3. The area of a small slab is \(\Delta x \cdot \Delta t = \Delta x \).

Thus, the total area is

\[
\sum \Delta x \Delta t = \sum \Delta x = x
\]

\(= \text{distance traveled} \)

4. The slope is

\[
\text{slope} = \frac{\Delta V}{\Delta t} = \vec{a}
\]

Thus, slope at \(t = t_0 \) gives acceleration at the time \(t = t_0 \).
Do the same thing as \(3 \). Choose a small slab.

\[\Delta \text{Area} = \frac{\Delta x}{x} \Delta t = \Delta v_x \]

Thus, the total area measures the change in speed from time \(t_1 \) to time \(t_2 \).

Slope = \(\frac{\Delta x}{\Delta t} = v_x \) at the time \(t = t_0 \).