Multiple choice: Each question is worth 5 points.
1. You are enrolled in a class that meets at 8:00 AM every weekday. The subject of this course is:
 - A. philosophy
 - B. psychology
 - C. physics
 - D. phlebotomy
 - E. philology
 - F. none of these

2. A ball is thrown straight up into the air in one-dimensional motion. At the top of its path, which of the following is/are correct?
 - A. The velocity is a maximum.
 - B. The velocity is zero.
 - C. The acceleration is zero.
 - D. The acceleration changes.
 - E. Both B & C.
 - F. Both B & D.

3. Imagine a projectile that is launched into the air. Which of the following variables for the projectile is most directly related to the time the projectile spends in the air?
 - A. The maximum range (x) of the projectile.
 - B. The maximum height (y) of the projectile.
 - C. The angle of the projectile's launch.
 - D. The initial speed of the projectile.
 - E. The mass of the projectile.
 - F. 42

4. An elevator is moving downward, but coming to a stop. You are standing on a scale inside the elevator. While this event is occurring, the scale reads
 - A. exactly your normal weight.
 - B. less than your normal weight.
 - C. more than your normal weight.
 - D. More information is needed to answer this question.
 - E. Less information is needed to answer this question. ☺
 - F. 42

5. For an object to be in equilibrium, which of the following must be true?
 - A. Any velocity must equal zero.
 - B. All forces must balance, so the net force is zero.
 - C. All torques (clockwise and counter-clockwise) must balance.
 - D. A and B are both correct.
 - E. B and C are both correct.
 - F. A, B, and C are all correct.

6. With each step that you take as you walk in the forward direction, which of the following occur?
 - A. The Earth pushes you forward.
 - B. The Earth pushes you backward.
 - C. You push the Earth forward.
 - D. You push the Earth backward.
 - E. A and D are both correct.
 - F. B and C are both correct.
Situation #1 - Fun with mutants (35 points total):

A. [15 points] In your genetics course (ZOOI 8740) you create a new dinosaur, composed of three masses: one at the tip of its tail, one in its tummy/torso, and one in its head (as shown). Given the information shown in the diagram for the various masses and dimensions of the dinosaur, what is the length, \(l \), of the dinosaur's neck?

\[
\begin{align*}
\text{below torques:} \\
T_{cw} &= M_{H} \frac{(3.00 \, \text{m})}{\cos 20^\circ} \\
\lambda &= \frac{M_{T} (3.00 \, \text{m})}{M_{H} \cos 20^\circ} \\
\lambda &= \frac{80 \, \text{kg} (3.00 \, \text{m})}{100 \, \text{kg} \cos 20^\circ} \\
\lambda &= 2.55 \, \text{m}
\end{align*}
\]

B. [20 points] You are pulling your 20.0 kg cat across a surface with a tether, as shown, at a constant rate of 1.45 m/s. If the coefficient of static friction for this surface is 0.25, and the coefficient of kinetic friction is 0.0500, what is the tension in the tether?

\[
\begin{align*}
\text{f} &= \mu_{k} N \\
T \sin \theta &= f \\
T \cos \theta - f &= M_{G} x \\
T_{x} &= f = \mu_{k} N \\
T \sin \theta &= \mu_{k} N \\
\sum_{x} &= T \sin \theta = \frac{T_{f}}{\mu_{k}} \\
\sum_{x} &= T \cos \theta - f = M_{G} x \\
T \tan \theta &= f \\
T \tan \theta &= \frac{T_{f}}{\mu_{k}} \\
\sum_{x} &= T \sin \theta = \frac{T_{f}}{\mu_{k}} \\
\sum_{x} &= T \cos \theta - f = M_{G} x \\
\sum_{x} &= T \tan \theta = f \\
\sum_{x} &= T \sin \theta = \frac{T_{f}}{\mu_{k}} \\
\sum_{x} &= T \cos \theta - f = M_{G} x \\
\sum_{x} &= T \tan \theta = f
\end{align*}
\]

\[
T = \frac{M_{G} g}{\sin \theta + \frac{\cos \theta}{\mu_{k}}} \\
T = \frac{(20 \, \text{kg}) (9.8 \, \text{m/s}^2)}{\sin 15^\circ + \frac{\cos 15^\circ}{0.0500}} \\
T = 10.0 \, \text{N}
\]
Situation #2 - Fun with a bicycle (35 points total):

A. [10 points] On your bicycle, you can achieve constant accelerations of 2.00 m/s². At this acceleration, how long does it take you to achieve a forward velocity of 13.0 m/s?

Assuming starting from rest:

\[v = u + at \]

\[t = \frac{v - u}{a} = \frac{13 \frac{\text{m}}{\text{s}}}{2.00 \frac{\text{m}}{\text{s}^2}} = 6.50 \text{ s} \]

B. [5 points] Your speedometer measures your velocity in miles per hour. Once you are moving at a rate of 13.0 m/s, what does your speedometer read?

\[13.0 \frac{\text{m}}{\text{s}} \left(\frac{3600 \text{ s}}{1 \text{ hr}} \right) \left(\frac{1.0 \frac{\text{mi}}{1000 \text{ km}}} \right) \left(\frac{1.609 \text{ km}}{1 \text{ mi}} \right) = 29.1 \frac{\text{mi}}{\text{hr}} \]

C. [20 points] This same bicyclist is able to launch himself at an initial velocity of 13.0 m/s at an angle of 10.0° degrees above the horizontal from the top of the science building, 20.0 m above the ground. When our hero reaches the ground, how far from the building is he?

\[\vec{A} = \begin{bmatrix} X_0 \cr 0 \end{bmatrix} \quad \vec{u} = \begin{bmatrix} V_{0x} \cr V_{0y} \end{bmatrix} \quad \vec{v} = \begin{bmatrix} V_x \cr V_y \end{bmatrix} \]

\[V_y = V_{0y} - gt \]

\[V_y = \left(V_{0y} \cos 10° \right)t \]

\[V_y = 13 \frac{\text{m}}{\text{s}} \left(\cos 10° \right) \]

\[x = \frac{29.0 \text{ m}}{2.26 \text{ s}} \quad \text{or} \quad 28.9 \text{ m} \]

(depending on round off of t)