College Physics Phys 2010 Exam 3 Fall Semester 2008

- You may use a calculatorThis test is closed book and closed notes.

NAME: Key

Multiple-Choice Questions

E. 58.4 J.

1. A torque of 20.0 N m is applied to a bolt. The bolt rotates through an angle of 180 degrees. The work done in turning the bolt is:

A. 72.5 J.
B. 51.9 J.
C) 62.8 J.
D. 49.9 J.

$$W = TD\Theta = (20)(180 = \pi \text{ radians})$$

 $= 20\pi = 69.8 \text{ J}$

2. A 2.00 kg solid sphere ($I = 2/5 \text{ MR}^2$) with a diameter of 50.0 cm is rotating at an angular velocity of 5.0 rad/s. The angular momentum of the rotating sphere is:

A.
$$0.55 \text{ kg·m}^2/\text{s}$$
.
B. $0.48 \text{ kg·m}^2/\text{s}$.
C. $0.37 \text{ kg·m}^2/\text{s}$.
D. $0.25 \text{ kg·m}^2/\text{s}$.
E. $0.20 \text{ kg·m}^2/\text{s}$.
L= $(0.65)(5) = 0.25 \text{ kg·m}^2/\text{s}$.

3. An ice dancer with her arms stretched out starts into a spin with an angular velocity of 1.00 rad/s. Her moment of inertia with her arms stretched out is 2.48 kg·m². What is her angular velocity when she pulls in her arms to make her moment of inertia 1.40 kg·m²?

A. 2.67 rad/s

B. 2.45 rad/s

C. 2.03 rad/s

D. 1.90 rad/s

E) 1.77 rad/s

$$W_{i} = 1 \text{ rad/s}, \quad T_{i} = 2.48 \text{ kg·m}^{2}$$

$$W_{f} = ? \quad / \quad T_{f} = 1.4 \text{ ks·m}^{2}$$

$$L_{i} = L_{f} =) \quad T_{i}W_{i} = T_{f}W_{f} = >$$

$$W_{f} = \frac{2.48}{1.44} \quad (1) = 1.77 \text{ rad/s}$$

4. Atmospheric pressure is 1.013×10^5 N/m². The pressure of the atmosphere in kPa is:

(A) 101.3.
B. 98.10.
C. 75.40.
D. 66.70.
E. 55.20.
P = 1.013
$$\times 10^5$$
 $\mu/m^2 = 1.013 \times 10^5$ $\rho \alpha$
= 1.013 $\times 10^5$ $\rho \alpha$

5. Water has a density of 1000 kg/m^3 . The column of water that would produce a pressure of $1.0135 \times 10^5 \text{ N/m}^2$ is:

A. 7.3300 m. B. 9.8200 m. C. 10.340 m. D. 15.720 m. E. 20.010 in.

6. A sphere with a diameter of 10.0 cm is completely submerged in water. The buoyant force of the water on the sphere is:

A. 4.25 N. B. 4.75 N. C. 5.13 N. D. 5.75 N. E. 6.00 N.

$$F_B = (mg)_{displaced} = (mater sphere)^3$$

$$(1000)(43\pi \times (0.1)^3)(9.8)$$
= 5.13 N

1. You are installing a spark plug and the manual specifies that it must be tightened with a torque of 45 N.m. Using the data in the drawing, determine the magnitude of force F that you exert on the wrench.

$$T = (0.28)(F)(Siso") = 45$$

=> $F = \frac{45}{(6.28)(Siso")} = \frac{910 \text{ N}}{}$

2. The drawing shows a person of mass 60 kg doing push-ups. Find the normal force exerted by the floor on each hand and each foot, assuming that the person holds this position.

- 3. The disk shown in the figure is set to spin using the torque applied by the rope. The disk can be considered as a uniform solid disk of radius 25 cm and mass of 1.2 kg (rotational inertia = $\frac{1}{2}MR^2$). The force F = 15 N is applied to the rope for a duration of 3 seconds.
 - a) Calculate the torque applied to the disk by the rope.

b) Calculate the angular acceleration of the disk.

T=
$$I d$$
 We need $I : I = \frac{1}{2} mr^2$

$$I = (\frac{1}{2})(1.2)(0.25)$$

$$d = \frac{T}{I} = \frac{3.75}{0.0375} = 7$$

$$I = 0.0375 \text{ kg.m}^2$$

c) If the disk starts at rest, what is its angular speed after 3 seconds?

$$w_{i} = 0$$
 $w_{f} = ?$ $w_{f} = 0$ w_{f

4. An aneurysm is an abnormal enlargement of a blood vessel such as the aorta. Because of aneurysm, the cross-sectional area A₁ of the aorta increases to A₂ = 1.7 A₁. The speed of blood (ρ = 1060 kg/m³) through a normal portion of the aorta is v₁ = 0.4 m/s. Assuming that the aorta is horizontal (the person is lying down), determine (a) the speed of the flow through enlarged cross section, and (b) the amount by which the pressure P₂ in the enlarged region exceeds the pressure P₁ in the normal region.

- a) Use flow rode: $A_1 V_1 = A_2 V_2$ =) $V_2 = \frac{A_1 V_1}{A_2} = \frac{A_1}{1.7A_1} (0.4 \frac{m_1}{s})$ $V_2 = 0.23 \frac{m_1}{s}$
 - b) use Bernoulli's equat:

 P, + \frac{1}{2}(\frac{1}{2} + \frac{1}{2}\tau_1) = P_2 + \frac{1}{2}(\frac{1}{2} + \frac{1}{2}\tau_2) + P_3\tau_2

 but y, = y_2
 - $= \frac{1}{2} P_{2} P_{1} = \frac{1}{2} P_{1} \frac{1}{2} P_{2}$ $= \frac{1}{2} P_{2} \frac{1}{2} P_{2} \frac{1}{2} P_{2}$

5. A 13.2-kg solid ball of density 3540 kg/m^3 is suspended by a rope from a spring scale. The ball is then lowered into seawater of density 1013 kg/m^3 until it is completely submerged. If the scale is calibrated in units of newtons, what is the reading of the scale?

We need to calculate buoyant force = FR

Weight in air = mg = (13.2)(9.8)= 129.4 N

Same as Scale reading