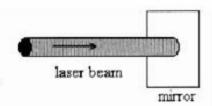
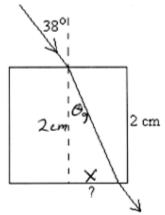

1. a. Unpolarized light passes through three polarizing filters. The angle between the polarizing directions of the first and second filter is 60° . The initial intensity of the light is $8 \times 10^{-2} \text{ W/m}^2$, and the final intensity of the light

(after the third filter) is $5 \times 10^{-3} \text{ W/m}^2$. What is the angle between the polarizing directions of the second and third filters?


$$I_{1} = \frac{1}{2}I_{0}, \quad I_{2} = I_{1}\cos^{2}60^{\circ} = \frac{1}{2}I_{0}\cos^{2}60^{\circ}$$

$$I_{3} = I_{2}\cos^{2}\theta = \frac{1}{2}I_{0}\cos^{2}60^{\circ}\cos^{2}\theta$$

$$= 2\cos\theta = \sqrt{\frac{2I_{3}}{I_{0}\cos^{2}60^{\circ}}} = \sqrt{\frac{2(5\times 10^{-3}W/m^{2})}{(8\times 10^{-2}W/m^{2})\cos^{2}60^{\circ}}}$$


$$\cos\theta = 0.7071 = 2\theta = 45^{\circ}$$

b. A 5000 W laser beam has a radius of 4 mm. Find the force due to radiation pressure on a perfectly reflecting mirror if the beam hits perpendicular to the mirror's surface.

 $I = \frac{power}{avea} = \frac{5000 W}{\pi (0.00 + m)^2} = 9.947 \times 10^7 \frac{w}{m^2}$ So the force is $F = P_{rad} \times area = \frac{2I}{C} \times \pi r^2$ $= 7 F = \frac{2(9.947 \times 10^7 W/m^2)}{3 \times 10^8 W/sec} \times \pi (0.004 m)^2$ $= \boxed{3.33 \times 10^{-5} N}$

2. a. A red laser beam enters the center of a square piece of glass (n = 1.5) at a 38° angle, as shown. If each side of the square is 2 cm, how far from the center of the bottom side does the beam leave the square piece of glass?

$$h_{air} Sih \Theta_{air} = n_g Sin \Theta_g$$
=> $Sin \Theta_g = \frac{n_{air}}{n_g} Sin \Theta_{air} = \frac{1}{1.5} Sin 38^\circ = 0.4104$
=> $\Theta_g = 24.23^\circ$

So
$$X = (2cm) tan \theta_{j} = (2cm) tan (24.23°)$$

$$X = 0.9 cm$$

b. A candle 8 cm high is placed 40 cm from a converging lens that has a focal length of 60 cm. Find the location and height of the image. Is the image <u>real</u> or virtual?

$$h = 8cm$$
 $p = 40cm$ $f = 60cm$
 $\frac{1}{f} = \frac{1}{p} + \frac{1}{k} = 7$ $\frac{1}{k} = \frac{1}{p} + \frac{1}{p} = \frac{p-f}{pf}$

So $i = \frac{pf}{p-f} = \frac{(40cm)(60cm)}{40cm - 60cm} = -120cm$
 $h' = -h\frac{i}{p} = -8cm(\frac{-120cm}{40cm}) = 24cm$

This is a virtual image,

3. a. A diffraction grating has 500 lines per centimeter. A laser shines through the grating onto a screen 3 m away. The distance from the central maximum to the second order maximum is 21 cm. Find the wavelength of the laser light.

$$d \leq \sin \theta = d \left(\frac{Y}{D} \right) = m \lambda \quad \text{with } m = 2 \text{ and } d = \frac{1}{500} \text{ cm} = 2 \times 10^{-5} \text{m}$$

$$So \lambda = \frac{dy}{mb} = \frac{(2 \times 10^{-5} \text{m})(0.21 \text{m})}{2(3 \text{m})}$$

$$\lambda = 7 \times 10^{-7} \text{m} = \boxed{700 \text{nm}}$$

b. Two blue (λ = 450 nm) billiard balls lie on a beach. What is the smallest distance between the balls that will allow them to be resolved by a spy satellite's telescope with a 0.5 m diameter mirror at an altitude of 820 km?

$$S = r \theta_{min} = r \left(\frac{1.22 \lambda}{d} \right)$$

$$S = \left(820 \times 10^{3} m \right) \left(\frac{1.22 \left(450 \times 10^{-9} m \right)}{0.5 m} \right)$$

$$S = 0.900 m$$