistent results?

Exercise: (Kepler’s 1st Law.) An ellipse is defined as the set of all points for which
the sum of the distances to the two foci is a constant. According to Kepler’s first
law, one focus of the ellipse should be at the sun, which is at the origin of your
coordinate system. For the initial conditions suggested in the previous exercise, the
other focus should be symmetrically located exactly 1 AU from the left end of the



70 Project 6 Orbits

ellipse. (The second focus may lie either left or right of the first.) Adjust your initial
conditions to obtain a reasonably elongated orbit, and adjust the scale of your plot
so the orbit fills most of the window (but keep the same scale for x and y). Print
this plot and label the two foci. Then pick at least three dissimilar points along
the orbit and for each, use a ruler to measure the sum of the distances to the two
foci. Show your calculations on the printout, and discuss whether Kepler’s first law
seems to hold for your orbit.

Exercise: (Kepler’s 2nd Law.) Temporarily modify your Orbit1 program to plot
points on the graph only at longer, fixed time intervals, so that only two or three
dozen plotted points appear around the orbit. Use the same values of dt and the
initial conditions as in the previous exercise. Print the plot, and at three dissimilar
intervals along the orbit, use a ruler to determine the approximate area swept out
by an imaginary line from the sun to the planet. Show your area calculations on
the printout, and discuss whether Kepler’s second law seems to hold for your orbit.

Exercise: (Kepler’s 3rd Law.) The semimajor axis of an ellipse is defined as half
of its widest width. As long as you use an initial vx of zero, this width should
be along the x axis of your plot. You can then test Kepler’s third law as follows.
Add code to your program to determine when the planet crosses the x axis, and for
each crossing, to print out the time and the value of x. From these data, you can
calculate both the semimajor axis and the period of the orbit. Run the simulation
for three dissimilar orbits, recording the data below. Then for each orbit, calculate
the cube of the semimajor axis and the square of the period. Discuss whether your
results are consistent with Kepler’s third law.
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Elongated Orbits and Variable Time Steps

By now you may have noticed that the closer your simulated planet gets to the
sun, the smaller you need to make dt to reduce truncation errors to an acceptable
level. For highly elongated orbits this is awkward, because the small value of dt is
needed only near one end of the orbit, while a much larger value of dt would suffice
elsewhere.

Fortunately, there’s no law that says we have to use the same value of dt through-
out the simulation. Instead, we can use what is called adaptive step size control
to continually adjust dt as appropriate. Nearly all of the “professional quality” al-
gorithms for numerically solving differential equations employ some sort of adaptive
step size control. Most of these algorithms are quite complex and sophisticated—not
worth our time in a first course on computer simulations. In your Orbit1 program,
however, there is a very simple way to add adaptive step size control.

Think about it: We want dt to be small when the planet is close to the sun
(where its acceleration is large and rapidly changing) but large when the planet is
farther away (where its acceleration is small and slowly changing). A natural way
to accomplish this would be to make dt proportional to r, or to some positive power
of r. Equivalently, we could make dt proportional to some negative power of the
acceleration, |~a|, which is proportional to 1/r2:

dt ∝ |~a|−n ∝ r2n. (6.5)

Let’s work with |~a|, since this will make it easier to generalize our approach to
multi-planet simulations in the next section. The optimum power of |~a| is not easy
to guess, but I’ve done a bit of pencil-and-paper analysis that seems to indicate
that n = 1 is a good choice. In practice, this choice seems to work just fine.

Exercise: Modify your Orbit1 program to set dt equal to a constant (call it
tolerance) times |~a|−1. This should be done at the beginning of each loop iteration.
To select a good value of tolerance, either do a quick calculation or just try some
values and see what works. Explain how you chose your value of tolerance in the
space below.

Exercise: Use your Orbit1 program to model the orbit of Halley’s comet, which
is 0.58 AU from the sun at its closest approach and has a period of 76 years. How
far from the sun is the orbit’s most distant point?
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A Two-Planet Simulation

Don’t let this get you down, but all the results of your Orbit1 program were already
known to Newton more than 300 years ago. The real advantage of a computer sim-
ulation over traditional analytic methods comes at the next stage, when we want to
model a system that is more complex than a single particle subject to an inverse-
square force. For instance, you could easily explore what happens when the force
law is modified, either in some hypothetical universe or in the real solar system
due to the sun’s nonspherical shape or the effects of general relativity. An even
more difficult problem, though, is to predict the motion of three or more mutu-
ally gravitating objects. With the exception of a few unrealistically symmetrical
configurations, there are no analytic formulas for the motions of such systems.

Your next task will be to write a new computer program (Orbit2) to model
the behavior of two planets orbiting the sun, including the effects of their mutual
gravitational attraction. Because these effects are often small, you’ll need to run the
simulation for a relatively long time—long enough to observe dozens or hundreds of
orbits. This requirement dictates a different approach to the overall design of the
program. For one thing, you’ll want to run the simulation from a separate thread,
as in the Pendulum3 program. Secondly, you’ll want to show each planet’s current
position in a more visible way on the plot, so you can follow the motion even when
the trail of dots becomes too thick to see the individual points.

Let’s focus on this second issue. What we need is a Plot class with an additional
feature, namely the ability to show the current positions of a couple of planets as
large circles, even while their past positions are plotted as tiny dots. We could create
a totally new class that includes most of the code that’s in Plot, plus some custom
code to suit our needs. Instead, we’ll take a more object-oriented approach and
extend the Plot class, overriding some of its methods to add our custom features.
Then there will be no need to duplicate code that’s already in Plot, or to modify
the Plot class itself (which would have undesirable side effects for other programs
that use Plot).

Now would be a good time to look at the Plot.java source file and get some
idea of how the Plot class works. Notice that Plot is a subclass of Canvas, with
a paint method that puts the graphics onto the screen. This method actually
contains only a single line of code, which copies the entire image from a separate,
off-screen image that has already been drawn. This approach allows the image to be
copied to the screen very quickly, even when it contains pixel-level detail; drawing
the whole image from scratch in paint would be too slow when the Plot contains
more than a few hundred points.

In your Orbit2 program, you’ll want to override this paint method with your
own version that does the same thing, then goes on to draw the current positions
of the two planets as larger circles. Here, then, is an outline to use for Orbit2:
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class Orbit2 extends Plot implements Runnable {

static double rMax = 2; // max range of plot

Orbit2() {
super("Orbits",-rMax,rMax,1,-rMax,rMax,1);
// initialize variables and start simulation thread

}

public void run() {
while (true) {

doStep();
try {Thread.sleep(10);} catch (InterruptedException e) {}

}
}

synchronized void doStep() {
// execute one step of the simulation

}

public void paint(Graphics g) {
super.paint(g);
// draw planets at current positions

}

public static void main(String[] arg) {
new Orbit2();

}
}

You can probably guess that “super” calls the constructor method of the superclass
(in this case Plot) of the present class, while “super.paint” calls the paint method
of the superclass. The other new word in this code is synchronized, which prohibits
any so-labeled method(s) within a given class from being called simultaneously by
two different threads. Don’t worry for now about why this is necessary.

Exercise: Use the outline above to write an orbit simulation program that runs
indefinitely as just described. Although the goal is to simulate the motion of two
planets orbiting the sun, start with just a single planet (but call its variables x1,
vx1, and so on, in anticipation of adding a second planet). In the doStep method,
use addPoint to plot the planet’s position as a single-pixel square and then execute
one step of the Verlet algorithm with adaptive step size control as described in
the previous section. In the paint method, add code to draw the planet’s current
position as a small circle; you may wish to borrow some code from Plot for con-
verting the planet’s location to pixel coordinates. Test your program for a couple
of different initial conditions, and make sure it is working before you go on.
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Exercise: Add a Start/Stop button to your program, as you did in Pendulum3.
You can add the button to the controlPanel object (see the source code of Plot)
in the usual way; you’ll need to call plotFrame.pack to make it visible. Test the
button to make sure it works.

Exercise: It’s a nice touch to add a yellow circle at the origin of your plot to
represent the sun. You can do this by overriding the clearThePlot method, first
calling super.clearThePlot and then using addPoint to draw the yellow circle.
Do this, and test to make sure it works.

Exercise: Now add a second planet to your simulation, orbiting like the first under
the influence of the sun’s gravitational pull. Don’t worry yet about including the
gravitational force between the two planets. For simplicity, please assume that the
second planet also orbits in the xy plane. In the line that calculates dt, use the
larger of the two planets’ accelerations. (Use the Math.max function.) Plot the two
planets’ orbits in different colors. Again, test to make sure everything is working.

Exercise: Finally, modify your simulation code to include the gravitational force
between the two planets. Up until now the masses of the planets have been irrel-
evant, but at this point you’ll have to introduce variables to represent the masses
(in units of the sun’s mass). To calculate the force, it’s helpful to first calculate the
x and y separations between the two planets, storing these in temporary variables.
Be very careful to check that you’re using the correct formula for the force. To
test your program, start the planets in orbits that would be circular if they did not
interact, with radii of 1 and 1.5 (about right for earth and Mars). First set both
masses equal to 10−6, and verify that the orbits remain essentially circular. Then
set both masses equal to 0.02 (about 20 times the mass of Jupiter), and describe
what happens.

Exercise: As a further test, add a totalE function to your program that calculates
and returns the total energy of the two planets, including the gravitational energy
of their mutual interaction. To monitor the energy, have your paint method call
the totalE function and display the result, to six decimal places, in the bottom-left
corner of the plot. Do some tests and describe the results.
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Your Orbit2 program is now finished! It can be used to explore a great variety
of scenarios; feel free to experiment. The following exercise should give you a good
start.

Exercise: Set the masses of your two planets to 0.001 and 10−8, to simulate Jupiter
and an asteroid. Start both in orbits that would be circular if they did not interact
with each other, with Jupiter at 5.2 AU from the sun and the asteroid at 3 AU.
Describe the resulting orbits. Then gradually increase the size of the asteroid’s orbit,
and describe the results. For what sizes of the asteroid’s orbit does the influence of
Jupiter appear to be the greatest? Can you explain the results? Print out at least
two representative plots, and label them appropriately. Observations of the actual
asteroid belt show that there are gaps in it, where very few asteroids are found. At
what distances from the sun would you expect to find gaps?
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Project 7: Molecular Dynamics

If a computer can model three mutually interacting objects, why not model more
than three? As you’ll soon see, there is little additional difficulty in coding a sim-
ulation of arbitrarily many interacting particles. Furthermore, today’s personal
computers are fast enough to simulate the motion of hundreds of particles “while
you wait,” and to animate this motion at reasonable frame rates as the calculations
are being performed.

The main difficulty in designing a many-particle simulation is not in the simu-
lation itself but rather in deciding what we want to learn from it. Predicting the
individual trajectories of a hundred particles is usually impractical because these
trajectories are chaotic. Even if we could make such predictions, the sheer amount
of data would leave us bewildered. Instead, we’ll want to focus on higher-level
patterns and statistical data.

In this project we’ll also shift our attention from the very large to the very
small—from planets to molecules. The main goal will be to learn how the familiar
properties of matter arise from motions at the molecular scale.

Molecular Forces

Under ordinary circumstances, molecules are electrically neutral. This implies that
the forces between them are negligible when they’re far apart. However, when two
molecules approach each other, the distortion of their electron clouds usually pro-
duces a weak attractive force. When they get too close, the force becomes strongly
repulsive (see Figure 7.1). For all but the simplest molecules, these forces also de-
pend on the molecules’ shapes and orientations. In this project we’ll ignore such
complications and just simulate the behavior of spherically symmetric molecules
such as noble gas atoms.

Figure 7.1. When two molecules approach each other, there is a weak attractive
force between them. When they get too close, the force becomes strongly repulsive.

Even for the simplest molecules, there is no simple, exact formula for the in-
termolecular force. Fortunately, we don’t really need an exact formula; any ap-
proximate formula with the right general behavior will give us useful results. The
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formula that is most commonly used to model the force between noble gas atoms
is the Lennard-Jones potential,

U(r) = 4≤
∑≥r0

r

¥12

−
≥r0

r

¥6
∏
. (7.1)

This is a formula for the potential energy, U(r), in terms of the distance r between
the centers of the two interacting molecules. The constants r0 and ≤ represent
the approximate molecular diameter and the overall strength of the interaction.
The numerical values of these constants will depend on the specific type of atom;
the table below gives some values obtained by fitting the Lennard-Jones model to
experimental data taken at low densities.

r0 (Å) ≤ (eV)
helium 2.65 0.00057
neon 2.76 0.00315
argon 3.44 0.0105

A graph of the Lennard-Jones potential is shown in Figure 7.2. When r ¿ r0,
the energy is negative and falls off in proportion to 1/r6. This is the correct behavior
of the so-called van der Waals force, and can be derived from quantum mechanics
and electromagnetic theory. When r < r0 the energy becomes positive, rising very
rapidly to give a strong repulsive force as r decreases. John Lennard-Jones chose an
r−12 term to model this repulsive behavior because it was mathematically convenient
in the days before computers. We’ll stick with his choice because it’s as easy to
use as any, and no simple improvement to it would give significantly more accurate
results.

Figure 7.2. The Lennard-Jones potential energy function (equation 7.1).
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Exercise: Find the value of r (in terms of r0) at which the Lennard-Jones function
reaches its minimum, and show that its value at that point is −≤.

Exercise: Consider two molecules, located at (x1, y1) and (x2, y2), interacting
via the Lennard-Jones force. Find formulas for the x and y components of the
force acting on each molecule, in terms of their coordinates and their separation
distance r. (Hint: First differentiate the Lennard-Jones function with respect to r,
to obtain the magnitude of the force. Draw a picture, and be careful with minus
signs.)

Units

Once again we can make our lives easier by choosing units that are natural to the
system being modeled. For a collection of identical molecules interacting via the
Lennard-Jones force, a natural system of units would set r0, ≤, and the molecular
mass (m) all equal to 1. These three constants then define our units of distance,
energy, and mass. Units for other mechanical quantities such as time and velocity
are implicitly defined in terms of these.
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Exercise: What combination of the constants r0, ≤, and m has units of time?

Exercise: If we are modeling argon atoms using natural units, what is the duration
of one natural unit of time, expressed in seconds? (Use the values of r0 and ≤ from
the table above. Note that the ≤ values are given in electron-volts (eV), where 1 eV
= 1.60× 10−19 J.)

Exercise: Suppose that an argon atom has a speed of 1, expressed in natural units.
What is its speed in meters per second?

Another quantity that we’ll eventually want to determine for our collection of
molecules is temperature. To define a natural unit of temperature we can set Boltz-
mann’s constant kB (which is essentially a conversion factor between molecular
energy and temperature) equal to 1. In conventional units,

kB = 1.38× 10−23 J/K = 8.62× 10−5 eV/K. (7.2)

I’ll explain later how to actually determine the temperature of a system from the
speeds of the particles.

Exercise: Suppose that a collection of argon atoms has a temperature of 1 in
natural units. What is its temperature in kelvin? (For comparison, the boiling
point of argon at atmospheric pressure is 87 K.)
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Exercise: Repeat the previous exercise for helium, and discuss the result briefly.

Arrays

To simulate the motion of just two noble gas atoms, you could simply modify your
Orbit2 program to use the Lennard-Jones force law instead of Newton’s law of
gravity. Recall that in that program you used the variables x1, y1, vx1, and so on
for the first planet, and x2, y2, vx2, and so on for the second planet. As you can
imagine, this approach becomes awkward if you add more planets (or molecules).
Fortunately, Java (like nearly all programming languages) provides a convenient
method for dealing with a list of similar variables. Such a list is called an array.

A Java array can have up to 231 elements, assuming that your computer has
enough memory. These elements are numbered from 0 up to some maximum value.
To access a particular element of an array, you simply put that element’s number
(which must be an int) in square brackets. For example, if x is an array of 100
numerical values, you can access its elements by typing x[0], x[1], and so on up to
x[99]. The number in brackets is called an index. Because the index of an array’s
first element is zero, the index of the last element is always one less than the size
of the array. (This convention is common to Java, C, and C++. It drives Fortran
programmers nuts, because Fortran array indices start at 1 rather than 0.)

This notation would be no improvement at all if the quantity in brackets always
had to be a literal integer constant. But it doesn’t: You’re allowed to put any integer
variable, or any integer-valued expression, inside the brackets. So, for instance, if
you want to set every element of an array of 100 doubles equal to 42, you could
write something like this:

for (int i=0; i<100; i++) x[i] = 42.0;

Programs that use arrays tend to have lots of for loops. Once you get into the habit
of starting the loop variable at 0 and using a strict < (rather than <=) in the loop
condition, you’ll hardly ever make the mistake of trying to access the nonexistent
array element just beyond the end of the list (x[100] in this case).

Before you can use an array you have to declare it, which you do by putting an
empty pair of brackets immediately after the variable type:

double[] x;

(Any primitive or class type is allowed, so if you ever need to, you could create a
whole array of Plots, for instance.) Notice that the declaration does not specify
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the size of the array. You do this when you actually allocate memory for the array,
using new:

x = new double[N];

In this example I’ve used an integer variable, N, for the size of the array. This integer
is the number of array elements, so the last element will be x[N-1]. Naturally, you’ll
need to initialize N before creating the array.

When you create an array of numerical variables using new, the values of all the
elements are automatically initialized to zero.

The Program Outline

You’re finally ready to start writing the code of a molecular dynamics simulation.
I should warn you that this program will end up being the longest one described
in this manual: over 200 lines when it’s finished. But I’ll make the major design
decisions for you, and guide you through the coding and testing process in stages.

First decision: You’ll simulate a system of noble gas atoms that live in a two-
dimensional “box,” where their motions are confined to a fixed square region in the
xy plane. (A three-dimensional simulation would obviously be more realistic, and
would be only a little more difficult to code, but would be much harder to visualize
and to display on a flat screen.)

Second decision: You’ll use the same general program design as in Pendulum3:
extending a Canvas to draw a picture of the system, and implementing Runnable
to calculate the motions and animate the display. Eventually you’ll add some GUI
controls to a Panel below the Canvas.

With these decisions made, you can go ahead and start writing the program.
Please call it MD.java.

Exercise: Create a new Java source file called MD.java, and type in the outline of
your program as described above. Include declarations for a constructor method, a
run method, a paint method, and a main method.

Third decision: Please use the following instance variable names and values:

int N = 50; // number of molecules
int canvasWidth = 400 // canvas width (and height) in pixels
int pixelsPerUnit = 20 // number of pixels in one distance unit
double boxWidth = canvasWidth * 1.0 / pixelsPerUnit;

The variable pixelsPerUnit determines the scale of your screen representation of
the system; you’ll draw the molecules as circles with this diameter, in pixels. The
variable boxWidth is the width (and height) of the box in natural units, which
needn’t be an integer; notice that I’ve inserted “* 1.0” in the computation to force
Java to do real arithmetic, rather than integer arithmetic in which the remainder
would be discarded.
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It’s worthwhile to pause and think about the two different coordinate systems
that your program will use. Most of the program will work in our natural system
of units in which each molecule is one unit wide. But the program’s paint method,
which actually draws the molecules on the screen, will need to convert these natural
coordinates into pixel coordinates, using pixelsPerUnit as a conversion factor and
rounding to the nearest integer.

Exercise: Add these variable declaration/initializations to your program. Then
add code to the constructor method to set up and display a Frame containing a
Panel containing the Canvas. To make the Canvas visible, set its background color
to something other than the default for your operating system, for example,

setBackground(Color.white);

Also have the constructor create a new thread that will execute your run method.
For now, have run simply print a message to confirm that it’s being called. If you
haven’t already, add code to main to call the constructor method. Compile your
program and check that everything works as expected.

Exercise: Add declarations and new statements for arrays to store the positions,
velocities, and accelerations of the molecules. At the beginning of the constructor
method (before initializing the graphics), add some temporary code to set the po-
sitions of a couple of the molecules to interesting nonzero values. Then add code
to your paint method to draw all the molecules as circles, centered on the cur-
rent position values, with diameter pixelsPerUnit. Test your code, changing the
temporary position values to be sure that the paint method is working properly.

Exercise: Now replace your temporary initialization code with a loop that places
all the molecules in nice rows, with the centers of neighboring molecules separated
by a distance of 1.5. (Call this constant neighborSpace.) This initialization loop
should work for any reasonable values of N and boxWidth. Be sure that all the
molecules are entirely inside the box! Test your program for a variety of values of
N and pixelsPerUnit. What do you think the program should do if the molecules
don’t all fit in the box?

Exercise: If you haven’t already, introduce a bug in your program so that it tries
to access the nonexistent array element x[N]. What happens when you run the
program?

Exercise: Fill in the code of your run method, making it similar to the run method
of your Orbit2 program. A separate method, called doStep, will execute one step
of the integration algorithm. The run method should call doStep about 10 times,
call repaint, and then sleep long enough for the paint method to redraw all the
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molecules. Try 30 milliseconds for the sleep duration. (The optimum sleep duration
and number of steps per animation frame will depend on the number of molecules,
the speed of your computer, and your personal preferences, so you’ll want to come
back and fine-tune these constants later.) Write a temporary doStep method that
simply moves molecule number 0 by a very small amount, so you should see it move
gradually across the screen as the program runs. Compile, test, and debug your
program once again.

Coding the Simulation

With your program’s basic outline and graphics code in place, you’re now ready
to write the code for the simulation itself. Please use the Verlet algorithm, with a
fixed time step of 0.02. (This is another constant that you may need to change later.
In theory it would be better to use a variable time step, but the coding needed to
optimize the time step isn’t worth the trouble at this stage.)

In your doStep method, be sure to implement the Verlet algorithm in the same
way as in the previous project: Update the positions, and update the velocities
half-way, using the old acceleration values. Then call a separate method (for clarity,
since it will be rather long) called computeAccelerations, which will update the
accelerations. Finally, finish updating the velocities using the new accelerations.

The computeAccelerations method must have two parts: one to calculate the
accelerations from collisions with the walls of the box, and one to calculate the
accelerations from collisions between molecules. The collisions with the walls are
potentially trickier, especially if we want infinitely stiff walls that produce instanta-
neous changes in velocity. Instead, it’s easier to make the walls “soft,” so the force
they apply increases gradually as the edge of a molecule moves farther into the wall.
A linear “spring” force works well; here is a code fragment that implements such a
force for the vertical walls:

for (i=0; i<N; i++) {
if (x[i] < 0.5) {

ax[i] = wallStiffness * (0.5 - x[i]);
} else

if (x[i] > (boxWidth - 0.5)) {
ax[i] = wallStiffness * (boxWidth - 0.5 - x[i]);

} else
ax[i] = 0.0;

}

Here wallStiffness is the “spring constant”; a value of 50 in natural units works
pretty well. Notice that since m = 1, the force on a molecule is the same as its
acceleration.
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Question: Why does the first if statement in this code test whether x[i] is less
than 0.5, rather than testing whether x[i] is less than 0?

Exercise: Write the code of doStep, and the code to handle collisions with the
walls of the box, as described above. To test your code, give molecule 0 an initial
vx value of 1. You should see it bounce back and forth between the two vertical
walls. Be sure to insert similar code for collisions with the horizontal walls.

Exercise: Now add the code to handle molecular interactions. You’ll need a double
loop over all pairs of molecules:

for (i=0; i<N; i++) {
for (j=0; j<i; j++) {
// compute forces between molecules i and j
// and add on to the accelerations of both
}

}

To compute the force components, use the formulas you worked out at the beginning
of this project. Be careful with minus signs. Then compile your code, run it, and
enjoy the show!

Optimizing Performance

Ninety-five percent of the time, you shouldn’t worry about writing code that will
run as fast as possible. It’s much more important to make your code simple and
easy for a human to read and understand. Your time is more valuable than the
computer’s!

However, your doStep and computeAccelerations methods fall in the other
five percent. These methods contain loops that execute the same code thousands
upon thousands of times. Any effort that you spend speeding up the code inside
these loops will be rewarded in proportion.

Exercise: (In this exercise you will estimate how many times the code within these
loops is being executed. Please assume that the various constants are set to the
values that I’ve recommended above, even if you’ve changed them in your program.)
A typical molecule in this simulation might have a speed of 1 in natural units. How
many units of time will it take this molecule to cross from one side of the box to
the other (assuming no collisions along the way)? How many calls to doStep are
required for such a one-way trip? During this same time, how many times will the
code within each of the loops in doStep be executed? How many times will the
code within the double loop in computeAccelerations be executed? How many
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times will your paint method call fillOval? (Please show your calculations and
answers below.)

Here, then, are some tips for optimizing the performance of your MD simulation:

• Don’t even think about optimizing performance until after you’re sure that your
program is working correctly.

• Don’t worry about optimizing code that isn’t executed at least thousands of
times per second.

• The doStep method makes repeated use of the combinations dt/2 and dt2/2. So
compute these quantities once and for all in your program’s initialization section,
storing them in instance variables.

• When you compute the Lennard-Jones force, avoid using the Math.pow and
Math.sqrt functions. Since only even powers of r appear in the force, you can
work with r2 (or better, 1/r2) instead of r. Cube 1/r2 to get 1/r6, then square
that to get 1/r12. Use intermediate variables where necessary to avoid repeating
calculations.

• To speed up the force calculations even more, don’t bother to compute the force
between two molecules when they’re farther than (say) 3 units apart. (Be sure
to test whether they’re too far apart in a way that avoids calculating a square
root.)

• A brute-force way to speed up the simulation is to increase the value of dt.
Naturally, this will also increase the truncation error. Don’t try this until later,
when you’ll have a way of checking whether energy is approximately conserved.

• Although you probably can’t do much to speed up the graphics, be aware of the
fact that graphics may be a major performance bottleneck. Try adjusting the
number of calculation steps per animation frame, and the sleep duration, to see
if these constants affect the performance. Remember that the human eye can’t
follow more than about 30 animation frames per second, and there’s no point
in redrawing molecules so frequently that they hardly move between one redraw
and the next.
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Exercise: Spend some time optimizing the performance of your program, and
describe the effects in the space below. Which changes seem to make the most
difference? After optimizing, how large can you make N and still get reasonably
smooth animation?

GUI Controls

Your program still lacks two important features: It doesn’t let you control the
simulation in any way while it is running, and it doesn’t give you any quantitative
data to describe what’s going on. You could add all sorts of features of both types.
The instructions given here describe only the essentials.

First, you need to create a Panel to hold the GUI controls; this Panel can also
hold a separate Canvas for text output. So go back and add code to your constructor
method to create a new Panel, add it to the bottom (BorderLayout.SOUTH) of
your Frame, and set its layout to GridLayout(0,1), so its contents will be stacked
vertically.

You can create a separate Canvas for text output by using an anonymous inner
class:

dataCanvas = new Canvas() {
public void paint(Graphics g) {

g.drawString("Hello, world!", 5, 15);
}

};

Add this Canvas to your new Panel; the GridLayout will automatically size it to
fill the width of the Frame and give it the same height as the next thing that’s
added.

That next thing should be yet another Panel, which will hold several Buttons.
First, put in a Button to start and stop the simulation. Then put in a pair of
Buttons to increase and decrease the system’s energy. A good way to do this is to
multiply or divide the velocities of all the molecules by 1.1.

Exercise: Add all the GUI features just described to your simulation. Test the
buttons to make sure they work.
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Question: Describe what happens when you continually remove energy from the
system. How do the molecules arrange themselves? (Sketch a typical arrangement.)
What happens when an isolated molecule hits a large group of molecules?

Question: Describe what happens when you continually add energy to the system.

Exercise: Play with your program some more, perhaps trying different numbers
of molecules, changing their sizes in relation to the box, and using the buttons to
add and remove energy. Describe at least one other interesting phenomenon that
the simulated molecules exhibit.

Data Output

What kind of data should you collect from this simulation? Energy is always a good
place to start.

To compute the kinetic energy you might as well use a new method; please call
it computeData. In it, use yet another for loop to add up the kinetic energies of all
the molecules and store the sum in an instance variable for later output. Call this
method from your run method every time you call repaint (that is, about once for
every ten calls to doStep).
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To compute the potential energy, it’s easiest to add a few lines of code to your
computeAccelerations method. Be sure to include both the Lennard-Jones inter-
molecular potential energy and the “spring” potential energy associated with inter-
actions with the walls (1

2
kx2, where k is the spring constant and x is the amount

of compression). To be absolutely precise, you should add a small constant to the
Lennard-Jones energy to compensate for the fact that you’re setting the force to
zero beyond a certain cutoff distance.

Now modify the paint method of dataCanvas to display the kinetic energy, po-
tential energy, and total energy, to four decimal places each. You’ll also need to call
dataCanvas.repaint from your computeData method. Because the paint method
is actually called from a separate thread, you might find that it sometimes catches
the energy values while your calculation thread is still in the middle of computing
them. You can solve this problem by using local variables for the computations
and copying the results to the instance variables only when the computations are
complete.

Exercise: Add the code just described to your program, and check that the energy
values are reasonable. About how much does the total energy fluctuate? (Because
the energy can be positive or negative, please describe the fluctuation as an absolute
amount, not as a percentage.) What about the kinetic and potential energies? What
happens if you increase the value of dt?

Another variable of interest is the temperature of the system. For a collection
of N classical particles, the equipartition theorem tells us that each energy term
that is quadratic in a coordinate or velocity (that is, each “degree of freedom”)
has an average energy of 1

2
kBT , where kB is Boltzmann’s constant and T is the

temperature. In two dimensions each molecule has only two translational degrees of
freedom (vx and vy), so the average kinetic energy per molecule should be 2 · 1

2
kBT .

Thus, in natural units where kB = 1, the temperature is precisely equal to the
average kinetic energy per molecule.

In a macroscopic system with something like 1023 particles, the average kinetic
energy per molecule wouldn’t fluctuate measurably over time. In your much smaller
system, the kinetic energy fluctuates quite a bit. To get a good value of the tem-
perature, therefore, you need to average not only over all the molecules but also
over a fairly long time period. This requires just a little more computation.
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Exercise: Add code to your program to compute and display the average tempera-
ture of the system. You’ll need a variable to accumulate the sum of the temperatures
computed at many different times, and another variable to count how many values
have been added into this sum so far. Increment these variables in your compute-
Data method, then divide to get the average when you display the temperature
in the paint method of dataCanvas. You’ll need to reset both of these variables
whenever energy is added to or removed from the system. It’s also a good idea to
add a button that manually resets the variables. Test your code and check that the
results are reasonable.

In a similar way, you can also compute and display the average pressure of the
system. In two dimensions, pressure is defined as force per unit length.

Exercise: Add code to your computeAccelerations method to compute the total
outward force exerted on the walls of the box, and hence the instantaneous pressure
of the system. Use this result to compute and display the average pressure over time,
just as you did for the temperature. (If there isn’t enough space in dataCanvas, you
may omit the kinetic and potential energies from the display.) To check that your
results are reasonable, recall that in the limit of low density (where the distance
between molecules is large compared to their sizes), the pressure is given by the
ideal gas law: P = NkBT/V . (In two dimensions, V is actually an area.) Set N and
pixelsPerUnit so the density of your system is reasonably low, add energy until
the molecules are behaving like a gas, and compare the pressure of your system to
the prediction of the ideal gas law.

Exercise: Add one more Button to your program, to print the temperature, pres-
sure, and total energy values in your command window when it is pressed. This
will allow you to record data for later analysis. Check that it works.

Congratulations! Your molecular dynamics simulation program is finished. Now
would be a good time to clean up the code and add more comments if necessary.
Then get ready to use your program for a systematic numerical “experiment.” You’ll
be studying a system of a fixed number of molecules, in a fixed volume, over a wide
range of temperatures. The number of molecules should be at least 100, but feel free
to use more if your computer is fast enough. The volume should be large enough to
give the molecules plenty of space: at least 10 units of volume per molecule. Before
you start to take data, fine-tune your program and check that everything is working
correctly.

Exercise: Setting N to at least 100 and the volume to at least 10 units per molecule,
use your simulation to determine the energy and pressure as functions of temper-
ature over a wide range of temperatures, from about 0.0001 to 1.0, with enough
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intermediate points to produce smooth graphs. Before recording each data point,
be sure to let the system equilibrate long enough to give reasonably stable values
of the temperature and pressure. Also please make some notes to describe the
system’s appearance at various temperatures. Copy your program’s output into a
spreadsheet and use the spreadsheet to plot graphs of E vs. T and P vs. T . Print
the data and graphs and attach them to your lab report. Discuss these graphs in as
much detail as you can, correlating them to your verbal notes. How does the pres-
sure compare to the prediction of the ideal gas law? How does the system’s heat
capacity behave in the various temperature regions, and how does this behavior
relate to what you learned about heat capacities in introductory physics?
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Project 8: Random Processes

Many physical systems, such as the molecules modeled in the previous project, are so
chaotic that the motions might as well be random. But in that case, why should we
even bother to calculate the actual trajectories? For many purposes we can get away
with substituting fictitious “random” behavior for the actual behavior of a system.
Randomness is also an intrinsic property of quantum mechanical measurements, for
instance, of the time when a nucleus decays.

In this project you will write several short computer programs that use computer-
generated “random” numbers to model simple physical systems. Programs that use
random numbers to choose among various possible outcomes are called Monte
Carlo simulations, after the famous European gambling resort.

Computer-Generated “Random” Numbers

Java comes with a built-in function called Math.random(), which returns a “ran-
dom” number (of type double) between 0 and 1 each time it is called. Before using
these numbers in physics simulations, it’s a good idea to get some feel for what
they’re like.

Exercise: Write a short Java program called RandomTest that prints out the values
of 20 successive numbers returned by Math.random(). Feed the numbers directly
to println, without any rounding. Do the numbers appear random to you? How
can you tell?

Question: If you run your RandomTest program a second time, do you get the
same sequence of numbers, or a different sequence?

Often we’ll want random numbers that span a range other than 0 to 1; a common
need is to choose a random integer within a certain range. You may be interested
to know that although Math.random can (very rarely) return a value of exactly
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zero, it will never return a value of exactly 1. This means that if you multiply a
Math.random result by N and then round down, you’ll get a random integer between
0 and N − 1, inclusive.

Exercise: Add code to your RandomTest program (without deleting the code that’s
already there) to obtain and print the values of 50 random numbers (digits) in the
range 0 to 9 inclusive. Count the number of times each digit occurs, and write the
results of your counts below.

Another common need is to generate random points in some region of space, in
two or more dimensions.

Exercise: Add code to your RandomTest program (without deleting the code that’s
already there) to generate 1000 random real-number (x, y) pairs and display them
in a Plot. The plot’s gridlines should divide it into ten equal-size units in each
direction. Print the plot and include it with your lab report.

Question: How many points, on average, do you expect to appear in each of the
100 grid squares of your plot? What are the approximate maximum and mini-
mum numbers of points that actually appear within the squares? (Please circle the
corresponding squares on your printout.)

Now that you’ve gotten a feel for what Math.random does, here’s the bad news:
The numbers that it returns are not actually random. In fact, each of these num-
bers is computed from the previous one in a completely deterministic way. (The
computer’s clock is used to get the sequence started, so you get a different sequence
each time you run the program. If you ever want to get the same sequence every
time, you can do so using the java.util.Random class.) But the function used
to generate each number from the last is chaotic, so that even a tiny change in
the input produces a substantial change in the output. The function also has the
property that over the long term, it generates numbers that are distributed evenly
throughout the interval from 0 to 1. But the function is not guaranteed to return
numbers that are sufficiently random for all purposes. In particular, despite the
appearance of your plot, this function is not guaranteed to generate evenly dis-
tributed points in higher-dimensional spaces. In recognition of these imperfections,
computer-generated “random” numbers are often called pseudo-random num-
bers.

In this course we’ll ignore this potential pitfall and assume that the numbers
returned by Math.random are sufficiently random for our purposes. For research-
quality work, however, you should always use a better pseudo-random number gen-
erator than Math.random. For an excellent discussion of this problem and several
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examples of much better generators (coded in C++), I recommend the book Nu-
merical Recipes by Press, et al.

Expansion of a Gas

Consider the situation shown in figure 8.1: A box is divided into two sections of
equal size, separated by a partition. On one side of the partition is a gas of n
molecules; on the other side is a vacuum. We then puncture the partition and allow
the molecules to pass from one side to the other. What happens to the number of
molecules on each side as a function of time?

Figure 8.1. All the molecules start on the left side of the partition. What happens
when we puncture the partition and let the molecules travel back and forth?

To answer this question we could write a full-blown molecular dynamics simula-
tion. Or we could just recognize that for our purposes the motions will be essentially
random, and say that each of the n molecules has an equal probability of switching
sides during any short time interval.

Exercise: Write a program called TwoBoxes to simulate the behavior of this system.
Use the variables n for the total number of molecules and nLeft for the number that
are currently on the left side of the box. In each step of “time,” choose a molecule
at random and move it to the other side of the box (by increasing or decreasing
nLeft by 1). To determine which side your randomly chosen molecule is on, you
can simply assume that the first nLeft molecules are on the left and the rest are on
the right. The output of your program should be a plot of nLeft vs. “time.” Turn
in a printout of this plot for n = 1000.

Question: Why did I put the word “time” in quotes? Can you use this simulation
to determine the amount of time (in seconds) before about half the molecules will
be on each side of the box?

Notice from your simulation that even after roughly half the molecules are on
each side of the box, the number on the left side fluctuates significantly. It’s inter-
esting to study these fluctuations in a little more detail.
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Exercise: To study fluctuations around equilibrium, modify your simulation to
start with exactly half of the molecules on each side. Run the simulation for n
equal to 10, 100, and 1000, and in each case, estimate (from the graph) the typical
amount by which nLeft fluctuates away from n/2. Write down these estimated
numbers and discuss them briefly.

Exercise: Now modify your simulation to create a histogram plot, with nLeft on
the horizontal axis and the number of times that that value of nLeft occurs on the
vertical axis. To store the histogram you’ll need an array, whose index runs over all
possible values of nLeft. After each step of the simulation, add 1 to the appropriate
element of this array. To display the histogram, keep track of which array entry is
the largest, and use this value to determine the vertical scale of a new Plot. Run
your simulation again for n equal to 10, 100, and 1000, and briefly describe the
appearance of the histogram plots.

If you’ve studied a little probability theory, you may have already realized that
over the long term, the probabilities of the various possible nLeft values should be
given by the binomial distribution:

Probability =
1
2n

n!
(nleft!)(n−nleft)!

=
1
2n

n!
(nleft!)(nright!)

. (8.1)

For a sufficiently long run, therefore, the values in your histogram should be ap-
proximately equal to this formula times the number of steps in the simulation.

Exercise: Write a static Java function that takes an integer parameter and returns
the factorial of that integer as a double. Test your function by printing (to your
screen) its results for a few different inputs, and write the results below.
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Question: Why is it better to have the function return a double than an int or
a long?

Question: What is the largest integer whose factorial fits into a double? What
happens if you try to compute the factorial of a larger integer?

The previous exercise may have been your first experience with numerical
overflow—attempting to compute a number that is too large to fit into the variable
type being used. In Java, overflow of an integer variable type (including long) can
give nonsensical results. For variables of type double the result is easy to under-
stand, but not very useful. Because the largest allowed double is far larger than
the number of atoms in the observable universe, it is unusual for scientific compu-
tations of observable quantities to overflow as long as double variables are used.
The main exceptions are computations of combinatoric functions such as factorials,
and exponential functions when they are used in similar ways.

To prevent overflow in the following exercise, you can simply limit the value of
n to 100. (With some fancy programming you could actually compute the binomial
distribution for somewhat larger values of n, but don’t bother.)

Exercise: Write a static Java function to compute and return the value of the
binomial distribution as a function of n and nLeft. (Hint: This function should call
the factorial function that you just wrote.) Test your binomial function in a couple
of simple cases, and write the results below.

Exercise: Now use your binomial distribution function to plot the “theoretical”
(long-term average) distribution of nLeft values on your histogram plot. Use a
different color and/or shape to distinguish the theoretical distribution from the
actual distribution. Run the simulation for n = 10 and 100, with enough “time”
steps to produce reasonably good agreement between the actual and theoretical
distributions. Print the plot for n = 100 and label it appropriately.
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Random Walks

Next let us consider the erratic motion of a single microscopic particle. The particle
could be a gas molecule, a dust grain suspended in a fluid, or a conduction electron
in a copper wire. In all these cases the particle collides frequently with neighboring
particles and therefore moves back and forth in a way that appears mostly or entirely
random. Such motion is referred to as a random walk.

The simplest example of a random walk is in one dimension, with steps all the
same size, each step equally likely to be one way or the other. This example is
mathematically similar to the previous simulation of a gas in two boxes.

Exercise: Write a new Java program called RandomWalk.java to model a random
walk in the x direction. During each time step the particle should move one unit
of distance, with a 50-50 chance of moving in the positive or negative direction.
Start the particle at x = 0. Plot a graph of the particle’s position as a function
of time for some fixed number of steps, then repeat the simulation several (20 or
more) times over, plotting all the results on the same graph. Describe the results
in the space below, and turn in a printed graph from a typical run of the program.
As you increase the number of steps in the walk, what happens to the typical net
distance traveled?

Exercise: To quantify your answer to the previous question, modify your program
to calculate the root-mean-square (rms) net distance traveled by all of your random
walkers. This is the square root of the average of the squares of the final positions.
Run your program for several different values of the number of steps in the walk,
and record the results below. Can you guess an approximate formula for the rms
displacement as a function of the number of steps?

Question: Why not simply compute the average net displacement of the random
walkers, rather than the rms displacement?
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Nuclear Decay

A classic example of random behavior is nuclear decay. Each radioactive isotope
has a certain intrinsic probability of decaying per unit time. As far as we can tell,
the time when any particular nucleus decays is truly random.

Exercise: Write a new Java program called Decay.java to model the decay of a
collection of n radioactive nuclei of the same isotope. Let the probability of each
nucleus decaying per unit time be 0.001. During each time step, for each remaining
nucleus, generate a random number to determine whether that nucleus decays. Run
the simulation long enough for at least 90% of the nuclei to decay. The output of
the program should be a graph of n vs. time. Run your program with n initially
equal to 100, and keep a printout of the graph. Repeat for n = 10, 000.

Exercise: Use one of your graphs to determine the approximate half-life of this
isotope. Mark this value on the graph and write the result below.

Question: When n = 10, 000, how many nuclei do you expect to decay (on average)
during the very first time interval of this simulation? Explain.

Exercise: Write a new simulation program (call it DecayDist) to answer the pre-
vious question in more detail. The program should simulate only the very first time
interval of the decay of 10,000 nuclei, where each nucleus has a probability to decay
of 0.001. However, the program should repeat this one-time-interval “experiment” a
hundred or more times, and plot a histogram of the results, so you can see in detail
how the actual number of decays tends to fluctuate around the average expected
number.

After a sufficiently large number of trials, the histogram plotted by your Decay-
Dist program should take on a well-defined shape. And as you might guess, there
is a fairly simple formula for this shape. If the average expected number of de-
cays is λ, then the probability of actually getting k decays is given by the Poisson
distribution:

Probability =
1
k!

λk e−λ. (8.2)
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Exercise: Using pencil and paper (in the space below), sum the Poisson distribu-
tion over all possible k values, and interpret the result.

Exercise: Add a static function to your DecayDist program to compute the Pois-
son distribution, and use it to plot the “theoretical” shape of your histogram along
with the actual histogram. Once everything works, print a graph of the results and
turn it in with your lab report.
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Project 9: The Ising Model

Systems at Fixed Temperature

As you saw in Project 7, physical systems tend to behave more randomly at higher
temperatures. This fact is summarized in an amazingly simple formula, which says
that at temperature T , the probability of finding a system in any particular state
with energy E is proportional to the so-called Boltzmann factor:

Probability ∝ e−E/kBT . (9.1)
The constant of proportionality depends on T but is the same for all states, so
a higher-energy state always has a lower probability than a lower-energy state.
Notice, however, that the probabilities vary much more dramatically at low T than
at high T . In the limit T → 0, even the tiniest increase in E causes a dramatic
decrease in the probability, so the system is virtually certain to be in whatever state
has the very lowest energy (the ground state). At sufficiently high T , on the other
hand, there will be a huge number of states with probabilities that are not much
less than that of the ground state, so the system appears to behave much more
randomly as it makes transitions among all these states.

(This discussion assumes that our system is free to exchange energy with its
surroundings—otherwise its energy would be fixed, and all possible states with
that energy would have the same probability. In fact, the very concept of holding a
system at a fixed temperature requires the assumption that the system can exchange
energy with a “reservoir” that is so large that its temperature is unaffected by these
energy exchanges.)

The Boltzmann factor is the basis of an extremely useful algorithm for Monte
Carlo simulation of thermodynamic systems. Suppose that a simulated system is
currently in a state with energy E1. We first use pseudo-random numbers to choose
some other state (state 2) that differs from the current state in some random way
(for example, by moving a randomly chosen molecule by a random displacement).
Suppose that state 2 has energy E2. If E2 < E1, we go ahead and put the system
into state 2. On the other hand, if E2 > E1, we use another pseudo-random number
to decide whether to put the system into state 2, with probability

e−E2/kBT

e−E1/kBT
= e−(E2−E1)/kBT . (9.2)

Either way, we then repeat the process many times over, long enough for the system
to sample a representative collection of states that are typical for our chosen value
of T . This algorithm is called the Metropolis algorithm, after the first author of
the 1953 article in which it was originally described.
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Exercise: Consider a very simple system with only two possible states, 1 and 2.
Suppose that E2 > E1, and that the ratio of Boltzmann factors in equation 9.2 is
equal to 1/2. Describe in detail how a simulation using the Metropolis algorithm
might progress, and write down a series expression for the average number of time
steps that it takes before the system makes a transition from state 1 to state 2.
To sum the series, use the formula

P∞
n=1 n rn−1 = (1−r)−2. Thus, explain why

over the long term, the system will behave as predicted by the Boltzmann factor
(equation 9.1).

The preceding exercise can easily be generalized to systems with arbitrary transi-
tion probabilities and arbitrarily many states; again the Metropolis algorithm yields
the correct probabilities, over the long term. However, most realistic systems have
so many possible states that to sample all of them, even with the fastest imaginable
computers, would require far longer than the age of the known universe. Running
the Metropolis algorithm for relatively shorter time periods will sample only a tiny
fraction of the available states, and we have no guarantee that these will be truly
representative of those that would occur in the real world. Still, the Metropolis
algorithm often works remarkably well.

Ferromagnetism

We could apply the Metropolis algorithm to a system of interacting molecules, such
as that studied in Project 7. For simplicity and variety, however, we’ll apply it to
a completely different system: A collection of magnetic particles that are fixed in
space but free to orient themselves in different directions. Most types of atoms are
magnetic, but only a few materials, such as iron, have the additional property that
the atoms have a strong tendency at room temperature to align themselves parallel
to their neighbors. This tendency can cause the magnetic effects to combine rather
than cancel, resulting in a ferromagnet: a material with large-scale magnetic
behavior.

In the simplest possible model of a ferromagnet, each magnetic particle has only
two possible orientations, usually called “up” and “down”. (This model therefore
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mimics some aspects of the behavior of spin-1/2 particles.) To give the particles
a tendency to orient parallel to their neighbors, we assign an energy of −1 unit
for every neighboring pair with the same orientation, and an energy of +1 unit for
every neighboring pair with opposite orientations. This model is called the Ising
model after Ernst Ising, who studied it (without computers) as a graduate student
in the 1920’s.

The magnetic particles in an Ising model can be arranged in a variety of ways.
The simplest option is to line them up in a one-dimensional row, so each atom
has only two neighbors. This arrangement turns out to be rather trivial, however,
so we’ll study the next-simplest arrangement: a two-dimensional square lattice, in
which each particle (except those on the edges) has four nearest neighbors. Fig-
ure 9.1 shows a small example of such a system.

Figure 9.1. One possible state of an Ising model on a 4× 4 square lattice.

Exercise: For the particular state shown in Figure 9.1, count the number of neigh-
boring particles that are aligned parallel and the number that are aligned antipar-
allel. How many units of energy does this system have?

Exercise: Consider a somewhat larger Ising model, with 100 magnetic particles.
How many possible states does this system have? If a computer simulation can
sample a billion states per second, about how long would it take to sample all of
the possible states of this system?

For the Ising model it is especially simple to implement the Metropolis algorithm
described above. We can start with the system in any state at all, and during each
iteration of the algorithm, simply choose a lattice site at random and consider
whether to flip the particle at that site to the opposite orientation. The algorithm
should then steer the system toward states that are typical for the assumed value
of the temperature.
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Simulation Design

Now let’s think about how to implement a computer simulation of the Ising model.

To store the current state of the square lattice of particles you can use a two-
dimensional array of integers. A two-dimensional array is basically just an array
of arrays, and the syntax for creating and accessing such an array is a natural
extension of the one-dimensional case:

int[][] s; // declare the array of lattice sites
s = new int[size][size]; // allocate memory for the array
s[i][j] = 1; // set the value of an array element

Here I’m assuming that size is an integer variable holding the width of the square
lattice; the array indices will range from 0 to size-1. The symbol s could stand for
site or spin. Please use the convention that an s value of 1 corresponds to the “up”
orientation, while an s value of −1 corresponds to the “down” orientation. Then
you can compute the energy associated with any neighboring pair as simply minus
the product of their s values.

To display the current state of the lattice you should use an extended Canvas,
divided into squares to represent the lattice sites. Fill the squares with one color
to represent up and another color to represent down. You’ll want to update the
display continually as the simulation runs, so you’ll need to use a separate thread
for the computation. In many ways, the structure of this simulation will be similar
to that of your molecular dynamics simulation (Project 7).

Exercise: Create a new Java source file called Ising.java, and type in the basic
outline of a program to simulate a two-dimensional Ising model (on a square lattice)
using an extended Canvas and a separate thread to run the simulation. Use a lattice
size of 20× 20 for now, but plan to increase the size later. Include code to initialize
the array of lattice sites so they all point up, as well as a paint method that will
display the lattice correctly whatever its state. Don’t worry yet about putting any
physics into the simulation—just focus on getting the graphics to work. Test your
code to make sure it does work, and describe below how you went about testing it.

Exercise: Before calling your paint method, Java normally fills the entire Canvas
with its background color (which you can set using setBackground). In this case,
however, your colored squares probably cover the entire Canvas, so the background
is superfluous. To eliminate this inefficiency (which can also cause screen flicker on
some systems), please add the following method to your program:

public void update(Graphics g) {
paint(g);

}
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Whenever your Canvas needs to be painted, Java actually calls update. The de-
fault update method draws the background before calling paint, but this version
overrides the default to skip drawing the background.

Implementing the Metropolis Algorithm

Your program’s run method should execute a few hundred iterations of the Metropo-
lis algorithm, then call repaint() to update the screen display. Each iteration of
the algorithm, in turn, consists of the following steps:

1. Choose a lattice site at random.

2. Compute the hypothetical change in the system’s energy if the particle at this
site were to flip its orientation.

3. If the hypothetical change in energy is negative or zero, go ahead and flip that
particle’s orientation. Otherwise, generate a random number between 0 and 1
and compare this to the Boltzmann ratio (equation 9.2) to decide whether to
flip the particle.

To implement step 3, you can use Java’s or operator (||):

if ((eChange <= 0) || (Math.random() < Math.exp(-eChange/T)) {
s[i][j] *= -1;

}

When the condition before the || operator is true, Java doesn’t bother to test
the condition after the operator—so the calls to Math.random and Math.exp will
occur only when necessary. Notice also that in this expression I’ve set Boltzmann’s
constant equal to 1, so T is measured in the same units as the energy.

Exercise: Fill in the code of your program’s run method to implement the Metro-
polis algorithm as just described. Use a separate function (call it deltaE(i,j)) to
compute and return the hypothetical energy change (step 2), given the indices of
the chosen lattice site. Finish coding the rest of the algorithm, but don’t fill in the
code for the deltaE function yet.

Exercise: The main complication in the deltaE function will be dealing with the
cases where the chosen site is on an edge of the lattice. Pretend, for now, that you
can assume the site isn’t on an edge. In the space below, write down appropriate
code for the deltaE function. Be sure to check a few explicit cases to be sure that
your code would work as intended.
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Exercise: When the chosen lattice site is on an edge, you’ll need to substitute a
zero into your formula for the missing neighbor’s s value. There’s no particularly
elegant way to do this—it’ll require a separate if-else statement for each of the
four edges. With this in mind, fill in the code of your deltaE function, so that
it works correctly whether or not the chosen lattice site is on an edge. Test this
function, and describe in the space below how you tested it.

Exercise: You should now have a working simulation of the two-dimensional Ising
model. Run it for several different values of the temperature, keeping the lattice
size at 20× 20 for now. Describe the results (in some detail) in the space below.

Controls and Data Output

By now you’ve probably decided that your simulation needs a scrollbar to control the
temperature; you’re absolutely right. But as long as you’re adding this scrollbar, it’s
a good idea to design a layout that leaves room for some other useful things: a small
Canvas for some text output, and a row of buttons to control the simulation. You
can use a layout similar to the one you used in your molecular dynamics simulation,
with an extra row for the scrollbar.

Exercise: Add a Panel at the bottom of your Frame to hold the items just de-
scribed: a small Canvas for some text output, a Panel to hold a row of buttons,
and a DoubleScroller to control the temperature. Set up the DoubleScroller so
you can adjust the temperature from 0.01 to 10.00 (in natural units), in increments
of 0.01. Also add a button to start and stop the simulation. Test these controls to
be sure they work.

What sorts of data should your simulation collect? There are two primary vari-
ables of interest: the total energy of the system and its total magnetization (which
in natural units is simply the sum of all the s values). Let’s call these variables E
and M .
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Exercise: Add code to your simulation to compute the current values of E and M ,
and also to compute the averages of these variables over the course of the simulation.
Have the program display the current values and the averages (to a suitable number
of decimal places) in the small Canvas that you recently created. Also add a Reset
button to reset the averages, and a Record button to print the current and average
values, along with the temperature, in your command window. Label the methods
that compute and display the data as synchronized, where necessary, to make
sure the program won’t try to display quantities that are in the middle of being
calculated. Test all of these features to be sure they work. In particular, check
that the E and M values are computed correctly in some appropriate special cases.
Describe your tests in the space below.

Larger Lattices and Graphics Performance

Exercise: Now that your program is essentially complete, try gradually increasing
the lattice size. At some point you’ll find that the animation slows down and loses
its smoothness, because it takes too long for the paint method to draw so many
rectangles. At what lattice size does this effect become noticeable?

To improve your program’s graphics performance for large lattices, you can use
a common technique called double buffering. The idea is to store a copy of the
lattice image in an off-screen location, and update this copy from your computation
thread whenever a lattice site changes its color. Then all your paint method has
to do is copy the entire image to the screen—which is much faster than redrawing
the whole image from scratch.

The Java AWT package includes an Image class for storing off-screen images. To
create such an image, you’d think you would call this class’s constructor method,
but for some reason you instead have to say something like

Image offScreenImage = createImage(width,height);

The createImage method actually belongs to the Component class, so you’re basi-
cally associating the image with some other AWT component. I have no idea why
this is necessary, but it’s certainly easy enough to do, especially when the class
that creates the image is itself a descendant of Component. The parameters of cre-
ateImage are the width and height of the image in pixels, which should match the
dimensions of your on-screen Canvas.
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Once you’ve created an off-screen image, you can get its Graphics object with
the instruction

Graphics offScreenGraphics = offScreenImage.getGraphics();

Now you can draw anything you want to this graphics object, for example,

offScreenGraphics.fillRect(x1,y1,dx,dy);

To copy the off-screen image to the screen, your paint method merely has to execute
a single line of code:

g.drawImage(offScreenImage,0,0,width,height,this);

Here the width and height parameters are again the pixel dimensions of the image.
Don’t worry about the purpose of the final parameter, “this”. The only other
subtlety is that you don’t want paint to be called while your computation thread
is in the middle of drawing to the off-screen image, so you should put the fillRect
statement into its own method, and label both this method and your paint method
as synchronized.

If you’d like to see an example of how to implement double buffering, take a look
at the source code of the Plot class. You’ll see that the addPoint method actually
plots the point on an off-screen image, then calls repaint to trigger a call to paint
in the graphics thread. The paint method then simply calls drawImage to copy the
off-screen image to the screen.

Exercise: Implement double buffering in your Ising program, as just described.
Then increase the lattice size to 100 × 100 (or more). You’ll probably also want
to increase the number of Monte Carlo steps between calls to repaint to a few
thousand. Spend some time fine-tuning the simulation’s performance; the faster
your computer, the larger you can make the lattice without having to wait too long
for it to equilibrate to different temperature settings. Once you’re pleased with the
simulation’s performance, run it at several different temperatures and observe the
system’s behavior. In the space below, describe any further observations and details
that you may not have noticed when the lattice was smaller.
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The Ferromagnetic Phase Transition

By now you should have noticed that above a certain temperature, your two-
dimensional Ising lattice does not acquire (or retain) a predominant magnetization
on large scales. That temperature is called the critical temperature. The transi-
tion from a magnetized state at low temperatures to an unmagnetized state at high
temperatures is a type of phase transformation.

Question: In the natural units used by your program, what is the approximate
value of the critical temperature for the two-dimensional Ising model?

Exercise: In a strong ferromagnet such as iron, the typical interaction energies be-
tween neighboring particles are on the order of 0.01 eV (plus for parallel alignments,
minus for antiparallel). For this value of the interaction energy, what would be the
critical temperature of a two-dimensional Ising system, in kelvin? (Please take this
exercise with a grain of salt—real ferromagnets are quite a bit more complicated
than the Ising model. For comparison, however, the actual critical temperature of
iron is 1043 K.)

Exercise: Use your simulation to record the average energy and magnetization of
the Ising system at a variety of temperatures, focusing especially on temperatures
near the critical temperature. Use as large a lattice as you can, without having
to wait too long for the system to equilibrate at each temperature. Copy your
data into a spreadsheet and plot the energy and magnetization as a function of
temperature. Also compute the heat capacity (∆E/∆T ) at each temperature and
plot it. Print out your plots and write enough comments on them to demonstrate
your understanding of the behavior of the Ising model.
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Java Language Words

This table lists all of Java’s 52 “reserved words,” which are part of the language and
therefore may not be used as variable, method, or class names. I’ve tried to group
them into categories, separating those that are used in this manual from those that
aren’t.

Used in this manual Not used in this manual
Operators

new instanceof

Special values
true false null
this super

Flow control statements
if else while for switch case default do

return break continue

Primitive variable types
int long byte short

double boolean float char

Class declaration modifiers
class interface

extends implements

Other declaration modifiers
static public final transient volatile

void synchronized private protected
abstract native strictfp

Error handling
try catch finally throw throws

assert

Package management
import package

Obsolete
goto const
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Java Classes Used in This Manual

This table summarizes the built-in Java classes and interfaces used by the projects
in this manual. A few of them are used only indirectly, but are still good to know
about. For systematic documentation of all the built-in Java classes, see the Java
API Specification at http://java.sun.com/reference/api/index.html.

package java.lang fundamental language features

Object superclass of all other classes

System miscellaneous utility functions
out a PrintStream that writes to the standard output window
exit(0) quit the program in good standing

String a sequence of text characters

Math commonly used math constants and functions
(See the Quick Reference Sheet for details.)

Double utilities for manipulating double values
parseDouble(String) converts the String to a double

Integer utilities for manipulating int values
parseInt(String) converts the String to an int

Thread a separate mini-process that runs in parallel with others
Thread(Runnable) creates a Thread to run the object specified
start() starts the thread
sleep(long) sleeps for the specified number of milliseconds

Runnable interface for objects passed to Thread
run() the method that is called by Thread.start

ArrayIndexOutOfBoundsException self-explanatory

NumberFormatException thrown by Double.parseDouble

InterruptedException thrown by Thread.sleep

package java.io input and output

PrintStream sends text to some location
print(String) prints whatever you give it
println(String) same as print but adds a carriage return
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package java.text text manipulation

DecimalFormat handles formatting of real numbers
DecimalFormat(String) constructor, with specified pattern
format(double) formats the double according to the pattern

package java.awt abstract windowing toolkit

Component superclass of Container, Canvas, Button, Label, Scrollbar
setSize(int,int) sets the width and height in pixels
setBackground(Color) sets the background color
setVisible(boolean) shows or hides the Component
paint(Graphics) override this method to draw stuff
update(Graphics) draws background then calls paint
repaint() tells the AWT thread to call update
createImage(int,int) returns an Image with specified width, height

Container superclass of Frame, Panel
add(Component) adds the Component to the Container
add(Component,int) adds it at specified location, shifting others
add(Component,Object) specifies location in BorderLayout
setLayout(LayoutManager) specify how to arrange the contents

Frame a framed window, with BorderLayout by default
Frame(String) creates a frame with the specified title
pack() sizes the Frame so everything just fits
addWindowListener(WindowListener) respond to window events

Panel an invisible Container, with FlowLayout by default
Panel() creates a new Panel

Canvas a rectangular space on the screen (meant to be extended)
Canvas() creates a new Canvas

Button a push-button that causes some immediate action
Button(String) creates a new Button
setLabel(String) changes the text displayed on the Button
addActionListener(ActionListener) makes the Button active

Label a static text label

Scrollbar a scrollbar with arrows and a slider

Graphics provides methods for drawing lines, shapes, and text
(See the Quick Reference Sheet for the most commonly used methods.)

Image an off-screen image for double-buffering
getGraphics() returns the Graphics object of this Image

Color stores the RGB values for any possible screen color
Color(int,int,int) creates a new color, with R,G,B from 0 to 255

LayoutManager interface implemented by the layouts listed below
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FlowLayout arranges contents like words on a page

GridLayout arranges contents in rows and columns, all the same size
GridLayout(int,int) constructor with number of rows, columns

BorderLayout puts one Component in center, others around edges
NORTH, SOUTH, EAST, WEST, CENTER locations to use in add

package java.awt.event classes for handling user-input events

ActionListener interface for responding to Button presses
ActionPerformed(ActionEvent) called when Button is pressed

ActionEvent contains detailed information about the event

WindowListener interface for handling window events

WindowAdapter minimal implementation of WindowListener
windowClosing(WindowEvent) called when window is closed

WindowEvent contains detailed information about the window event
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algorithm. A step-by-step procedure for carrying out a task, specified in sufficient
detail for a computer to carry out the procedure.

anonymous inner class. A nameless “mini-class” defined within curly braces as
part of a new operation, which either extends or implements the class that is
being instantiated. A common use of anonymous inner classes is to implement
event-listener interfaces for responding to GUI input events.

API. Application Program Interface, a term used to describe any library of classes
and/or functions for performing common tasks—especially for interacting with
low-level operating system software. The standard Java class libraries are an
example.

Apple. A computer hardware and software manufacturer based in Cupertino, CA.
applet. A Java program that is normally downloaded as part of a web page and

run under the control of a web browser. The initial popularity of Java was
mostly due to the ability to create applets.

application. A newer name for a computer program, meant to emphasize that the
program can be applied to do something useful.

array. A list of values, all of the same type. In Java, array elements are numbered
starting with 0, and are referenced using square brackets, for example, x[0].

AWT. The Java Abstract Windowing Toolkit (java.awt), a package of classes
for graphics and graphical user interfaces. Some of the most important AWT
classes are Frame, Panel, Button, Canvas, Graphics, and Color. Newer ver-
sions of Java also include a more sophisticated GUI package called Swing.

Basic. A programming language originally developed for instructional use at Dart-
mouth College in the 1960’s, now available in several commercial versions and
widely used by students and hobbyists. The name is an acronym for Beginner’s
All-purpose Symbolic Instruction Code.

bit. The smallest possible unit of information stored or transmitted in a computer,
having two possible values that are often interpreted as 0 and 1. The word is a
shortening of “binary digit.”

block. A chunk of code enclosed in a set of curly braces.
boolean. A Java primitive variable type that can have just two possible values,

true and false. The if, while, and for constructions all require boolean
values for the test being performed. (Often these values are computed by com-
parison operators such as == and <, without being stored in a variable.)

bug. A mistake in a computer program; also sometimes called a feature. (The
name comes from an incident in the early days of computers when an insect
caused a hardware failure inside a large computer.)
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byte. A small chunk of computer memory (or disk storage) equal to eight bits,
capable of storing 28 = 256 different numbers or characters. It has long been
standard practice to store each character of a text file in one byte of memory,
although the use of two bytes for this purpose is becoming more common as
more attempts are being made to accommodate international character sets.

bytecode. A computer language that is similar to machine language but not
specific to any particular machine. Java .class files are in bytecode format,
which makes them portable between different types of computers but requires
that a bytecode interpreter (the Java Virtual Machine) be used to execute them.

C. A programming language developed at Bell Laboratories in the early 1970’s,
originally intended for low-level system programming but also widely used for
application programming. Much of the basic notation of C is now used by other
languages including Java. C was originally the successor to a long-forgotten
language called B.

C++. A widely used extension of the C programming language that includes
classes, objects, and inheritance. The name is intended to imply that C++ is
one better than C.

call. To invoke, or transfer control to, a method.
cast. A data conversion from one type to another, specified in Java (like in C and

C++) by preceding a variable or expression with the name of the desired type in
parentheses. When a floating-point number is cast to an integer, it is rounded
toward zero. Casting of numerical data types can, of course, result in out-of-
range values, which are normally mapped to the maximum or minimum allowed
value for the resulting type. Java also allows casting between superclasses and
subclasses.

class. A discrete, relatively self-contained, chunk of Java code, stored in a single
file. Each class has its own variables to hold data, and its own methods to
manipulate that data. A Java program normally consists of many different
classes, interacting with each other. Each class (with a few exceptions such
as System) also defines a variable type that can be instantiated using the new
operator to create objects of that type.

class variable. A static variable that is declared outside of a class’s methods,
and is therefore accessible to all those methods, and common to all instances
of the class. Compare local variable and instance variable.

code. An instruction or set of instructions for a computer, in either source or
compiled format.

command. An instruction that you give to a computer, normally meant to be
carried out immediately. Newer operating systems tend to use mouse-driven
commands displayed in menus, while older operating systems relied exclusively
on typed commands.

Command Prompt. On newer versions of Windows, the application that provides
you with an old-fashioned DOS-like command environment.

comment. Any text in the source code of a computer program that is meant to
be read only by humans, not by the compiler. In Java, C, and C++, any text
between /* and */ is treated as a comment. Java and C++ also allow short
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comments that start with // and continue to the end of the current line.
comparison operator. An operator that compares two quantities to each other,

yielding a boolean result. Examples are >, >=, <, <=, ==, and !=.
compile. To translate a computer program (or portion thereof) from source code

into machine language (or bytecode), storing the translated code in a file for
later use.

compiler. A computer program that compiles other computer programs. The Java
compiler is invoked by the javac command.

concatenate. To join two character strings together into a single string. Accom-
plished in Java with the + operator.

constructor. A special type of method that is called when a new object is created.
A constructor method must have the same name as the class it belongs to.

control. A GUI element such as a button, scrollbar, or menu, that allows the user
to control what a program does while it is running.

debug. To find and remove the bugs from a program.
declaration. Code that defines a name to represent a variable or method or class,

and provides other necessary information such as the variable type and method
parameters. In Java, certain other properties such as static and public can
also be specified in declarations.

directory. An older name for a folder, that is, a logical subunit of a disk or other
storage device that can hold files.

disk. A disc-shaped magnetic or optical storage device, used for long-term storage
of computer files. (Flash memory devices are used in the same way, but are
made of silicon chips rather than magnetic material.)

DOS. Short for Disk Operating System, the original operating system developed by
Microsoft for personal computers in the 1980’s. Unlike its successor Windows,
DOS used only a command-prompt user interface.

double. Java’s higher-precision format for storing floating-point numbers, which
can handle a range of approximately ±10308 and a precision of approximately
15 decimal digits.

encapsulation. A design property of most object-oriented programming, whereby
the variables belonging to a class are never accessed directly by other classes;
rather, the class provides methods for reading and setting variables as appro-
priate. This is considered a good practice because it allows the class to be
modified with fewer side effects on other classes that interact with it.

Euler algorithm. A simple and relatively inaccurate algorithm for solving differ-
ential equations, in which the deriviative at the beginning of each time interval
is used to extrapolate to the end of the interval. See Project 4.

Euler-Richardson algorithm. An improvement on the Euler algorithm in which
the derivative at the middle of the time interval is first estimated, and then
used to extrapolate to the end of the interval. Also known as the second-order
Runge-Kutta algorithm. See Project 4.

exception. An error condition that normally must be dealt with in some way,
such as attempting to reference a nonexistent array element or attempting to
convert a string containing nonnumeric characters into a number.
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execute. To carry out the instructions in a computer program.
expression. A formula to be evaluated, often placed on the right-hand side of an

assignment statement.
extend. To change or add to the functionality of a previously existing class. See

Project 5. A Java class may extend only one other class, called its superclass.
false. A Java language word meaning just what it says; one of the possible values

of a boolean variable or expression.
field. Another name for an instance variable.
file. A discrete collection of data, stored on a computer’s hard disk or other storage

device. A file can contain a computer program (in any format), or other data
to be manipulated by computer programs. In the latter case, the file is often
called a document.

final. A modifier used in Java variable declaration-initialization statements to
indicate that the quantity is actually a constant, not allowed to change while
the program is running.

floating-point number. A numerical value stored in a format that is analogous
to scientific notation, with an exponent and a mantissa. (The mantissa of
2.998× 108 is 2.998.) Java provides two different floating-point formats: float
(for single precision, stored in 32 bits) and double (for double precision, stored
in 64 bits).

folder. A newer name for a directory, that is, a logical subunit of a disk or other
storage device that can hold files.

for. The Java word used to define a loop with an initialization statement, a
condition to test, and an increment statement. See Project 2.

Fortran. The first high-level, general-purpose programming language, originally
developed in the 1950’s and still widely used for scientific programming. The
name is short for FORmula TRANslation.

function. Another name for a method, often used when the method returns a
variable or object (i.e., when the method is not void).

graphical user interface (GUI). A way of interacting with a computer based
on graphical elements (windows, menus, buttons, etc.) displayed on the screen,
together with a mouse or other pointing device for user input. Before GUI’s
became widespread in the 1980’s and 90’s, most computers used a command-line
interface similar to the Terminal and Command Prompt applications.

IDE. Integrated Development Environment; a computer application that combines
a programmer’s text editor with additional features for organizing, compiling,
and debugging large software projects. Examples include Eclipse, JBuilder,
and Xcode. Most full-time programmers use an IDE rather than compiling
and running programs from a command-line environment. For small projects,
however, the overhead of using an IDE can be cumbersome.

if-else. The Java words used to execute code only when a certain condition is
true (or false). See Project 2.

implement. To provide the necessary code for the methods that are merely de-
clared in an interface.

import. The Java statement that makes other packages available, when placed
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at the top of a source code file. (The java.lang package is always available,
without using import.)

inheritance. A feature of object-oriented languages by which every class automat-
ically includes all the variables and methods of the class(es) it extends.

instance variable. A nonstatic variable that is declared outside a class’s methods,
and is therefore accessible to all of the class’s nonstatic methods. Compare local
variable and class variable.

instantiate. To “create” (i.e., allocate memory for) an object and call the object’s
constructor method, normally accomplished in Java with the new operator.

int. A Java primitive variable type for storing exact integers in the approximate
range ±2× 109. An int occupies 32 bits of storage.

interface. A special type of class-like entity that declares one or more methods but
does not provide any code to implement these methods; that code is instead
provided by any class that implements the interface. For example, a class can
implement the Runnable interface by providing a run method. Although a
Java class may extend only one other class, it may implement arbitrarily many
interfaces.

interpreter. A computer program that translates other computer programs into
machine language and causes the translated instructions to be executed “on the
fly,” rather than storing the translated instructions in a file for later use (as a
compiler would). Running a program through an interpreter is usually slower
than compiling it first and then running the compiled code directly.

Java. 1. A programming language, introduced by Sun Microsystems (now Oracle)
in 1995, whose syntax resembles that of C and C++ but whose deeper fea-
tures differ significantly from these languages to allow better security, platform-
independent code, and easier development of large software projects. 2. The
Java Virtual Machine, a software system that interprets and runs bytecode,
which has normally (but not necessarily) been generated by compiling pro-
grams written in the Java language. Often invoked by the java command. 3.
A standard collection of software libraries, now consisting of nearly 4000 classes,
that is distributed and installed along with the Java Virtual Machine.

Javascript. A computer language that is often confused with Java, due to the
unfortunate decision to give it a similar name. Javascript is a language used to
give web pages various dynamic features such as graphics that change as the
user moves the mouse cursor. Javascript code is normally embedded within the
html code in a web page, to be interpreted and executed by the web browser.
Java applets can also add dynamic features to web pages, but are more self-
contained and far more powerful than Javascript enhancements.

launch. To begin running a program.
library. A collection of computer software for performing common tasks, which pro-

grammers can incorporate into their own higher-level programs. Current ver-
sions of Java include a standard library of approximately 3000 classes (grouped
into packages), and additional libraries are available for more specialized uses.

Linux. An operating system for personal computers that mimics Unix, developed
by a dispersed community of programmers and distributed under an open-
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source license.
Literal. In the code of a computer program, an explicitly provided value (as

opposed to a variable name or expression), such as 42 or 3.14 or “Hello, world!”.
local variable. A variable that is declared within a method, and is consequently

“visible” only within this method. If a variable is needed only within one
method, it is safer to make it a local variable. Compare instance variable and
class variable.

long. A Java primitive variable type for storing exact integers in the approximate
range ±9× 1018. A long occupies 64 bits of storage.

loop. A block of code that is executed repeatedly, as long as some condition remains
true. Java’s while and for constructions define loops.

machine language. The language (essentially of 1’s and 0’s) that a computer’s mi-
croprocessor chip can execute directly. Humans rarely write programs directly
in machine language.

Macintosh. A brand of personal computer made by Apple, first introduced in 1984.
Also, the operating system (abbreviated Mac OS) that runs on these computers,
which was the first widely used operating system to employ a graphical user
interface.

main. The name of the method in a Java (or C or C++) program where execu-
tion automatically begins. More precisely, the command java MyClass causes
execution to begin at the main method of class MyClass (even if the program
includes other classes with their own main methods).

memory. The portion of a computer that is used for temporary storage of programs
and data, consisting of silicon chips. While a program is running, its machine
code and the values of all its variables are normally stored in memory.

method. A chunk of Java code that carries out a specific task. Also sometimes
called a function, subroutine, or procedure. A method can optionally have one
or more input parameters (variables of any type), and can optionally return a
value of any type.

Metropolis algorithm. A widely useful Monte Carlo algorithm for simulating
systems at fixed temperature. See Project 9.

Microsoft. A monopolistic software company based in Redmond, WA. Products
include the Windows operating system and the application programs Word,
Excel, and PowerPoint.

Monte Carlo simulation. A computer simulation in which pseudo-random num-
bers are used to choose among different possible outcomes.

new. The Java language word used to create a new object.
object. An instance of a class, created (in Java) using the new operator. When a

program uses multiple objects of the same class, each instance has its own set
of instance variables.

object-oriented programming. The practice of using classes and objects to
break large programming projects into smaller, more manageable pieces that
can be written, tested, and debugged more or less independently. Often abbre-
viated OOP.

operating system. The low-level software that manages basic tasks on a com-
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puter, such as launching application programs and keeping track of files stored
on disks. Examples include Unix, Linux, MacOS (including OS X), DOS, and
Windows.

operator. A symbol, symbol combination, or language word that specifies some
computational operation. Examples in Java include the assignment and short-
cut operators ( = += -= *= /= ++ -- ), arithmetic operators ( + - * / ), com-
parison operators ( == != < > <= >= ), boolean operators ( && || ! ), and in-
stantiation operator (new).

OS X. Version 10 of the Macintosh operating system, which (unlike previous Mac
OS versions) is actually a version of Unix. Pronounced “oh ess ten.”

overflow. The condition that occurs when the result of a numerical computation
is too large to fit into the variable type being used. In Java, overflow of an
integer variable type produces erratic results. Overflow of a real data type
gives “infinity.”

overloading. Using the same name or symbol to mean more than one thing. In
Java the only overloaded operator is +, which is used both to add numbers
and to concatenate strings. Java also allows overloading of method names:
Two different methods can have the same name, so long as they have different
parameter types or different numbers of parameters. An example is the multiple
add methods of the AWT Container class—one that takes a single parameter
and another that takes two parameters.

package. A collection of related classes, usually distributed together. Examples
include java.text, java.awt, and org.opensourcephysics. Classes not declared
to be part of a package automatically become part of the “nameless” package.
(To declare a class to be part of some other package, you use the package
statement.)

parameter. A variable whose value must be provided to a method when that
method is called. In Java, parameters are enclosed in parentheses after the
name of the method, separated by commas from other parameters.

primitive type. A variable type that is fundamental to the language itself rather
than defined as a class. Java provides eight primitive variable types: byte,
short, int, long, float, double, char, and boolean. All other types are
really classes, with their own instance variables that are either primitive types
or other class types.

program. A self-contained collection of computer instructions for accomplishing
some task. The task could be as simple as printing “Hello, world!” or as
complex as simulating Earth’s climate.

prompt. One or more characters displayed by the computer to indicate that it
is ready to accept a typed command (for example, in the Terminal applica-
tion on Mac OS X, or the Command Prompt application on newer versions of
Windows).

pseudo-random number. A number that is returned from a function such as
Java’s Math.random function. Although each such number is computed from the
previous one using a deterministic function, the function is sufficiently chaotic
that we can treat the numbers as “random” for many (though not all) purposes.
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See Project 8.
public. A modifier used in class, method, and variable declarations to indicate

that the thing being declared should be “visible” outside its own package.
return. To cease execution of the current method and go back to executing further

statements in the method that called it. Also, for methods that are not void,
to supply the value that the method is intended to compute. The Java return
instruction accomplishes both tasks, although a void method also returns au-
tomatically after its last statement is executed.

run. To carry out the instructions in a computer program (if you’re a computer),
or to instruct a computer to do so (if you’re a human).

simulation. A computer program that uses the laws of physics (or some approxi-
mation thereof) to simulate the behavior of a physical system as a function of
time.

source code. A computer program (or portion thereof) that is still in the format
in which it was typed by a human, stored in one or more text files. The javac
command compiles Java source code into bytecode.

statement. A small, logically complete unit of code, analogous to a complete
English sentence, that instructs the computer to do something. Although a
typical statement occupies one line of the source code file, Java (like C and
C++) lets you split a statement onto more than one line, or combine multiple
statements on a single line. The end of a statement in these languages is
indicated by a semicolon.

static. A modifier that can be used on Java variables and methods. A static
variable (also called a class variable) is shared among all instances of a class,
rather than being duplicated so that each instance has its own value of the vari-
able. A static method can access only the class’s static variables, not instance
variables.

string. A sequence of text characters, for example, “Hello, world!”. In Java, String
is a special class that is automatically instantiated whenever the code contains
a sequence of characters enclosed by double-quotes. Java prohibits you from
modifying a String once it has been created, but provides a separate string
class (called StringBuffer) whose instances can be modified.

subclass. A class that extends some other class.
Sun Microsystems. A computer hardware and software company based in Santa

Clara, CA, founded in 1982 and acquired by Oracle Corporation in 2010. Per-
haps best remembered for developing Java.

super. This Java language word is used to call methods belonging to a class’s
superclass, even when the present class has overridden those methods. By
itself, super() calls the superclass’s constructor method; to call method xxx,
use “super.xxx()”.

superclass. The class that the present class extends, that is, the class immediately
above it in Java’s class hierarchy. For a class declared with no explicit extends
clause, the superclass is Object.

synchronized. A modifier used in method declarations to ensure that the method
and any others that are also declared as synchronized are never called simul-
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taneously by more than one thread. So before any thread can begin to execute
a synchronized method, any synchronized method (in the same object) that
is being executed by another thread must first terminate.

syntax. The basic rules for composing instructions in a particular computer lan-
guage, somewhat analogous to spelling, vocabulary, and grammar in ordinary
languages.

Terminal. A Macintosh OS X application that accepts and executes Unix com-
mands.

text editor. A program for creating and modifying plain text files such as computer
programs and html files. Such files consist only of characters found on computer
keyboards, with no graphics, font information, or other formatting. Compare
word processor.

this. A Java language word that stands for the present object.
thread. A separate “mini-process” that runs in parallel with other threads that

belong to the same program.
true. A Java language word meaning just what it says; one of the possible values

of a boolean variable or expression.
truncation error. Inaccuracy in a numerical computation that is caused by ap-

proximating derivatives as ratios of differences. Truncation errors can be less-
ened by using smaller increments (such as dt) or by using more accurate algo-
rithms.

try-catch. The Java words used to handle potential error conditions, also called
exceptions.

type. The sort of data that a variable can hold. Java has several “primitive” data
types such as int, double, and boolean. In addition, virtually every Java class
is its own data type, where the data consists of the class’s collection of instance
variables.

Unix. An operating system originally developed at Bell Laboratories in New Jersey,
now found in many versions (including Linux and OS X) and widely used by
scientists and computer programmers.

user. A person who runs and interacts with a computer program.
variable. A discrete chunk of data used by a computer program, with its own

name. In Java, variable names are made of letters, numerals, and the underscore
character. Each variable must be of a definite type—either a primitive type such
as int or double, or a class type such as String or Frame. Access to a variable
is controlled by whether it is a local variable, instance variable, or class variable.

Verlet algorithm. An algorithm for solving Newton’s second law that is useful
when the forces depend only on the positions of the particles, not on their
velocities. Also called the second Taylor approximation (STA). See Project 6.

void. A modifier used in method declarations to indicate that the method does
not return a value.

while. The Java word used to define a loop that executes repeatedly as long as a
certain condition holds true. See Project 2.

Windows. An operating system developed and licensed by Microsoft Corp., now
installed on the vast majority of personal computers worldwide. The name
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signifies that Windows incorporates a graphical user interface, unlike its prede-
cessor, DOS.

word processor. A program that facilitates the creation of text documents that
are formatted to look nice when printed; for example, Microsoft Word.


