3. According to Rutherford, size of nucleus is about \(\frac{1}{100,000} \) that of atom. So if a 1 m nucleus would have an electron 100,000 m away — or 100 km.

13. \(E_n = -\frac{Z^2}{n^2} \) 13.6 eV, \(Z = 1 \), \(E_n = -0.86 \) eV

\[n = \sqrt{-\frac{Z^2}{E_n}} = \sqrt{\frac{1}{13.6 \text{ eV}}} \]

19. Balmer series, \(n_f = 2 \), \(R = 1.097 \times 10^7 \text{ m}^{-1} \)

\[\lambda = \frac{1}{R} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

\(n_i = 1, \lambda = x \)
\(n_i = 2, \lambda = x \)

A more efficient way to do this would be to set \(n \leq 400 \) and solve for \(n_i \).

1st UV \(\rightarrow n_i = 7, \lambda = 397 \) nm

\(\text{Visible} \) \(\begin{cases} n_i = 3, \lambda = 656 \text{ nm} \\ n_i = 4, \lambda = 486 \text{ nm} \\ n_i = 5, \lambda = 434 \text{ nm} \\ n_i = 6, \lambda = 410 \text{ nm} \end{cases} \)

(An infinite \# of \(n \) have UV \(\lambda \)’s)

(Note: I think Wronski uses \(\lambda = 380 \text{ nm} \) for UV, so he gets different answers.)
23a. \(E_n = -\frac{Z^2}{n^2} \) 13.6 eV

So, if \(Z_e = 6 \) and \(Z_H = 1 \), then \(\frac{E_c}{E_n} = \frac{Z_e^2}{Z_H^2} = 36 \)

b. Problems: \(N_f = 3 \), \(N_i = 4 \)

\[
E_n = \frac{-Z^2(13.6 \text{ eV})}{(\frac{1}{3^2} - \frac{1}{4^2})} = 23.8 \text{ eV}
\]

Note: Bok's answer is wrong—it uses the Balmer series with \(n_i = 2 \) and \(n_f = 2 \).

\[
E = \frac{hc}{\lambda} \rightarrow \lambda = \frac{hc}{E} = \frac{1240 \text{ eV nm}}{23.8 \text{ eV}}
\]

This is UV \(\rightarrow 521 \text{ nm} \)

27. \(m_l = 2 \), so the largest \(l \) is \(l = 2 \)

so the smallest \(n \) is \(n = l + 1 = 3 \)

(This takes some thinking. Look at Table 2B.1.)

33. \(l = 2 \)

a. \(\zeta = \frac{m_l h}{2\pi} \) where \(m_l = -2, -1, 0, 1, 2 \) for \(l = 2 \)

b. \(\cos \theta = \frac{L_z}{L} = \frac{m_l h}{2\pi} \)

\[
\frac{\sqrt{L(L+1)}}{m_l} = \frac{2}{\sqrt{6}}
\]

\[\theta = 35.3^\circ\]
37. a. 9 electrons in subshell
\[9 = 2(2l+1) \]
\[\frac{9}{2} = 2l + 1 \]
\[9 - 1 = 2l \]
\[\frac{9 - 1}{2} = l \]
\[4 \leq l \]

So \(l = 2 \)

b. \(n = 3 \), \(l = 2 \), \(s \)
\[3d \rightarrow 4s^{-1} \]

39.

a. \(5s^1 \)
\(l = 0 \), \(n = 5 \)
\(5s \) ok

b. \(1d^1 \)
\(l = 2 \), \(n = 1 \)
\(2 \) NO!

\(n = 1 \) is the lowest level.

\(2(2l+1) = 2(2(2)+1) = 10 \)

\(2 \) NO!

\(50 \) ok

\(10 \) ok

Too many e^\(-1\).

\(\text{Can't have } l > n - 1 \)

d. \(3p^1 \)
\(l = 1 \), \(n = 3 \)
\(18 \) ok

\(50 \) ok

\(18 \) ok

e. \(5f^1 \)
\(l = 4 \), \(n = 5 \)
\(52 \) ok

\(52 \) ok

49. Energy output would equal the difference in energy levels of some \(Z \)-numbered atom:
\(\text{let } 13.6 \text{ eV } = E_0 \)

\[E_K = E_f - E_i = -\frac{Z^2}{r^2} E_0 = -\frac{Z^2}{r^2} E_0 = 52.9 \times 10^3 \text{ eV} \]

\(K \) means the transition from \(n = 2 \) to \(n = 1 \)

\[Z = \sqrt[2]{72} \rightarrow " \text{Hafnium}" \text{ or } \text{Hf} \]
53. From figure 28.42, metastable state is at 20.66 eV, so use photons with this energy:

\[E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} = \frac{1240 \text{ eV} \cdot \text{nm}}{20.66 \text{ eV}} \]

\[\lambda = 60 \text{ nm} \quad \text{(ultraviolet)} \]

55. From figure 28.41, 2nd state → 2.3 eV, 3rd state → 3.0 eV

(from above) \[\lambda_2 = \frac{hc}{E_2} = \frac{1240 \text{ eV} \cdot \text{nm}}{2.3 \text{ eV}} = 539 \text{ nm} \]

\[\lambda_3 = \frac{hc}{E_3} = \frac{1240 \text{ eV} \cdot \text{nm}}{3.0 \text{ eV}} = 413 \text{ nm} \]

61. \[\Delta E = E_1 = -\frac{Z^2}{\pi^2} \quad \text{13.6 eV} = -\frac{1^2}{1^2} \quad 13.6 \text{ eV} \]

So, 13.6 eV necessary to ionize...

(expected) Wavelength: \[\lambda_0 = \frac{hc}{E} = \frac{1240 \text{ eV} \cdot \text{nm}}{13.6 \text{ eV}} \]

\[\lambda_0 = 91.2 \text{ nm} \]

But, we have a Doppler Effect:

\[\lambda_{\text{obs}} = \lambda_0 \sqrt{\frac{1 - u/c}{1 - u/c}} \quad \text{(Solve for } u...) \]
\[
(1 + \text{cosec} \theta) \left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 = \frac{1 + \frac{u}{c}}{1 - \frac{u}{c}}
\]

\[
\left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 (1 - \frac{u}{c}) = 1 + \frac{u}{c}
\]

\[
\left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 = \frac{u}{c} \left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 = 1 + \frac{u}{c}
\]

\[
\left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 - 1 = \frac{u}{c} \left(1 + \left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 \right)
\]

so \(u = c \left(\frac{\left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 - 1}{\left(\frac{\lambda_{\text{obs}}}{\lambda_0} \right)^2 + 1} \right) \)

\(\lambda_{\text{obs}} = 91.0 \text{ nm} \), \(\lambda_0 = 91.2 \text{ nm} \)

then \(u = (-2.2 \times 10^{-5}) \frac{c}{c} = \sqrt{6.60 \times 10^5 \text{ m/s}} \)

Away from you

(This is done all the time in astronomy to detect and measure motion, just by measuring \(\lambda \).)
67. This is a little silly, but it gives you an idea of the enormity of the difference in scale that we deal with in physics.

Speed of the moon, \(v = \frac{\text{dist}}{\text{time}} = \frac{2\pi R}{28 \text{days}} \)

Angular momentum:

\[
L = I \omega = (MR^2) \frac{v}{R} = MVR
\]

\[
L = M \frac{2\pi R}{t} R = \frac{2\pi MR^2}{t}
\]

According to this chapter, \(L = \sqrt{I(l+1)} \frac{l}{2\pi} = \frac{2\pi MR^2}{t} \)

This could get ugly with a quadratic, but \(l \) is going to be very large, so that \(l \approx l+1 \), so \(l(l+1) \approx l^2 \)

\[
\sqrt{l(l+1)} = \frac{4\pi^2}{\pi^2} \frac{MR^2}{t}
\]

\[
l = 4\pi^2 \left(\frac{7.35 \times 10^{22} \text{ kg}}{(6.63 \times 10^{-34} \text{ J}) \left(\frac{3.84 \times 10^8 \text{ m}}{2.4 \times 10^6 \text{ s}} \right)^2} \right)
\]

\[
l = 2.7 \times 10^{16} \text{ kg m}^2 \text{ s}^{-1} \text{ when... very big!}
\]