
Chapter 3

Electron-Positron Scattering

Particle physicists study a bewildering variety of reactions, using a limited but
versatile set of experimental and theoretical tools. My approach in this chapter
will be to discuss one particular reaction in great detail, using it as a “paradigm”
to introduce you to the most important theoretical tools. Rather than trying to
rigorously derive every formula, I’ll merely show how the formulas are used and try
to explain why they are plausible. Later, in Chapter 4, I’ll present the theoretical
tools in more generality, and show how they can be applied to other reactions.

Our paradigm reaction will be electron-positron scattering, illustrated in
Figure 3.1. It is simply the reaction in which an electron and a positron go in, and
an electron and a positron come out (generally in some other direction). While this
reaction may not be as glamorous as others in which exotic new particles are created,
it has the virtue of being relatively simple, and of involving familiar particles that
are easy to detect.
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Figure 3.1. An electron-positron (e−e+) scattering reaction, viewed in the center-
of-mass frame of reference. Note that the z axis is conventionally taken to point
along the electron’s initial direction of motion, so the scattering angle θ is the same
as the usual polar angle in spherical coordinates.

3.1 The Cross Section

For electron-positron scattering, like most other reactions, the comparison of
theory to experiment centers on the cross section. Experimental physicists measure
the cross section (dividing the observed event rate by the known luminosity of the
collider), while theoretical physicists predict the cross section. More precisely, the
quantity of interest is the differential cross section, dσ/dΩ: the function that, when
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integrated over any range of θ and φ, yields the cross section for scattering into that
range.

For simplicity, let’s assume that our two beam energies are equal (as they are
at most, but not all, colliders). If E denotes the energy of either beam, the total
energy going into the reaction is

Ecm = 2E, (3.1)

where the “cm” subscript indicates that this is the total energy as measured in the
center-of-mass reference frame (which is the same as the laboratory frame). Because
Ecm is generally in the GeV range, it is almost always valid to work in the limit
where the electron mass m (about half an MeV) is negligible compared to E or Ecm.
In this limit, we can treat as a massless particle traveling at the speed of light, and
the differential cross section will be independent of m.

Another helpful simplification is to assume that the electron and positron beams
are unpolarized, that is, that their spin orientations are random. This is true at
some colliders but not all. In addition, we generally assume that the polarizations
of the outgoing particles are not measured, so that σ is the cross section for the
sum of all possible outgoing polarizations.

The unpolarized cross section for electron-positron scattering in the center-of-
mass frame, in the limit E � m, can depend on only two variables: the beam
energy E and the scattering angle θ. Furthermore, the dependence on E is uniquely
determined by dimensional analysis. The cross section must have units of area, or
length squared, and the only length that we can make from E and θ is the particles’
de Broglie wavelength,

λ =
h

p
=
hc

E
. (3.2)

Therefore the cross section must be proportional to λ2, or E−2:

dσ

dΩ
=

1
E2
× (some function of θ). (3.3)

Experiments have confirmed this prediction over a wide range of energies. Loosely
speaking, the higher the energies of the incoming particles, the more likely they are
to miss each other.

The θ dependence of the differential cross section is much more complicated, and
therefore more interesting. Figure 3.2 shows a set of experimental measurements
of the event rate for this reaction, taken at the SPEAR collider at Stanford during
the 1970’s, at Ecm = 4.8 GeV. As you can see, the number of events (and hence the
differential cross section) increases as θ decreases, and goes to infinity in the limit
θ → 0.

The solid curve in Figure 3.2 shows a theoretical prediction for the electron-
positron scattering cross section, first derived by H. J. Bhabha in 1935. Bhabha’s
theoretical formula is

dσ

dΩ
=

e4

32π2E2
cm

[
1 + cos4 θ

2

sin4 θ
2

− 2 cos4 θ
2

sin2 θ
2

+
1 + cos2 θ

2

]
, (3.4)
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Figure 3.2. Measurements of the electron-positron scattering event rate at Ecm =
4.8 GeV, taken at Stanford’s SPEAR collider in the early 1970s. The horizontal
axis is cos θ, so θ increases from right to left. The data are grouped into bins, each
covering a range of cos θ values with a width of 0.1. The sharp cutoff in the data at
| cos θ| > 0.6 is caused by the shape of the detector. The smooth curve shows the
angular dependence predicted by the Bhabha formula, with the vertical scale adjusted
to give a good fit to the data. Adapted from J.-E. Augustin et al., Measurement of
e+e− → e+e− and e+e− → µ+µ−, Phys. Rev. Lett. 34, 233–236 (1975).

where e is the strength of the electron’s charge. Even though the curve looks
simple, the formula is not simple at all! Fortunately, though, the formula has a
simple interpretation, to which we now turn.

Problem 3.1. In Figure 3.2, the experimental data are “binned” into equal-width in-
tervals of cos θ (rather than θ itself). Show that, in the limit where the bin widths are
infinitesimal, this binning should produce a function that is proportional to dσ/dΩ.
(Assume that the differential cross section is independent of the azimuthal angle, φ.)

Problem 3.2. Starting from Bhabha’s formula, find the total cross section for
electron-positron scattering at θ > 90◦, in terms of Ecm and fundamental constants.
Write your answer in terms of the fine-structure constant α = e2/4πε0h̄c, and restore
whatever other factors of h̄ and c are necessary to obtain an answer in SI units (m2).
Evaluate your result numerically at Ecm = 5 GeV and at Ecm = 100 GeV.

3.2 Feynman Diagrams

The interpretation of Bhabha’s formula is a pictorial one, invented by Richard
Feynman in the late 1940’s. Aside from a few multiplicative factors that I’ll discuss
later, Bhabha’s formula is equal to the square modulus of a quantum mechanical
amplitude (a complex number), and this amplitude is equal to the sum of two terms,
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each represented by a Feynman diagram:

Amplitude = + . (3.5)

The first term in Bhabha’s formula comes from the square of the first diagram, the
last term comes from the square of the second diagram, and the middle term comes
from the cross term (or “interference term”) between the two diagrams.

So the diagrams are really a pictorial way of remembering the formula for the
quantum mechanical amplitude for this reaction. But they also provide us with
an interpretation of the formula. Each straight line in the diagrams represents an
electron (if the arrow points up) or positron (if the arrow points down), with the
initial-state particles at the bottom of the diagram and the final-state particles at
the top. The wavy lines represent photons, which in this case are called “virtual”
particles, since they appear as intermediate quantum mechanical states, but are
never actually observed. In the first diagram, the virtual photon is exchanged
between the electron and the positron, while in the second diagram, the electron and
positron annihilate to form a virtual photon, which converts into another electron
and positron. Thus, electron-positron scattering can occur either via exchange or
via annihilation, and both of these processes contribute to the overall probability.
But remember the quantum mechanical rule: To compute the probability (or cross
section), we first add the separate amplitudes together, then square the result:

dσ

dΩ
∝

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

2

. (3.6)

The total probability is not simply the sum of the exchange probability plus the
annihilation probability—there is also the cross term, due to quantum interference
of the exchange and annihilation amplitudes.

If we include the factors omitted from the proportionality in equation 3.6, the
full formula turns out to be

dσ

dΩ
=

1
64π2E2

cm

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

2

. (3.7)

Comparing to equation 3.3, we therefore see that the diagrams themselves must
evaluate to unitless numbers. More importantly, though, each diagram must evalu-
ate to a Lorentz-invariant quantity, while the cross section, being an effective area
in the xy plane, is not Lorentz-invariant. The 1/E2 in the prefactor gives the cross
section the correct units and the correct properties under Lorentz transformations;
I’ll say more about where it comes from in the following chapter. The factor of 64π2

is purely conventional, but has the virtue of simplifying the Feynman rules below.
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Problem 3.3. Plot the θ-dependent part of Bhabha’s formula vs. cos θ, over the
same range of angles shown in Figure 3.2. (Hint: First use trig identities to rewrite
sin2 θ

2 and cos2 θ
2 in terms of cos θ.) On the same graph, plot the sum of the first and

last terms of the formula, omitting the interference term. Discuss whether the data
in Figure 3.2 is sufficiently accurate to detect the quantum interference between the
exchange and annihilation amplitudes.

3.3 Feynman Rules

To associate each diagram with an actual formula for the corresponding ampli-
tude, we use what are called the Feynman rules. The rules tell us to write a brief
formula for each part of a diagram (each external line, each internal line, and each
vertex), then multiply these expressions together to obtain the value of the whole
diagram. This procedure is an example of the general quantum mechanical method
for computing the amplitude of a multi-step process: Multiply the amplitudes for
the subprocesses to obtain the amplitude for the whole process.

But before writing down the Feynman rules, I need to make another simpli-
fication: I’ll neglect the fact that both electrons and photons carry spin angular
momentum, which can point in various directions. Pretending that all particles
have spin zero will simplify the Feynman rules considerably, allowing us to concen-
trate on the essential features dictated by quantum mechanics and special relativity.
Of course, this simplification will also affect the final answer for the cross section;
I’ll describe these effects later.

Let’s start with the Feynman rules for the exchange diagram. Figure 3.3 shows
the diagram, with the amplitude for each of its pieces written alongside. In the
diagram I’ve labeled each vertex with a four-vector position in spacetime, x or y.
I’ve also labeled each external line with a four-vector momentum. (Later we’ll
express these momenta in terms of their components in our coordinate system, for
instance, p1 = (E, 0, 0, E) for the massless ingoing electron.) Notice that the arrows
on the diagram itself do not necessarily indicate the directions of the momentum
vectors, so I’ve added arrows alongside to remind us that all momenta point upward,
forward in time.

Although we could just take the Feynman rules as given, and proceed to calculate
the amplitude for the exchange diagram, I’d like to digress for a moment to discuss
the meanings of the various Feynman rule expressions, and where they come from.
Notice that the rules include three basic types of expressions, corresponding to the
diagram’s external particles, virtual particles, and vertices.

External particles. The Feynman rule for an initial -state particle should be the
amplitude for a particle with a certain momentum to be found at a certain point.
For example, for the initial electron, we want the amplitude for a particle with four-
momentum p1 to be found at the spacetime point x. But this amplitude is simply
the electron’s (time-dependent) wavefunction, e−iωtei�p1·�x = e−ip1·x. Similarly, the
amplitude for the initial positron to be found at point y is e−ip2·y. For a final -state
particle, we want the reverse: the amplitude for a particle at a given spacetime
point to be found with the desired four-momentum vector. According the the usual
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x y
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e−ip1·x e−ip2·y

eip3·x eip4·y
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d4q

(2π)4
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Figure 3.3. Feynman rules for translating the exchange diagram into a quantum
mechanical amplitude, treating all particles as if they were spinless. The labels
x and y represent the four-vector positions of the vertices, while the various p’s
label the four-vector momenta of the ingoing and outgoing particles. The remaining
expressions (e−ip1·x, ig, etc.) represent the Feynman amplitudes for the components
of the diagram.

quantum-mechanical rule, this reversal is given by the complex conjugate. For
instance, for the final electron, the amplitude is (e−ip3·x)∗ = e+ip3·x.

Virtual particles. The Feynman rule for a virtual particle represents the ampli-
tude for the particle to propagate from one spacetime point to another. In general,
for a spinless particle, this amplitude is

DF (x− y) =
∫

d4q

(2π)4
ieiq·(x−y)

q2 −m2
, (3.8)

an expression known as the Feynman propagator. Here m is the mass of the
virtual particle, which for a photon is zero.

How can we understand this expression? One way is to interpret q as the four-
momentum vector of the virtual photon. The factor eiq·x is the amplitude for a
photon at point x to be found with momentum q, while the factor e−iq·y is the
amplitude for a photon with momentum q to be found at point y. We integrate
over all q vectors because quantum mechanics tells us to sum over all the alternative
ways in which the event can occur. The factor 1/q2 (or 1/(q2 −m2) for a massive
particle) must then be the amplitude for a virtual particle to “exist” with four-
momentum q. Notice that this factor would be infinite for a real particle, for which
q2 must equal m2 by the relativistic energy-momentum relation. The closer the
virtual particle is to being real, the larger its amplitude to exist.

We can also think of the Feynman propagator as the quantum mechanical wave-
function of a particle produced at a point, propagating outward according to the
Klein-Gordon equation. For definiteness, let’s imagine that x is the fixed point
where the particle is created, while y is the variable point that is the argument of
the wavefunction. (Interchanging x with y leaves the propagator unchanged, so we
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could just as well imagine the opposite.) You can easily check (see Problem 3.4)
that DF (x − y) satisfies the Klein-Gordon equation everywhere except at y = x.
At y = x, we would have to add an infinite (delta function) potential term to the
Klein-Gordon equation, to represent the disturbance that creates the particle. This
infinite potential term results in an infinite wavefunction at y = x, and indeed,
DF (x− y) is infinite there.

Vertices. The Feynman rule for each vertex in a diagram is simply ig, where g
is called a coupling constant, a number that we must measure. For the actual
electron-photon vertex, the coupling constant would be the magnitude of the elec-
tron’s charge, e, a unitless number (in units where h̄ = c = ε0 = 1). For spinless
particles, however, the coupling constant must have units of mass (or momentum
or energy). In any case, the coupling constant determines the “strength” of the
interaction that allows an electron to emit or absorb a photon.

If we multiply together all the expressions shown in Figure 3.3, we obtain the
amplitude for the exchange process to occur at a particular pair of spacetime points
x and y. But these two points could be anywhere, so to obtain the total amplitude
for the exchange process, we should integrate over all x and y. These integrations
are just another example of summing over all of the alternative ways in which an
event can happen.

Problem 3.4. Show that the Feynman propagator, considered as a function of y
with x fixed, is a solution to the Klein-Gordon equation everywhere except at y = x.
Show that the Feynman propagator is infinite at y = x.

Problem 3.5. Show that the Feynman propagator is unchanged if you interchange
x and y. Discuss whether it is meaningful to ask which direction the virtual photon
travels.

3.4 The Calculation

Applying all the Feynman rules just discussed gives us the total amplitude for
the exchange process (still neglecting spin):

=
∫
d4x

∫
d4y (ig)2 e−ip1·xe−ip2·yeip3·xeip4·y

∫
d4q

(2π)4
ieiq·(x−y)

q2
. (3.9)

Fortunately, it isn’t hard to simplify this expression.
First notice that x appears only in the exponential factors, so the integral over x

yields a four-dimensional delta function:∫
d4x e−ip1·xeip3·xeiq·x =

∫
d4x ei(p3+q−p1)·x = (2π)4 δ4(p3 + q − p1). (3.10)

If we interpret q as the momentum of the virtual photon, then this delta function
tells us that the amplitude is nonzero only when the emission of this photon (at
point x) conserves momentum. Similarly, the integral over y is∫

d4y e−ip2·yeip4·ye−iq·y =
∫
d4y ei(p4−p2−q)·y = (2π)4 δ4(p4 − p2 − q), (3.11)
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telling us that momentum must be conserved when the virtual photon is absorbed
at point y. With both the x and y integrals carried out, the exchange amplitude
becomes

= −ig2

∫
d4q

(2π)4
1
q2

(2π)4δ4(p3 + q − p1) (2π)4δ4(p4 − p2 − q). (3.12)

We can now use either delta function to carry out the q integral. Let’s use the
first delta function, which instructs us to set q equal to p1 − p3 everywhere else in
the integrand:

= −ig2 1
(p1 − p3)2

(2π)4δ4(p3 + p4 − p1 − p2). (3.13)

The remaining delta function now expresses overall four-momentum conservation,
and by convention, this delta function is actually not included in the final amplitude.
We therefore have simply

=
−ig2

(p1 − p3)2
. (3.14)

Because equation 3.14 is written in terms of four-vectors, we can see that the
exchange amplitude is invariant under Lorentz transformations. But we want an
answer that is written in terms of the beam energy E and scattering angle θ, as
measured in the center-of-mass reference frame. Figure 3.4 shows how p1 and p3

are related to E and θ. The denominator of the exchange amplitude is therefore

(p1 − p3)2 = p2
1 + p2

3 − 2p1 · p3

= 0 + 0− 2(E, 0, 0, E) · (E,E sin θ, 0, E cos θ)

= −2E2(1− cos θ)

= −E2
cm sin2 θ

2
,

(3.15)

where in the last line I’ve used a standard trig identity and Ecm = 2E. In terms of
Ecm and θ, then, the exchange diagram is

=
ig2

E2
cm sin2 θ

2

. (3.16)

A very similar calculation (see Problem 3.8) gives for the annihilation amplitude

= − ig2

E2
cm

, (3.17)
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Figure 3.4. For electron-positron scattering in the limit E � m, the electron’s initial
and final four-momentum vectors can be written in terms of E and θ as shown.

independent of θ. Adding this to the exchange amplitude, taking the square modu-
lus, and dividing by 64π2E2

cm (according to equation 3.7), we finally obtain for the
differential cross section

dσ

dΩ
=

1
64π2E2

cm

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

2

=
1

64π2E2
cm

(
g2

E2
cm

)2[ 1
sin4 θ

2

− 2
sin2 θ

2

+ 1
]
.

(3.18)

If electrons, positrons, and photons were truly spinless, then we would expect this
formula to agree with experimental measurements of the electron-positron scattering
rate.

Comparing our final result with Bhabha’s prediction for real electron-positron
scattering (equation 3.4), you can see that there are some similarities and some
differences. Bhabha’s formula is proportional to e4, where e is the strength of
the electron’s charge, but our result instead contains g4, where g is some fictitious
coupling constant. It’s tempting to simply set g = e, but we can’t do that because
g has units of mass (or momentum or energy); you can see this from the four extra
powers of Ecm in the denominator of our formula. This incorrect energy dependence
is a major embarassment, and I’ll discuss it further in the following section. As for
the angular dependence of our result, it is obviously not the same as in Bhabha’s
formula, but notice that the differences are entirely in the numerators of the three
terms (which I’ll also discuss below). The denominators, which come from the 1/q2

in the photon propagation amplitudes, are correct! Note in particular that the first
term is proportional to (sin θ

2
)−4, which diverges as θ → 0. This dependence is the

dominant feature of the cross section at small angles, and agrees with experiment.
It is a general feature of scattering due to a Coulomb 1/r2 force, for instance, in
the classical Rutherford formula for scattering of an alpha particle from a heavy
nucleus.
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Problem 3.6. To carry out the q integral in the equation 3.12, I used the first delta
function. Show that if you instead use the second delta function, you obtain the same
final result.

Problem 3.7. In the first step of equation 3.15, I squared the four-vector difference
p1 − p3 before expressing p1 and p3 in terms of components. Show that you get the
same result if you first subtract the four-vectors component by component, then take
the square modulus of the resulting four-vector.

Problem 3.8. In this problem you will evaluate the annihilation diagram, in analogy
to the evaluation of the exchange diagram presented above.

(a) Label the annihilation diagram with x’s and p’s, and for each part of the
diagram, write the appropriate Feynman amplitude, in analogy to Figure 3.3.
Notice that the plane-wave amplitudes for the external legs of the diagram
associate position vectors with momentum vectors in a way that is different
from the exchange diagram.

(b) Write down the total amplitude for the annihilation process, and simplify it
to obtain equation 3.17. During the calculation, pause to interpret each delta
function verbally.

(c) Would it be correct to say that during the annihilation process, first the initial
electron and positron annihilate into a virtual photon, then the virtual photon
converts into an electron-positron pair? Discuss.

(d) Fill in the remaining steps to derive the predicted cross section, equation 3.18.


