
Introduction

Your True BASIC Free is identical to our powerful full-featured
Language System and will run programs of any size. It only has
two major limitations:

• New or modified programs are limited to 250 lines.

• The utilities used to create free-standing, double-click
applications are not included.

Otherwise, your True BASIC Free is identical to our other Lan-
guage System versions. You are able to run programs of any size,
use libraries and modules, and invoke DO programs. All the True
BASIC statements and functions are included for your use.

The current True BASIC Language System series consists of:

True BASIC Free - MacOS and DOS versions with line limit

True BASIC Student - MacOS and DOS with no line limits

True BASIC Standard - MacOS & DOS with developer tools

True BASIC BRONZE - MacOS, OS/2 and Windows versions

True BASIC SILVER - MacOS, OS/2 and Windows versions

The www.truebasic.com website lists features, specifications,
and prices of each of these editions.

First release - January 1999. © True BASIC Inc. All rights reserved. 1

Many of the concepts and operations described in this guide will
be new to you. To make it easier for you to understand, we use the
following style conventions to make clear the many new concepts
you will encounter:

Important new terms: words in bold type

Variable names: words in italic

True BASIC keywords: ALL CAPS

Program listings: Code font

Items to be typed by user: Code font

Important concepts: x Bold type within lines

Menus & menu commands: MENU font

Names of programs: ALL CAPS

Names of built-in functions: ALL CAPS

This guide frequently refers to the True BASIC Bible. This is an
unabridged listing of all statements and functions found in True
BASIC. It is available in two formats:

CD version: Item 75-001-True BASIC Bible CD

Book version: Item 70-BK31-True BASIC Bible

Both can be ordered from True BASIC Inc., via our website
http:// www.truebasic.com or by phone at 603 298-8517.

True BASIC Free – User Guide 2

http://www.truebasic.com

Contents

1. An Introduction to Programming

2. Why True BASIC?

3. The Parts of True BASIC Free

4. Running Demo Programs

5. Writing and Running Your First Program

6. Modifying and Saving Programs

7. Constants, Variables, and Expressions

8. More on INPUT and OUTPUT

9. Loop Structures

10. Decision Structures

11. Formatting and Printing Your Program

12. Editing Hints and Shortcuts

13. Using and Storing Data

14. Arrays and Matrices

15. Functions and Subroutines

16. Creating and Using Libraries

17. Graphics

18. Sound and Music

19. Correcting Errors and Debugging Your Program

Appendix A: ASCII Character Set

Appendix B: List of True BASIC Statements

Appendix C: List of True BASIC Built-in Functions

True BASIC Free – User Guide 3

1 • An Introduction to Programming
What is a computer program? What is a programming language?
Why should you want to learn to write programs?

A computer program contains the instructions that tell the
computer to do a certain task, such as play a game of football, for-
mat and print a letter, or predict the survival of lemmings over
several generations. People who used the earliest computers had
to know how to write their own programs. There were no stores
down the block where they could buy a ready-to-use package that
would track cash flow for their company.

Today, most people who use computers are not programmers.
Instead, they use application packages such as word proces-
sors, spreadsheets, address organizers, or flight simulators. You
can become a very sophisticated computer user and know nothing
about writing programs.

Yet even if you have no intention of becoming a software devel-
oper or writing complex applications packages, you can still learn
to program and enjoy solving your own problems in your own way.
Why should people learn to program and why would you want to
write your own programs?

There are several personal and practical reasons for learning to
program:

• Acquire training and practice in logical thinking. Many busi-
ness schools continued to teach programming to their students
even after spreadsheets and database packages became widely
available.

• Get a better understanding of how computers work. Everything
a computer does boils down to programmed instructions.

• Create your own solutions to those little tasks that aren’t easily
handled by general-purpose applications. Calculate the results of
a multi-race sailing regatta. Or combine judges’ scores and dis-
tances for a ski jumping meet.

• Explore a new career field. Computer specialists have to start
somewhere. And the computer industry needs “new blood” if we
are to avoid becoming “hostage” again to those few who know how
to program.

• Just have fun! Write a program to simulate a baseball game, or
analyze a bridge hand, or solve a puzzle.

True BASIC Free – User Guide 4

The True BASIC Free package introduces you to programming
format and structures common to today’s structured program-
ming languages. The best way to learn is to sit down at a com-
puter and do all the examples as you go through this book. This
book does not cover all features in-depth, but it will give you a
good start and hint at some of the additional power available with
the True BASIC language.

As the next step in your programming adventure you might want
to consider purchasing a copy of the True BASIC DiscoveryPak
which contains more than fifty ready-to-run programs, covering
subject areas from art to vocabulary.

The DiscoveryPak programs were designed to teach coding con-
cepts as you use them in interesting programs. Creative changes
are suggested for each program.

True BASIC DiscoveryPak, True BASIC, Inc., 406 pp. (ISBN 0-
939553-06-6) Item: 25-DOS&L or 25-MAC&L

Other books available include:
Personal Math and Computing, Frank Wattenberg, MIT Press,
556 pp. (ISBN 0-262-23157-3) Item: 70-BK11
True BASIC by Problem Solving, Brian D. Hahn, VCH Pub-
lishers, 337 pp. (ISBN 3-527-26863-4) Item: 70-BK15
Programming in True BASIC: Problem Solving with Structure
and Style, Stewart M. Venit & Sandra Schleiffers, West Pub-
lishing, 498 pp. (ISBN 0-314-78410-1) Item: 70-BK32

The above books are available directly from True BASIC, where
all the listed titles are carried in stock. Our complete book list
with descriptions and current prices is also found at
www.truebasic.com/books.

True BASIC Free – User Guide 5

DiscoveryPak
52 Ready-to-Run
True BASIC
Programs for
Fun and Learning

http://www.truebasic.com/books

2. Why True BASIC?
True BASIC is the ideal language for the beginning student and
for the sophisticated programmer who wants to solve complex
problems on several different computers. Two key phrases sum
up the benefits of True BASIC over other languages: powerful
simplicity and portability.

Simply Powerful!
• True BASIC is simple enough to let the beginning student write
useful and interesting programs right from the start. True
BASIC’s screen editor makes it easy to read, write, and modify
programs. New programmers can use the simpler features
without knowing anything about the full complexity of the
language.

• The same True BASIC language contains a full range of modern
programming structures. The advanced programmer has access
to such tools as graphics, sound, external libraries, modules, and
full matrix algebra.

• You will never have to unlearn the logic and structures you
learn in True BASIC. Because of its power, True BASIC may be
the only language you ever need, but the skills learned here will
also apply to object oriented or other modern languages.

Portable and Compatible
• True BASIC programs run on any of today’s major computer
systems. (There are versions for IBM and compatible personal
computers, Apple Macintosh, OS/2, Linux, and computers using
the UNIX™ operating system.) You can easily move your
programs from one computer to another. The only differences
you’ll see are in the editing features (and possibly in graphics and
sound depending on the limitations of the computers.)

• True BASIC conforms to American and international
programming standards. BASIC is the most widely used
programming language in the world and is not limited by national
boundaries. There is even a Japanese version of True BASIC that
is designed to fully exploit the personal computers used in Japan.

As a structured language, True BASIC promotes good
programming skills. True BASIC programs are easy to read.
From the beginning, you’ll learn modern looping and decision
structures. You’ll learn about using blank lines, comments, and
indenting to make your programs easy to follow and modify later
in the process.

True BASIC Free – User Guide 6

You’ll also learn how to use functions and subroutines to break
your programs into small, manageable units. These units
simplify your programming task. They let you concentrate on one
problem at a time. They also let you create programs that are
easy for humans to read and understand! (Users of other versions
of BASIC may notice this book uses no line numbers or
potentially confusing GOTO statements. True BASIC allows
these holdovers from an older style of programming, but we do
not recommend them.)

Dartmouth College Professors John G. Kemeny and Thomas E.
Kurtz invented BASIC in the 1960s. The modern True BASIC
language maintains their original philosophy. They designed a
language that was easy for beginners, but provided power for
advanced programmers. In the 1970s, graphics devices appeared
and the concept of structured programming was widely accepted.
At Dartmouth, BASIC continued to grow with these
developments. Unfortunately, some of the earlier versions on the
first personal computers were limited and did not benefit from
new developments. Since 1985, True BASIC has provided an
easy-to-use yet powerful, fully structured language for users of
personal computers.

True BASIC Free – User Guide 7

3. The Parts of True BASIC Free
MacOS
Version

True BASIC Free gives you three working windows. If only one
window is shown when you start True BASIC, you can open the
other two windows by choosing them from the Windows menu.

Source Code Window: Where you write a program. It works
much like a word processor. You can also Open previously writ-
ten True BASIC program files and display the file contents in this
window. You can edit previously written programs and overwrite
the text by using the SAVE command, or keep the original text as
it was, and create a new file of your modified code by using SAVE
AS... in the File menu.

Output Window: This window display the results of a program,
either as text or as graphics. After you write your source code you
choose RUN from the Run menu and, if there are no errors in
your code, the Output Window will open show the program.

Command Window: This window shows a running list of all the
file operations you perform during a session and, if you like to use
shortcuts, will allows you to enter commands that your would nor-
mally have to access through menus.

True BASIC Free only requires 1MB of memory for use. Also, we
recommend that you create a TB folder that contains the items
that come as part of this application as well as folders for the new
program files you create.

True BASIC Free – User Guide 8

Source
Code
Window

Output
Window

Command
Window

PC Version

True BASIC Free for PCs is the DOS version of the True BASIC
Language System. It operates much like the MacOS edition, but
has a different appearance.

The main window contains both a Source Code section and a
Command Window section. The top portion has a scroll bar to
move up and down in your source code. On text that is too wide,
click in the line and move to the right margin of the screen. The
text will scroll horizontally. The F2 function key will move you
from the Source Code to Command Window.

Error messages and text output will appear in the Command Win-
dow. The depth of the Command Window can be modified by typ-
ing a command at the OK> prompt or by using the Split at...
choice in the Options menu.

When you Run a program, the Output Window usually takes over
the entire window. When the program is finished running the
screen reverts its original view.

A listing of the PC Menus and Keyboard Shortcuts is shown on
the next page.

True BASIC Free – User Guide 9

The File Menu – aa¡
Item Keys Function

New aˆ Create a new program file
Open aØ Open a saved program file
Switch aÒ Switch to an open program file
Close a„ Close an open program file
Save aÍ Save the current program file
Save As aÛ Save the current program file under

a different name
Unsave aÓ Delete a program file from the disk
Print a∏ List the current file to a printer
Quit aŒ Exit True BASIC

The Edit Menu – a™
Item Keys Function

Cut aÙ Remove the selected text to temporary storage

Copy aÇ Copy the selected text to temporary storage
Paste a◊ Insert the text from temporary storage at the

current cursor position

Find aÏ Find a specific word or phrase

Find Again aÌ Find the next occurrence of the previously
found word or phrase

Change a‰ Change a specific word or phrase to another

Keep a Retain only a portion of the current
program file

Include none Include a saved file at the current
position of the text cursor

Edit none Edit a specific routine or block of text

Select none Mark a specific block of text

Move To aÁ Move the text cursor to a specific line of text

The Custom Menu – a£
Item Keys Function

Load none Load a library file into the workspace

Forget none Clear all non-essential memory

Script none Invoke a script file

Do none Invoke a preprocessor

Do Format aÎ Invoke the formatting preprocessor

Do Trace none Invoke the tracing preprocessor

The Run Menu – a¢
Item Keys Function

Run aÂ Compile and run the current program

True BASIC Free – User Guide 10

Continue none Continue running the current program

4. Running Demo Programs
True BASIC Free comes with several demonstration programs.
You don’t need to understand how these programs work, but you
can use them to learn how to run a True BASIC program.

To open an existing program, select Open... in the File menu
(point to Open... in the menu bar and hold the mouse button as
you drag down to File). In the dialog box that appears on your
screen, select the Demo Programs folder by clicking on it with the
mouse. Then click the Open button. You’ll now see all the pro-
grams in the Demo Programs folder. Select the program GAL-
TON by clicking on it and then clicking the Open button. (You can
also click twice in rapid succession on the folder or program name
to both select and open it.)
——————————————————————————————

The File menu’s Open... command tells True BASIC to
get a document from the disk and make it the current
program displayed in the editing window.

——————————————————————————————

The program GALTON appears in the window. These are the
instructions that tell the computer what to do. To have the
computer carry out these instructions, choose Run from the Run
menu. When the computer carries out programming instructions
it is said to execute the program.
——————————————————————————————

The Run menu’s Run command tells True BASIC to
execute the program (or carry out the instructions)
currently shown in the editing window.

——————————————————————————————

The GALTON program shows what happens when several balls
drop into a box containing a series of pegs above several vertical
chambers. Each ball begins in the center, but is randomly
deflected by the pegs. The Galton box is often used in the study of
probability.

When you run the program, the editing window disappears and
the program results appear on the full screen. When the program
run is complete, all the menu choices are gray or inactive.

To return to the editing window, click anywhere in the results.
Run the program a few more times and you’ll see randomly differ-
ent distributions of the balls.

To stop the program while it is running, choose Stop in the Run
menu. That returns you to the editing window with the message

True BASIC Free – User Guide 11

“Program stopped” printed at the bottom. Some programs, such
as the BOUNCE demo program, will run indefinitely until you use
the Stop command.

——————————————————————————————

The Run menu’s Stop command stops a program run
and returns to the editing window.

——————————————————————————————

Quitting True BASIC
You’ve now learned how to start True BASIC and open and run
existing programs. When you are finished using True BASIC,
choose Quit in the File menu.

5. Writing and Running Your First Program
Start True BASIC, if you haven’t already, as described in the
preceding chapter. This time, instead of using an existing
program, you’ll create your own in the editing window. If you’ve
just started True BASIC Free, you’ll have a blank editing
window called “Untitled” because you haven’t yet named your
program. If you’ve been running an existing program, choose
New in the File menu to get a blank “Untitled” window.

Creating a Program
Suppose you’ve driven 420 miles on 14.3 gallons of gas. To compute
your gas mileage, you would divide 420 by 14.3. You can write a
program to do this for you. Type the following into the Untitled
window. Press the Return key at the end of each line.

LET miles = 420
LET gallons = 14.3
PRINT miles, gallons, miles/gallons
END

It doesn’t matter whether you use uppercase or lowercase letters
or more spaces than shown, but otherwise be sure you enter the
program just as shown above. Don’t forget that the digits one (1)
and zero (0) and the letters “el” (l) and “oh” (O) are four distinct
keys on a computer.

If you make a mistake while you are typing, you can use the
Delete key to erase characters you have just typed (on older
keyboards, this key may be labelled Backspace). Press Delete
once to erase the preceding character; press it several times to

True BASIC Free – User Guide 12

erase several characters. You can also use the arrow keys (if your
keyboard has them) to move the cursor bar anywhere on the
screen to make a correction. Move the I-beam cursor with the
mouse and click at the point where you wish to make a correction.
Or drag and highlight several characters that you may then
delete.

Now let’s see what the program does. Select Run in the Run
menu. You should see the following “output”:

420 14.3 29.3706

The result is a little more than 29 miles per gallon. (If you get
different results or if the program doesn’t run, check that you
entered the numbers correctly in your program and that you
spelled the words miles and gallons the same way throughout.
LET, PRINT, and END must also be spelled correctly.)

Click anywhere on the screen (except the menu bar) to return to
the editing window so you can look at how the program works.

Each line in the program is a statement in True BASIC. Like
sentences in English, each statement contains an instruction that
True BASIC can follow. Each statement begins with a keyword.
Your program uses three types of statements: LET, PRINT, and
END. You don’t have to type keywords in uppercase, but we’ve
done that throughout this manual to clearly distinguish them
from the rest of the information in the statement. Keywords must
end with a space unless there is nothing else on the same line.

The LET Statement

The keyword LET tells True BASIC to assign a value to
something. LET statements are sometimes called assignment
statements. The first line of the program assigns the value 420
to the word miles. When you again use miles in the PRINT
statement, True BASIC knows to use the value 420.

In programs, values such as 420 are called constants, and a
name such as miles, which could be assigned various values, is
called a variable. More about constants and variables later.

The PRINT Statement

The PRINT statement shows the results of a program on your
screen. Your program uses one PRINT statement to display three
values: the values assigned to miles and gallons, and the value
obtained by dividing the value of miles by the value of gallons.

You can use PRINT statements to print constants, variables, or
expressions (formulas that combine constants and variables).

True BASIC Free – User Guide 13

For example, the PRINT statement in your program could have
been:

PRINT miles, 14.3, 420/gallons

and the results would have been exactly the same.

The END Statement

The last statement in your program is an END statement. It’s the
signal to True BASIC that there are no more instructions to carry
out.

——————————————————————————————

Every True BASIC program must finish with an END
statement.

——————————————————————————————

How True BASIC Runs a Program
When you ran your program, True BASIC carried out (executed)
the statements one by one, from the first to the last — the same
order in which you would read them. No statement was skipped
or carried out more than once. This is called a straight-line flow
of control. In later chapters, you’ll learn about structures that
create branches and loops in the flow of control.

Saving Your Program
To save your program, return to the editing window if necessary
and select Save in the File menu. Since this is the first time
you’ve saved this program, you’ll be asked to enter a name. Call
this program MPG and click in the Save button. You’ll use MPG
again in the next chapter where you’ll learn how to make changes
to an existing program.

In the previous section, you learned how to write a simple
program and save it. Now, you’ll make some modifications to that
program and save those changes. In the process, you’ll learn how
to add comments to a program and how to have the program ask
for information when it runs.

If it is not still in your editing window, open the MPG program
you created and saved in the last chapter. You can use the
Open... command in the File menu for any program that you
saved, just as you did with GALTON.)

LET miles = 420
LET gallons = 14.3
PRINT miles, gallons, miles/gallons
END

True BASIC Free – User Guide 14

Making Simple Changes
In the source window, a blinking vertical bar | indicates the
insertion point. When you type something on the keyboard,
that new text appears at the insertion point. If you want to
change 420 to 420.6, you must first put the insertion point after
the 0 in 420 and then type .6. You can move the insertion point
with the mouse, the arrow keys, or the tab key.

The mouse pointer appears as an I-beam whenever it is in the
“active” source window. Point and click with the I-beam at the
desired point in the text and the insertion point moves to that
spot.

The arrow keys move the insertion point a character or line at a
time throughout the text. The tab key moves the insertion point
word by word across a line.

There are two ways you can change existing text, such as
replacing 14.3 with 15.7 in the second line:

• Move the insertion point to follow 14.3 and press the Delete (or
Backspace) key four times. You may then type the new number.

• Highlight (“select”) the number 14.3 by dragging across it with
the mouse. Now when you begin to type, the highlighted text
disappears and is replaced by what you type.

You can add new or blank lines by pressing the Return key at the
beginning or end of an existing line. To remove a blank line, use
the Delete key at the beginning of the line that follows it.

You can split or join lines in much the same way: split a line with
the Return key at the split point; join two lines with the Delete
key at the beginning of the second line.

Adding Comments to Your Program

Comments and blank lines have absolutely no effect on how your
program runs, but they make programs much easier to read.
From the very start, you should develop the habit of adding
comments to your program.

In True BASIC, comments start with exclamation points (!).
Everything from the exclamation point to the end of the line is
part of the comment. You may put a comment on a line by itself
or add one at the end of regular statement. Add some comments
to your MPG program:

True BASIC Free – User Guide 15

! Compute miles per gallon
!
LET miles = 420 ! miles traveled
LET gallons = 15.7 ! gas used
PRINT miles, gallons, miles/gallons
END

To add the comments to an existing line, first move the insertion
point to the end of the line and then use the space bar to move out
to the right a bit before you type the comment. To align a
comment with one above it, move to the end of the next line and
use the Tab key — the insertion point jumps to the next word in
the preceding line.

Saving Your Changes
You’ve now improved your MPG program by adding comments to
it. The saved version doesn’t have those changes, however, until
you again save the program. To do that choose Save in the File
menu. True BASIC replaces the old copy of MPG with a copy as it
now appears in your source window.

If you’ve saved a program once and named it, the Save command
doesn’t ask for a file name for subsequent saves. It assumes you
want to use the same name and replace the existing version. If
you wanted to keep the old copy and save the new, edited one with
a different name, you should use the Save As... command. First,
let’s make some more changes to the program.

The INPUT Statement – Getting Information From the User
The way the MPG program is written, you have to edit it in the
source window whenever you want to compute miles per gallon
for different numbers of miles or gallons. A program like this is
more useful if you can enter values when the program runs.

Instead of LET statements, you can use INPUT statements to
assign values while the program is running. Replace the LET
statement lines in your program with INPUT statements as
shown in the program below. To quickly replace one or more
entire lines, point just to the left of the first line and drag down
one to select. Next, press the Delete key once to erase the
selection. You can then type new lines.

! Compute miles per gallon
!
INPUT miles
INPUT gallons
PRINT miles, gallons, miles/gallons
END

When you’re satisfied you’ve typed the changes correctly, run the
program to see how the INPUT statement works.

True BASIC Free – User Guide 16

When the program starts, it prints a “?”, which is a signal that it
is waiting for you to enter a number of miles. Type the number
100 and press the Return key. The program then prints another
question mark, now looking for the number of gallons. Type the
number 4 followed by the Return key. Next, the program prints
the results and stops. Your output window should look like this:

? 100
? 4
100 4 25

Whenever it sees an INPUT statement, True BASIC prints a
question mark and waits for you to enter a response. Whatever
you enter is assigned to the variable in the INPUT statement.
True BASIC knows that you are finished entering your number
when you press the Return key.

How will someone running your program know what they are
supposed to enter when they see a question mark? The simplest
way to fix this problem is to use PRINT statements with text for
the program to print:

! Compute miles per gallon
!
PRINT “How many miles”;
INPUT miles
PRINT “How many gallons”;
INPUT gallons
PRINT miles, gallons, miles/gallons
END

Notice that the text to be printed is in quotation marks. This is
necessary so that True BASIC won’t think the words are
variables such as miles and gallons.

Later sections explain the semicolon (;) at the end of the PRINT
statement — the semicolon is not necessary here, but it makes
the question mark appear on the same line as the text, and close
to it.

The Formatting and Printing Your Program section explains how
you can PRINT to a printer.

Add the PRINT statements shown above to your program and run
it again. You should see the following output:

How many miles? 100
How many gallons? 4
100 4 25

Saving Your Program With a Different Name
You’ve now made additional changes to the MPG program since
you last saved it. What if you want to save these additions but
you also want to keep the version as it was when you last saved

True BASIC Free – User Guide 17

it? In other words, you want two versions of the program — one
with the data supplied by LET statements and one that requests
the information with INPUT statements.

To save a copy of a program under a new name, use Save As... in
the File menu. You’ll get a dialog box with a space for entering a
new name before you save. Save this version of your program
with a name such as MPG2. The MPG program as you last saved
it is not changed or replaced.

Opening or Quitting without Saving

If you have edited a program and then attempt to Quit True
BASIC without saving the program, True BASIC asks if you want
to save the file. You have three possible responses:

click Yes to save the program (replacing a version with the same
name) and quit True BASIC

click No to quit True BASIC without saving your current program

click Cancel to get back to the program, where you could then use
Save As... if you wish to save under a new name

True BASIC asks the same question if you use New or Open... in
the File menu without first saving changes to your current pro-
gram. True BASIC closes your existing program before opening or
creating a new one; any changes to the existing program are lost if
you do not save it first.

True BASIC Free – User Guide 18

7. Constants, Variables and Expressions
True BASIC lets you work with two kinds of information — num-
bers and strings. By definition, strings are any combination of
characters. Examples of string data include names, addresses, or
phone numbers. Let’s look first at numbers in True BASIC pro-
grams.

When you use numbers in a True BASIC program, they may be
constants, variables, or expressions (expression is just another
name for formula). Look again at the simple MPG program that
you created earlier:

! Compute miles per gallon
!
LET miles = 420 ! miles traveled
LET gallons = 15.7 ! gas used
PRINT miles, gallons, miles/gallons
END

Constants

The MPG program contains two numbers: 420 and 15.7. These
are called constants or numeric constants.

——————————————————————————————

Constants are quantities whose values can’t change
during a program run.

——————————————————————————————

You can write constants as whole numbers, such as 420, or as
decimals such as 15.7 Note, however, that you can’t include any
spaces or commas in numbers in True BASIC. Thus 10,000 must
be written as 10000. The following table shows some rules for
writing numeric constants:

Number Constants

Acceptable Not Acceptable
6 VI

1002 1,002

321.33 1.2.3

0.003 1 000 000

.25

True BASIC Free – User Guide 19

Variables

In the MPG program, the variables are miles and gallons.

——————————————————————————————
Variables are names for quantities whose values may
change during the run of a program.

——————————————————————————————

You could think of a variable as a box that can contain a value. A
variable name (such as miles or gallons) identifies a box and that
name remains the same throughout the program, but the value
put into that box — assigned to that variable — can change each
time the program runs or even during a program run.

The LET statement assigns a value to a variable. After the first
line in the MPG program, the variable miles contains the value
420. The value of miles remains the same in this particular
program, but you’ll see later how values of variables can change
within a program.

You can pick any names you want for variables in True BASIC as
long as you follow certain “spelling” rules explained below.
Although the computer doesn’t care what names you use, it’s
usually a good idea to pick a name that somehow conveys what
the variable means. For example, miles is a better choice than
the letter m to represent miles traveled.

Variable names can be up to 31 characters long. You may use
either capital or small letters, or any combination. True BASIC
ignores the difference. The main rule is:

——————————————————————————————

Variables names must begin with a letter, but
subsequent characters can be letters, digits, or the
underscore (_) character.

——————————————————————————————

The underscore is the only punctuation mark allowed in variable
names. You can’t use spaces or hyphens because these mean
something special to True BASIC. (A hyphen is the same as a
minus sign.)

Variable Names

Acceptable Not Acceptable
miles # of miles

miles_per_gallon miles.per.gallon

profits 13

tax1040 1world

time_of_day time-of-day

True BASIC Free – User Guide 20

Expressions and Formulas
Since computer keyboards don’t have all the arithmetic symbols
(or operators) on them, True BASIC has made a few
substitutions. The symbols or arithmetic operators that True
BASIC uses are:

Symbol Meaning Example

+ addition a + b
- subtraction 3 - 2
* multiplication length*width
/ division miles/gallons
^ exponentiation (x2) x^2

You can use constants and variables to do arithmetic calculations.
When you combine constants or variables using arithmetic sym-
bols, you are writing an expression, which is just another name
for a formula.

For example:
miles/gallons

is an expression that divides the value of miles by the value gal-
lons.

True BASIC does not notice spaces in expressions. For example,
“a+b” means the same thing as “a + b”, and “miles/gallons” is
equivalent to “miles / gallons”. (Remember, however, that vari-
able names cannot contain spaces.) You can also use parentheses
in expressions to specify a certain order of calculation; the next
section explains order of calculation and the use of parentheses.

Notice the symbols for multiplication and division. Computer
keyboards don’t always have the usual Ö symbol. Similarly True
BASIC wouldn’t know if an X were a variable name or a multipli-
cation symbol. Therefore, you must always use the multiplication
symbol (*) when you want to multiply. In algebra, the expression
“ab” means “a X b”. True BASIC, however, would assume that
“ab” is a variable name unless you specify “a*b”. (The expression
“a b” is “illegal” because variable names cannot contain spaces
and expressions must contain an arithmetic operator.)

There is also a special symbol for exponentiation (raising to a
power) because all computers can’t write superscripts properly.

——————————————————————————————

All expressions in True BASIC must contain appropriate
arithmetic operators and they must be typed entirely on
one line; that is, you must not press the Return key
before you finish typing the expression.

——————————————————————————————

True BASIC Free – User Guide 21

In the MPG program, for example, the expression that computes
miles per gallon must be written as:
miles/gallons

not
miles ÷ gallons

or
miles

gallons

True BASIC follows rules that decide the order of calculation in
an expression.

• True BASIC performs multiplications and divisions before it
performs additions and subtractions. Thus, if you type
6+10/2

the computer first divides 10 by 2 and then adds the 5 from that
operation to the 6, getting 11. If you want to add 6 to 10 and then
divide the sum by 2, you must use parentheses to force True
BASIC to do that calculation first.
(6+10)/2

• If you have several multiplications and/or divisions in one
expression, True BASIC computes them in order, from left to
right. Thus, if you type
12/6*2

True BASIC first divides 12 by 6, and then multiplies the result
(2) by 2 giving 4 as the final result. If you want to divide 12 by the
result of 6 times 2 (giving 1 as the final result), you must again
use parentheses to tell True BASIC to do that first:
12/(6*2)

• True BASIC computes exponents first, even before
multiplications and divisions.

(A good way to remember how True BASIC does arithmetic is that
it is the opposite of how you probably learned arithmetic:
exponentiation first, then multiplication and division, and finally
addition and subtraction. To be sure you get the results you
want, use parentheses even if you think you don’t need them.)

The following table shows some examples of the differences
between writing regular mathematical formulas and expressions
in True BASIC:

True BASIC Free – User Guide 22

In Mathematics In True BASIC
1 + 2 + 3 1 + 2 + 3

3 X (4 + 5) 3*(4 + 5)

1 + 2 (1 + 2)/4

4

AB (A*B)/(C*D)

CD

x2 x^2

Changing Values of Variables

The MPG program contains both constants and variables but it is
a very simple program where each variable retains the same
value throughout one program run.

Consider the following COST program that adds the cost of three
items, computes a sales tax, and then gives the total purchase
cost:

LET item1 = 250
LET item2 = 26
LET item3 = 1200
LET total = item1 + item2 + item3
LET tax = .04 * total
LET total = total + tax
PRINT total
END

Notice the variable total. In the fourth line, an arithmetic
expression assigns a value to total (the sum of the three items, or
1476 in this case):

LET total = item1 + item2 + item3

The next line uses that value of total with the constant .04 to
compute the value of tax (.04 X 1476 = 59.04). Now examine the
next statement:

LET total = total + tax

This statement assigns a new value to total by adding the
previous value of total (1476) to the value of tax (59.04). After this
statement, total has this new value (1535.04), and thus the
PRINT statement uses that value when you run the program.

You could rewrite the COST program to use a separate variable
(such as itemtotal or subtotal) for the intermediate total. Indeed,
using two different variables may often be the wisest choice.
However, this ability to add to the value of a variable is important
as you’ll see when you begin to use loops in your programs.

True BASIC Free – User Guide 23

An Introduction to Strings

True BASIC can process words as well as numbers. In computer
terminology, anything that doesn’t necessarily have a numeric
value is called a string. Your age is a number, but your name or
street address is a string. Strings can include any character your
computer can display. Like numbers, strings can be constants,
variables, or expressions.

In the Section 5, you used strings with PRINT statements to tell
the user what to enter for the INPUT statements in your MPG2
program:

! Compute miles per gallon
!
PRINT “How many miles”;
INPUT miles
PRINT “How many gallons”;
INPUT gallons
PRINT miles, gallons, miles/gallons
END

Another common use of strings in computer programs is to print
text with the output, to make it clear what the numbers mean.
You could add another PRINT statement near the end of the
above program:

. . .
PRINT “Miles”, “Gallons”, “Miles per Gallon”
PRINT miles, gallons, miles/gallon
END

The pieces of text in all but the last of the PRINT statements are
string constants; they cannot be changed when the program
runs.

——————————————————————————————
String constants (text) must be enclosed in double
quote marks.

——————————————————————————————

The double quotation marks keep True BASIC from treating
those words as variable names.

Add the new PRINT statement shown above to your MPG2
program and run it. You should see a result similar to:

How many miles? 450
How many gallons? 13.6
Miles Gallons Miles per gallon
450 13.6 33.0882

Save your MPG2 program again to keep the new PRINT
statement.

True BASIC Free – User Guide 24

Using String Constants and Variables
Just as you can have numeric constants and numeric variables,
you can have string constants and string variables. String
variables are names that represent strings, just as numeric
variables are names that represent numbers. String variables
may have different string values assigned to them during the run
of a program.

——————————————————————————————
String variable names must end in a dollar sign ($) to
differentiate them from numeric variables.

——————————————————————————————

Other than that, rules for string variable names are the same as
those for numeric variables. That is, string variable names can
consist of a letter followed by up to 30 letters, digits, or the
underline character.

Programs often ask for your name and then use it again later. In
a language lab, for example, a program that teaches Spanish
might start by asking “Como te llamas?” and then PRINT good
morning to you in Spanish. Your answer would be stored in a
string variable; the Spanish phrases would be string constants.

The demo program SPANISH uses one string variable and three
string constants to say hello in Spanish. (Open this program from
the Demo Programs folder.)

! Ask for a name, then say good morning.
!
PRINT “Como te llamas”; ! “What’s your name”
INPUT name$! Get the answer.
PRINT “Buenos dias, “; name$; “.” ! “Good morning...”
END

Run the program, and enter your name when it asks “Como te
llamas?” For example:

Como te llamas? Sara
Buenos dias, Sara.

The next chapter gives more information on using strings with
PRINT and INPUT statements.

A Brief Look at String Expressions
Just as there are numeric expressions, you can also use special
string expressions in your programs.

You can combine, or concatenate, string constants or variables
with the & (ampersand):

True BASIC Free – User Guide 25

LET first$ = “Orville”
LET last$ = “Wright”
LET full$ = first$ & “ “ & last$

You can also use just part of a string — called a substring. The
following statements create a code name from the first four
characters of the last name plus the first three characters of the
first name — similar to codes used on mailing labels.

LET first$ = “Orville”
LET last$ = “Wright”
LET code$ = last$[1:4] & first$[1:3]
PRINT code$
END

will print
WrigOrv

For more information on substrings and string expressions,
consult the True BASIC Bible.

True BASIC Free – User Guide 26

8. More on Input and Output
You’ve seen how INPUT and PRINT statements let you get
information into and out of a program. This chapter explains
these statements more fully and then introduces the LINE
INPUT statement.

Printing Zones and the PRINT Statement
Look one more time at the MPG2 program and the output you get
when you run the program:

! Compute miles per gallon
!
PRINT “How many miles”;
INPUT miles
PRINT “How many gallons”;
INPUT gallons
PRINT “Miles”, “Gallons”, “Miles per Gallon”
PRINT miles, gallons, miles/gallons
END

How many miles? 450
How many gallons? 13.6
Miles Gallons Miles per gallon
450 13.6 33.0882

Note that the text and the numbers in the last two lines of output
line up neatly in columns. That’s done by the commas in the
PRINT statements.

——————————————————————————————

The commas tell True BASIC that you want the items
to be in print zones, or columns, that are 16 characters

wide.
——————————————————————————————

Change the commas to semicolons in those last two PRINT
statements, and run the program again:

PRINT “Miles”; “Gallons”; “Miles per Gallon”
PRINT miles; gallons; miles/gallons

Your results should look something like this:
How many miles? 312
How many gallons? 8
MilesGallonsMiles per gallon
212 8 39

——————————————————————————————

The semicolons tell True BASIC to print the output
items right next to each other.

——————————————————————————————

True BASIC Free – User Guide 27

True BASIC leaves a space on each side of a printed number, but
none around strings. (True BASIC replaces the space in front of a
negative number with the minus sign.)

When you write a PRINT statement to give several values, you’ll
probably want to use commas to separate those values into neat
columns. The semicolon is useful when you are printing prompts
for INPUT statements.
PRINT “How many miles”;

INPUT miles

The semicolon tells True BASIC to print the ? for the INPUT
statement in the space immediately following the text “How many
miles”.
How many miles?

With no punctuation after the PRINT statement, True BASIC
would have put the ? on the next line, just as it usually puts the
information from each PRINT statement on a new line.

——————————————————————————————
Unless a PRINT statement ends with a comma or semi-
colon, True BASIC prints the next item on a new line.

——————————————————————————————

You can create blank lines in your output by using a blank PRINT
statement. You can “tie” two or more PRINT statements together
by ending the line with a comma or semicolon. Consider the
following statements:

PRINT “Congratulations, “; name$; “!”
PRINT
PRINT “You have won”;number_of_wins;”games out of”;
PRINT number_of_attempts;”tries.”

Can you figure out how True BASIC would print this? Make up
values for the variables, but don’t peek below!

Notice that the PRINT statements include string constants (the
information in quotes), a string variable (name$), and two
numeric variables (number_of_wins and number_of_attempts).
Notice also, that the string constant “Congratulations, “ includes
a space so that there will be a space before the value of name$.
But you don’t need spaces in the strings that will print next to the
numeric values. Remember that True BASIC puts strings right
next to each other when you use semicolons, but it puts a space
before and after any positive numeric value that it prints. (True
BASIC puts a minus sign instead of the space before negative
numbers.) Thus, True BASIC would print:

Congratulations, Chris!

You have won 12 games out of 25 tries.

True BASIC Free – User Guide 28

More about Controlling Output
The comma and semicolon in PRINT statements let you control
the appearance of your output. These two punctuation marks and
the use of spaces in text constants should be adequate for most of
your early ventures in programming.

The PRINT USING, SET MARGIN, and SET ZONEWIDTH
statements and the TAB function let you control your True
BASIC output even more precisely. PRINT USING is especially
helpful if you want numeric output to follow a specific pattern.
These statements are described in the True BASIC Bible.

You can also send your output to a printer or another file on your
disk. As you’ve seen, the PRINT statement “prints” in the output
window of your computer screen. (The reason for that is that,
originally, computers didn’t have screens; all output went to a
printer.) Section 11 explains briefly how you can send output to a
printer or a file. Section 13 has more information on sending
output to a file. More information on these topics are also found in
the True BASIC Bible.

More about the INPUT Statement
True BASIC provides a special form of the INPUT statement that
lets you write your own prompt without a PRINT statement. For
example, you could rewrite the MPG2 program to look like this:

! Compute miles per gallon
!
INPUT PROMPT “How many miles?”: miles
INPUT PROMPT “How many gallons?”: gallons
PRINT “Miles”, “Gallons”, “Miles per Gallon”
PRINT miles, gallons, miles/gallons
END

(Don’t forget the quotes and the colons.) The results will be
exactly the same as before.

One last refinement of the MPG2 program: you can input both
values with a single statement. You could combine the two
INPUT PROMPT statements as follows:

INPUT PROMPT “Miles, gallons?”: miles, gallons

When you run the program, you must now give two numbers,
separated by a comma:

Miles, gallons? 429, 12
Miles Gallons Miles per gallon
429 12 35.75

Save this version of MPG2 if you wish.

True BASIC Free – User Guide 29

The LINE INPUT Statement
When you use a comma in response to an INPUT statement, True
BASIC assumes you are entering another item. What happens if
you want to enter a string that contains a comma?

Look again at the SPANISH demo program you saw in the last
chapter:

! Ask for a name, then say good morning.
!
PRINT “Como te llamas”; ! “What’s your name”
INPUT name$! Get the answer.
PRINT “Buenos dias, “; name$; “.” ! “Good morning...”
END

If you use a comma when you give your name, you will get an
error message:

Como te llamas? Ruy Diaz of San Antonio, Texas
Too many input items. Excess ignored.
Buenos dias, Ruy Diaz of San Antonio.

One way to avoid this problem is to put quote marks around your
reply:

Como te llamas? “Ruy Diaz of San Antonio, Texas”
Buenos dias, Ruy Diaz of San Antonio, Texas.

People who use your programs may not know they must use
quotes, however. The LINE INPUT statement provides a better
solution.
——————————————————————————————

LINE INPUT tells True BASIC to take the entire line as
a single item, no matter what it looks like.

——————————————————————————————
Here’s the SPANISH program written with a LINE INPUT
statement:

! Ask for a name, then say good morning.
!
PRINT “Como te llamas”; ! “What’s your name”
LINE INPUT name$! Get the answer.
PRINT “Buenos dias, “; name$; “.” ! “Good morning...”
END

Now you can run the program and include commas in the input
line:

Como te llamas? Ruy Diaz of San Antonio, Texas
Buenos dias, Ruy Diaz of San Antonio, Texas.

You can even enter no reply to a LINE INPUT by just pressing the
Return key. (If you just press Return with an INPUT statement,
True BASIC complains that you did not give enough input.)

True BASIC Free – User Guide 30

9. Loop Structures
So far you’ve seen only “straight-line” programs. True BASIC
starts at its top line, and goes straight through the program.
Each statement is carried out in turn and only once. A loop
structure lets you repeat a group of statements more than once.
In a FOR-NEXT loop, you tell True BASIC exactly how many
times you want to execute the statements in the loop. The DO
loop lets the program decide how many times to repeat.

How a FOR-NEXT Loop Works
Let’s start with the simple problem of printing the numbers from
1 to 10. Instead of a PRINT statement with ten items, or ten
different PRINT statements, you can use a FOR-NEXT loop.
Type in the following program and run it:

! Count from 1 to 10.
!
FOR i = 1 to 10 ! For each value from 1 to 10

PRINT i; ! Print current value
NEXT i ! Increase i
END

Since the PRINT statement uses a semicolon, the results look
like:
1 2 3 4 5 6 7 8 9 10

Let’s look at what happens to i, the loop index variable. The
first time True BASIC sees the FOR statement, it gives i the
value 1. The PRINT statement uses that current value of i.
Then, the NEXT statement increases the value of i by one and
sends True BASIC back to the FOR statement. Now i equals 2.

This loop repeats ten times, until i reaches the value 11. At this
point, i is greater than the high end (10) given in the FOR
statement, and so True BASIC goes to the first statement after
the NEXT statement, the END statement. Thus, this FOR-NEXT
loop means “for each number from 1 to 10, print the number.”

The FOR-NEXT loop is a structure in True BASIC, or a kind of
framework that organizes other statements. The variable i in
this program is called the index variable; it acquires a new
value each time the loop runs.

——————————————————————————————
The same index variable must appear in both the FOR
statement and the NEXT statement.

——————————————————————————————
The statement(s) between the FOR and the NEXT statements are
carried out (or executed) as many times as the loop is repeated.
In this Guide, the statements inside the loop (in this case, the

True BASIC Free – User Guide 31

PRINT statement) are indented more than the FOR and NEXT
statements. This is a matter of style; it’s not required in True
BASIC, but it makes the program much easier to read.

The loop alters the straight-line flow of control by repeating a
group of statements. Such structures let you take advantage of
the great power of computers.

Step Size in a Loop
The NEXT statement above added 1 to the index variable each
time through the loop. You can make the NEXT statement add
something other than 1 by putting your own step size in the FOR
statement. For example, if you want a table of square roots in
increments of one-tenth, you can use .1 as the step size.

Now open the demo program SQROOT from the Demo directory:
! Square roots.
!
PRINT “number”, “Square Root” ! Print labels
PRINT! Leave blank line
FOR number = 0 to 1 step .1 ! 0 to 1 in small steps

PRINT number, Sqr(number) ! Number & square root
NEXT number
END

and run it:
Number Square Root

0 0
.1 .316228
.2 .447214
.3 .547723
.4 .632456
.5 .707107
.6 .774597
.7 .83666
.8 .894427
.9 .948683
1. 1

This program uses the built-in function SQR to obtain the square
root of number. (Chapter 14 explains functions.)

If you want, you can have a negative number for a step size. This
makes the loop count down instead of up. Change the FOR
statement so that your program looks like this:

! Square roots.
!
PRINT “Number”, “Square Root” ! Print labels
PRINT ! Leave blank line
FOR number = 10 to 5 step -1 ! Go from 10 down to 5

PRINT number, Sqr(number) ! Number & square root
NEXT number
END

True BASIC Free – User Guide 32

When the step size is negative, the starting and ending conditions
for the loop must also be backwards — that is, they must go from
large to small. In the first version of SQROOT, the loop stopped
when the number became greater than one. In the version with a
negative step size, the loop stops when number becomes less than
five. (If you forget to change the step from .1 to -1, your loop won’t
execute at all, because number can’t get from 10 to 5 without a
negative step.)

Number Square Root

10 3.16228
9 3
8 2.82843
7 2.64575
6 2.44949
5 2.23607

You can use the index variable (here, number) outside its loop.
But what value will it have outside the loop? Add a PRINT
statement to SQROOT so you can see what value number has
after the loop stops:

! Square roots.
!
PRINT “Number”, “Square Root” ! Print labels
PRINT ! Leave blank line
FOR number = 10 to 5 step -1 ! Go from 10 down to 5

PRINT number, Sqr(number) ! Number & square root
NEXT number
PRINT number
END

and run it again:
Number Square Root

10 3.16228
9 3
8 2.82843
7 2.64575
6 2.44949
5 2.23607
4

As you can see, number equals 4 after the loop ends.

——————————————————————————————
A FOR-NEXT loop always leaves the index variable
with the first value that fails the end test.

——————————————————————————————

True BASIC Free – User Guide 33

Nested Loops

You may use any True BASIC statements inside a FOR-NEXT
loop, even another loop. Some problems are best solved by using
loops inside loops, that is, nested loops.

As an illustration, open the demo program EXES:
! Print pattern of x’s.
!
FOR row = 1 to 6

FOR xcount = 1 to row
PRINT “x”;

NEXT xcount

PRINT
NEXT row
END

This program prints a pattern of x’s on the screen:

x
xx
xxx
xxxx
xxxxx
xxxxxx

Let’s analyze this program. It has two loops: an outer loop with
the variable row as the loop index, and within that an inner loop
with the index variable xcount.

——————————————————————————————
The inner or nested loop must be entirely inside the
outer loop.

——————————————————————————————

Each time the outer loop goes through one big cycle, the inner
loop goes through as many cycles as the current value of row.
This creates the triangle pattern. As you can see, the first row
has one x, the second has two, and so on.

Note the empty PRINT statement just after the inner loop and
just before the end of the outer loop. This second PRINT
statement is carried out only at the end of a row. It tells True
BASIC to start a new line. If it wasn’t there, the program would
just print 21 x’s on one line.

If you want to print more than one triangle, you’ll have to use
three loops, not just two. Nest a new loop between the row and
xcount loops. Notice how the indenting and blank lines help you
keep track of which loop is which:

True BASIC Free – User Guide 34

! Print pattern of x’s.
!
FOR row = 1 to 6

FOR triangle = 1 to 3 ! new loop starts here

FOR xcount = 1 to row
PRINT “x”;

NEXT xcount

PRINT, ! new PRINT with comma
NEXT triangle ! new loop ends here

PRINT
NEXT row
END

Just as you need an empty PRINT statement to move to the next
line before the NEXT row, you also need a PRINT statement with
a comma before the NEXT triangle, to move to the next PRINT
zone.

x x x
xx xx xx
xxx xxx xxx
xxxx xxxx xxxx
xxxxx xxxxx xxxxx
xxxxxx xxxxxx xxxxxx

An Introduction to Conditions

In the FOR-NEXT loop, you must specify how many times you
want the loop to repeat. Computers, however, are quite capable of
making decisions based on a condition that you specify. The DO
loop, introduced in the next section, and the decision structures
you’ll see in the next chapter both use conditions.

A condition in True BASIC is a comparison of values.
Conditions use relational operators:

Operator Meaning
= equal to
<> or >< not equal to
< less than
<= or =< less than or equal to
> greater than
>= or => greater than or equal to

Conditions themselves have either true or false values. For
example:

True BASIC Free – User Guide 35

Condition Value
1 < 2 true
1 + 2 < 3 false
5 + 3 >= 8 true
“abc” <> “ABC true
“yes” = “no” false
“elephant” < “spider” true
“elephant” < “Spider” false
“moon” < “moonbeam” true

Notice that you can compare strings as well as numbers. True
BASIC orders string values containing letters alphabetically
except that all uppercase letters come before (are less than) any
lowercase letters. Shorter strings come before longer strings that
begin with the same characters. Most other characters (such as !,
“, #. and $) and numbers come before letters. The order for string
characters is based on the ASCII character set, which is the
standard code that most computers use to represent keyboard
characters. (Appendix A lists the ASCII character set.)

The next section shows how you can use conditions in DO
statements.

An Introduction to DO Loops and Counters

The DO loop lets you repeat a group of statements just like the
FOR-NEXT loop except that you don’t specify number of
repetitions. Instead, you specify a condition and True BASIC
repeats the loop until the condition becomes true or while (as
long as) the condition remains true.

Let’s say you have $10,000 in a savings account, and the bank
gives 8.5% interest. At the end of the first year, the bank will give
you $850. If you leave this money in the account, the next year
you’ll earn interest on $10,850, which yields slightly more than
another $850. And so forth. Each year you’ll make a little more
in interest than the year before. How long will it take for your
money to double?

Open the program INTEREST from the Demo Programs folder.

! Program to compute interest on a bank account.
! Stop when the money has doubled.
!
LET years = 0
LET money = 10000 ! Start with $10,000
LET original = money ! Remember original amount
LET interest = 8.5/100 ! Interest is 8.5%

DO until money >= 2 * original ! Loop until money doubles

True BASIC Free – User Guide 36

PRINT years, money ! Print year and money
LET years = years + 1 ! Keep track of how long
LET money = money + (interest * money) ! Add interest

LOOP
PRINT “In”; years ; “years, you’ll have $”; money
END

Run the program:

0 10000
1 10850
2 11772.2
3 12772.9
4 13858.6
5 15036.6
6 16314.7
7 17701.4
8 19206.
In 9 years, you’ll have $ 20838.6

Let’s analyze how this program works. It starts off with three
LET statements assigning starting values to the variables years,
money, original, and interest. (It’s a good idea to treat original
and interest as variables instead of constants, because then it’ll be
easier to change the program later on.)

The DO UNTIL statement means “repeat the following group of
statements until money is greater than or equal to two times the
original amount.” The PRINT statement displays the current
values of years and money, and the first LET statement inside the
loop adds 1 to the value of years. The second LET statement in
the loop takes the “old” value of money, computes the interest on
that value, adds the interest to the “old” value, and puts that sum
into the “new” value of money. The LOOP statement marks the
end of the group of statements, and tells True BASIC to go back to
the DO UNTIL statement.

True BASIC checks the condition (money > = 2 * original) each
time before it executes the loop. If it had been true the very first
time, True BASIC would never have executed the loop!

The second time around, money is 10850, still less than $20,000,
so True BASIC repeats the loop. The third time it’s 11772.20 so
True BASIC repeats the loop, and so on. The last time through,
money reaches the value 20838.60. Then, when True BASIC
returns to the DO UNTIL statement, money is greater than 2 *
original. So the loop ends.

True BASIC then continues with the next statement after LOOP,
which is the last PRINT statement. Thus the loop finishes when
money has doubled (or more).

True BASIC Free – User Guide 37

Notice again the LET statement inside the loop that adds 1 to the
value for years. The variable years is a counter. It is counting
the number of times True BASIC goes through the loop, which in
this case is the number of years the money has been in the bank.

Change the interest rate and see how that affects the DO loop.
Edit the LET statement that assigns the initial value to interest
and run the program again.

LET interest = 11.5/100! Interest is 11.5%

With 11.5% interest, you should find that the DO loop works only
seven times instead of nine as it did before. However, the
condition (money > = 2 * original) is still met.

Note: The INTEREST program doesn’t format dollar amounts as
you are used to seeing them:

In 9 years, you’ll have $ 20838.6

True BASIC’s PRINT USING statement lets you control the exact
format of numeric (and string) output. For example, you could
replace the last PRINT statement in INTEREST with the
following two PRINT statements:

PRINT “In”; years ; “years, you’ll have “;
PRINT USING “$##,###.##”: money

With those statements, the final output line looks like:

In 9 years, you’ll have $20,838.56

More information on this topic is found in the True BASIC Bible.

Variations on DO Loops, and Combining Conditions

With the UNTIL condition test on the DO statement, it is possible
that the statements in the loop will never run. You can put the
test on the LOOP statement instead of the DO statement. In that
situation, the statements in the loop will always run at least once,
because True BASIC won’t check the condition until it reaches
the end of the loop.

DO
PRINT years, money ! Print year and money
LET years = years + 1 ! Keep track of how long
LET money = money + (interest * money) ! Add in interest

LOOP until money >= 2 * original ! Loop until money doubles

True BASIC Free – User Guide 38

Instead of repeating the loop until the condition becomes true,
you can loop while the condition remains false. The two
statements:

LOOP until money >= 2 * original

and

LOOP while money < 2 * original

are equivalent. “While” and “until” are opposites, just as >= and <
are opposites.

As with UNTIL, you can use either DO WHILE or LOOP WHILE.
A DO WHILE loop may never be used if the condition is false the
first time; a LOOP UNTIL loop always runs at least once since
the test is made at the end of the loop.

You can also combine conditions with True BASIC’s logical
operators: AND, OR, and NOT. You can use a combined condition
anywhere a simple condition works. For example, the following
statement would continue the loop until either the money doubles
or 8 years go by:

LOOP until money >= 2 * original OR years >= 8

These variations on the DO loop and on using conditions are
described more fully in the True BASIC Bible.

True BASIC Free – User Guide 39

10. Decision Structures
So far, you’ve seen simple programs where every statement is
carried out in turn straight through the program. You’ve also
learned about using loops where a group of statements may be
used several times or not at all. In this chapter, you’ll write
programs that can decide which of two sets of statements to use.

Simple IF-THEN Decisions

The IF-THEN statement in True BASIC forms a structure, or
framework, for a decision. The IF part of the structure contains a
condition that True BASIC uses to decide which parts of the
structure to use.

IF statements use conditions just as the DO loop introduced in
the last chapter. (If you need a quick review, refer to “An
Introduction to Conditions” in the previous chapter.)

The simplest IF-THEN decision carries out a single statement if
a certain condition is true. Call up the demo program COINS to
see an example of a simple decision.

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 then PRINT “Heads, you win”
NEXT toss

END

This program simulates tossing a coin by using the RND, or
random number, built-in function. RND gives a different random
number between 0 and 1 each time it’s used. Half the time, the
random number will be greater than 1/2, half the time it will be
less. The COINS program prints “heads, you win” each time the
random number is less than 1/2. The rest of the time, it doesn’t
print anything. (Chapter 14 explains built-in functions more
fully.) For example:

Heads, you win
Heads, you win

Two out of the five times, the “coin” came up “heads” or less than
1/2. The other three times it was “tails” or greater than or equal
to 1/2. You can’t tell which tosses were heads or tails, however.
When it was tails, True BASIC just ignored the PRINT statement
and went on to the NEXT statement.

True BASIC Free – User Guide 40

Single-line IF-THEN-ELSE Decisions

The ELSE keyword lets you write a statement that will be carried
out only when the condition is false. To print a different message
for tails, add an ELSE and another PRINT statement to the IF-
THEN structure in the COINS program:

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 then PRINT “Heads, you win” ELSE PRINT “Tails, you
lose”
NEXT toss

END

Remember that you must enclose text in double quotes (“). Run
this new version:

Tails, you lose
Heads, you win
Tails, you lose
Heads, you win
Tails, you lose

Now you know that the second and fourth times were heads, and
the first, third, and fifth were tails. Just as the THEN keyword
precedes the statement to be executed when the condition is true,
the ELSE keyword precedes the statement to be executed when
the condition is false.

Multiple-Line Decisions

Quite often you want to execute more than one statement if a
condition is true or false. In that case, you need to use more than
one line for the IF-THEN or IF-THEN-ELSE structure. You also
need an END IF keyword to mark the end of the structure.

Even though it has only one statement each for true or false
conditions, you can change your COINS program to use a
multiple-line IF-THEN-ELSE structure. Press the Return key to
split the IF-THEN statement onto several lines, and add an END
IF statement.

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 THEN
PRINT “Heads, you win”

ELSE
PRINT “Tails, you lose”

END IF
NEXT toss

END

True BASIC Free – User Guide 41

Run this program. You should see the same results as when it
was a single-line IF-THEN-ELSE structure.

If you get an error message such as “Can’t use this statement
here”, “Doesn’t belong here”, or “Ending doesn’t match
beginning”, you probably haven’t started the new lines in the
right places.

——————————————————————————————
In the multiple-line IF structures, the keyword THEN
must be the last word in the IF statement. The two key-
words ELSE and END IF must be on lines by them-
selves.

——————————————————————————————

Each statement (such as a PRINT or LET) within the structure
must also be on a line by itself.

When the condition is true, True BASIC executes the statements
between the IF statement and the ELSE keyword, ignores the
statements between the ELSE keyword and the END IF keyword,
and jumps to the statement right after the END IF statement.
When the condition is false, True BASIC ignores the statements
between the IF Statement and the ELSE keyword, executes the
statements between the ELSE keyword and the END IF keyword,
and continues with the statement right after the END IF
statement.

More About Counters

In the previous chapter, you saw how a variable can count the
number of times something happens in a program run. The
counter there was the variable years. The statement

LET years = years + 1

added 1 to the value stored in years each time the loop was run.

You can use variables such as heads and tails in the COINS
program to count the number of times the toss comes up heads or
tails. Add the two LET statements to the IF structure as shown
below along with the two new PRINT statements after the FOR-
NEXT loop.

! Flip a coin five times.
!
FOR toss = 1 to 5

IF Rnd<.5 then
PRINT “Heads, you win”
LET heads = heads + 1 ! Count heads

ELSE

True BASIC Free – User Guide 42

PRINT “Tails, you lose”
LET tails = tails + 1 ! Count tails

END IF
NEXT toss

PRINT
PRINT “You won”; heads; “times. I won”; tails; “times.”

END

Run this version of COINS. Each LET statement assigns the
variable its “old” value plus one whenever its group of statements
are used. (In True BASIC, every numeric variable starts with the
value of zero.)

Tails, you lose
Heads, you win
Tails, you lose
Heads, you win
Tails, you lose

You won 2 times. I won 3 times.

The RANDOMIZE Statement

You may notice that each time you run COINS, the tosses come
out the same: tails, heads, tails, heads, tails. The “random
number generator” for the RND function creates the same
sequence of “random” numbers each time. This makes it easier
for you to “debug” or check your programs for accuracy. Even if it
uses random numbers, your program will work the same each
time you run it. However, this feature also makes your programs
less random.

To scramble the sequence of random numbers, add a
RANDOMIZE statement to the start of your program. You only
need one RANDOMIZE statement in a program to make the RND
function unpredictable in that program. (In fact, using
RANDOMIZE more than once can actually make your random
numbers less random.) It’s a good idea to put the RANDOMIZE
statement after the comments at the very beginning of the
program and before any other “executable statement”.

! Flip a coin five times.
!
RANDOMIZE

FOR toss = 1 to 5
IF Rnd<.5 then

PRINT “Heads, you win”
LET heads = heads + 1 ! Count heads

ELSE

True BASIC Free – User Guide 43

PRINT “Tails, you lose”
LET tails = tails + 1 ! Count tails

END IF
NEXT toss

PRINT
PRINT “You won”; heads; “times. I won”; tails; “times.”

END

Run this version of COINS several times. You should get
different results each time.

Save a copy of this version of the program if you wish — perhaps
with a different name. You may want to use all or part of it in
your own programs later on.

The STOP Statement
Many programs use IF structures to decide when to stop. The
program could ask the user if they wish to continue and then
make a decision based on the response, or the program could
“decide” to stop when it completes its task.

Call up and look at the demo program GUESS. This program
uses the built-in functions INT and RND to “think” of a number
between 1 and 6. (The next section describes how that works.)
You then have three chances to guess the number. A FOR-NEXT
loop gives you the three guesses. If you guess correctly before
you’ve used all three chances, a STOP statement in the IF
structure ends the program at that point.

! Program to play a guessing game.
!
RANDOMIZE
LET answer = Int(Rnd*6) + 1 ! Choose number from 1-6

PRINT “I’m thinking of a number from 1 to 6.”
PRINT “You have 3 chances to guess it.”
PRINT
FOR chance = 1 to 3

PRINT “Enter your guess”; ! Ask for number
INPUT guess
IF guess = answer THEN

PRINT “Correct!!!”
STOP ! Stop here, you guessed it

END IF
NEXT chance
PRINT
PRINT “The number was”; answer
END

Run the program a few times to see how lucky you are. The
output will be different each time, because the program has a
RANDOMIZE statement.

True BASIC Free – User Guide 44

Generating Random Whole Numbers

You’ve now seen two programs that use the RND built-in function
to produce a number randomly. The RND function always gives a
decimal value between 0 and 1 (but never exactly 1). In the
COINS program, you didn’t what care the number was, you just
needed to split the numbers into halves — less than .5, or .5 or
greater.

The GUESS program is a bit trickier:
LET answer = Int(Rnd*6) + 1

First the RND function gives a decimal value between 0 and 1
(but never exactly 1). That value is multiplied by 6 to create a
value between 0 and 6 (but never exactly 6). As that value is very
likely a decimal value (such as 4.327), the statement also uses the
INT (Integer) function to take just the integer or whole number
part: 0, 1, 2, 3, 4, or 5. Finally, 1 is added to give a whole number
between 1 and 6.

Other Decision Structures

The IF-THEN-ELSE structure gives you two possible branches
for your decisions. The program makes a decision and then
carries out one of two sets of statements. You can nest an IF
structure inside another if you wish to make additional decisions,
but this can be awkward if you have several related decisions.

True BASIC includes two more decision structures that let you
choose among three or more sets of statements. The True BASIC
Bible describes these structures more fully. The programs shown
below provide a quick introduction; these programs are in the
Demo Programs folder that came with True BASIC Free.

The ELSE IF statement expands the IF structure to allow for
multiple decisions. Consider the guessing game played in the
GUESS program. In that program there are just two things that
might happen after you guess: the program says you are wrong,
or it says you are correct and the game ends. The program
GUESS2 can do one of five things based on your guess:

! Program to play a guessing game.
!
RANDOMIZE
LET answer = Int(Rnd*10) + 1 ! From 1 to 10

PRINT “I’m thinking of a number from 1 to 10.”
PRINT “You have 3 chances to guess it.”
PRINT

FOR chance = 1 TO 3

True BASIC Free – User Guide 45

PRINT “Enter your guess”; ! Ask for number
INPUT guess! Get a guess

IF guess < 1 THEN ! Check it out
PRINT “Must be at least 1.”

ELSE IF guess > 10 then
PRINT “Can’t be more than 10.”

ELSE IF guess < answer then
PRINT “Too low.”

ELSE IF guess > answer then
PRINT “Too high.”

ELSE! Must be right
PRINT “Correct!!!”
STOP

END IF
NEXT chance

PRINT “The number was”; answer; “.”
END

The SELECT CASE structure lets you choose among several
alternatives as does the IF-THEN-ELSE IF statement, but it
handles the condition test a bit differently. The CRAPS program
plays the dice game “Craps”. The rules are simple. You play ten
times. Each time you roll two dice. If you roll 2, 3, or 12, you lose;
roll 7 or 11 and you win outright. Otherwise, you remember your
“point” on that first roll, and keep rolling until you get either a 7
or your point again. If you get your point, you win; but if you get a
7, you lose. If you don’t know the game, the True BASIC program
might make the rules easier to follow:

! Craps game.
!
RANDOMIZE

FOR game = 1 to 10! Play 10 games

LET die1 = Int(6*Rnd + 1) ! Roll 1 die
LET die2 = Int(6*Rnd + 1) ! And the other
LET dice = die1 + die2 ! Sum of two dice

PRINT dice; ! Print this roll

SELECT CASE dice ! Branch on roll

CASE 2, 3, 12 ! dice = 2, 3, or 12
PRINT “You lose.”

CASE 7, 11! dice = 7 or 11
PRINT “You win.”

CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

True BASIC Free – User Guide 46

LET die1 = Int(6*Rnd + 1) ! Roll again
LET die2 = Int(6*Rnd + 1) ! Both dice
LET dice = die1 + die2
PRINT dice; ! Print this roll

LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END

For more information about these structures see the True BASIC
Bible.

True BASIC Free – User Guide 47

11. Formatting and Printing Your Program
You’ve now learned the basic elements of programming. This is a
good time to review and add to your knowledge of program
format. First, a quick review of the “facts”:

• True BASIC programs can contain comments, blank lines, or
“executable” statements that give instructions to True BASIC.

• Statements always begin with a keyword. A space must
separate the keyword from anything else on the same line.

• Comments begin with an exclamation point. They may be on a
line by themselves or at the end of an executable statement. They
have no effect on how the program runs, but they make it much
easier for a person to understand what the program does.

• Blank lines have no effect on how the program runs, but like
comments they make a program much easier to read.

• Variable names may be up to 31 characters long. They must
begin with a letter, but may then contain any letters, digits, or
underscore characters (_). String variable names must end with a
dollar sign ($).

• All string constants (text) must be inside double quotation
marks.

• All True BASIC programs must end with an END statement.

Guidelines for Good Programming

The program examples in this book illustrate some simple
guidelines that can make your programs easier to read and lead
you to good programming style:

• Use comments at the beginning of a program to tell what the
program does. This is also a good place to add your name and
information about the date and version of the program.

• Use comments throughout the program to explain what each
segment or structure does.

• Use variable names that give some clue about what they are
used for. Miles, years, original, roll, toss, guess, and answer say a
lot more than m, y, o, r, t, g, or a.

• Indent multiple-line structures such as loops and decision
structures to show more clearly the structure itself and the blocks
of statements that are contained within the structure.

True BASIC Free – User Guide 48

Indenting with Do Format

True BASIC comes with a formatting tool that can indent your
program for you. The NOINDENT demo program in the Demo
Programs folder is another version of the GUESS program with
no blank or indented lines. This version has a nested IF
structure. Open NOINDENT and try to follow the structures in
the unindented format.

! Program to play a guessing game.
!
randomize
let answer = Int(Rnd*6) + 1 ! Choose number from 1-6
print “I’m thinking of a number from 1 to 6.”
print “You have 3 chances to guess it.”
print
for chance = 1 to 3
print “Enter your guess”; ! Ask for number
input guess
if guess = answer THEN
print “Correct!!!”
stop! Stop here, you guessed it
else! Analyze wrong answers
if guess > answer then
print “Too high. Guess again.”
else
print “Too low. Guess again.”
end if
end if
next chance
print
print “The number was”; answer
end

Now select the Do Format command in the Custom menu (or
use the Command-D shortcut). This command indents the
statements inside structures and puts all keywords into
uppercase. You should find the structures much easier to follow.
(In fact, Do Format is a good first step in debugging your
program. Chapter 18 has more information on that.)

! Program to play a guessing game.
!
RANDOMIZE
LET answer = Int(Rnd*6) + 1 ! Choose number from 1-6
PRINT “I’m thinking of a number from 1 to 6.”
PRINT “You have 3 chances to guess it.”
PRINT
FOR chance = 1 to 3

PRINT “Enter your guess”; ! Ask for number
INPUT guess
IF guess = answer THEN

True BASIC Free – User Guide 49

PRINT “Correct!!!”
STOP ! Stop here, you guessed it

ELSE! Analyze wrong answers
IF guess > answer then

PRINT “Too high. Guess again.”
ELSE

PRINT “Too low. Guess again.”
END IF

END IF
NEXT chance
PRINT
PRINT “The number was”; answer
END

You should now be able to easily see and follow the nested IF
structure that is in the ELSE segment of the first IF structure.

To make this program even more readable, you could add some
blank lines. Remember how to do this? Place the cursor (vertical
bar) at the end or beginning of a line and press the Return key.
Use the Delete key at the beginning of the line to remove
undesired blank lines.

Indenting Blocks with > and < keys

You can, of course, indent single lines by adding spaces at the
beginning of the line.

You can also easily indent a block of lines in True BASIC. First,
select the lines you wish to indent by dragging across those lines
with the mouse pointer. Then you can use the > or < keys to move
all the selected lines to the right or left. Each time you press >
the block moves one space to the right; each time you press <, it
moves one space to the left. (Notice that you must hold the Shift
key to get < or > instead of a comma or period.)

Listing Your Programs on a Printer

You can get a paper (or hard-copy) listing of your program by
using the Print... command in the File menu (or press
Command-P). To get a listing of the entire program, be sure that
you haven’t selected any lines when you give the Print command.

To print just part of your program, first use the mouse to select
the desired lines and then choose the Print... command. Select
multiple lines by dragging across them with the mouse. (The next
chapter shows other ways of selecting multiple lines.)

If you have trouble printing, check the following:

• Be sure your printer is turned on.

• Check that the printer cable is firmly connected at both ends.

True BASIC Free – User Guide 50

• Select the Chooser Desk Accessory in the Apple menu and
make sure you have selected the proper printer.

• Use the Page Setup... command in the File menu to be sure
you have the proper choices for paper and orientation.

See the next section in this chapter “Using the Command
Window” for information on the LIST command that also prints
all or part of your program.

The next section describes the LIST command, used in the com-
mand window, that also prints all or part of your program.

Using the Command Window
So far, you’ve told True BASIC what to do with menu choices (or
Command key shortcuts). You can also give commands by typing
them in a command window.

Open the command window by choosing Command in the
Windows menu (or use the Command-J shortcut). True BASIC
types ‘Ok.’ in this window to signal that you can type a command.
You may type many commands that are also available in the menu,
such as RUN, SAVE, OLD (to open an existing program), NEW (to
create a new untitled window), or DO FORMAT. There are also
several True BASIC commands that are not in the menu:

• The LIST command prints all or part of your program on your
printer. To list part of your program indicate the lines to be
printed, such as LIST 1-10 for the first 10 lines.

• The ECHO and RUN > > commands let you send copies of your
output to a printer or a file; these are described in the next section.

• Other commands are helpful in debugging or correcting errors in
your programs. Section 19 introduces some debugging commands.
These and all True BASIC commands are described fully in the
True BASIC Bible.

Echoing Output to a Printer or File
When you run your programs, the results are “printed” on the
screen in the output window. You can also send those results to
your printer or to a file (which you could later list on a printer).
The ECHO command, which you use in a command window, is the
easiest way to do this.

To send output to your printer, open the command window and
then type ECHO at the ‘Ok.’ prompt. When you next use the RUN
command, True BASIC sends a copy of your output to your printer;
True BASIC also prints any commands you give. This stay in effect
until you type ECHO OFF. You must be sure that your printer is

True BASIC Free – User Guide 51

on and directly connected to your computer. This command does
not work for a printer connected over a network.

If you have problems echoing to a printer or you do not have a
direct connection to a printer, the best solution is to echo to a file
and then print that file. To do that, use the command window to
give the command ECHO TO followed by a file name. (If the file
doesn’t exist, True BASIC creates it for you; otherwise, it adds to
the end of the existing file.) True BASIC sends a copy of all subse-
quent commands and program output to that file until you type
ECHO OFF. You can then open the file and print it with the
Print... command in the File menu or the LIST command in the
command window.

As an example, open the MPG2 program you created earlier and
then open the command window and type the following at the ‘Ok.’
prompt:

echo to mpgout
run

The program will run as usual. True BASIC will ask for number of
miles and gallons and prints the results on your screen. You can
then return to the command window and type:

echo off
old mpgout
list

The MPGOUT file will contain the following; the LIST command
will send these lines to your printer.

Ok. run
How many miles? 450
How many gallons? 13.6
Miles Gallons Miles per Gallon
450 13.6 33.0882
Ok. echo off

You can also echo output to a file by giving the file name with the
RUN command in the command window as follows:

run > filename

Only the results of the run will go to the file, not the commands.

Sending Output from a Program to a Printer
Your True BASIC program can also send all or part of its output to
a printer. You do this by “opening a channel” to the printer within
the program. Here is a quick introduction:

True BASIC Free – User Guide 52

OPEN #1: printer ! Opens channel #1 for the printer
FOR i = 1 to 10

PRINT #1: i ! Print to #1 -- the printer
NEXT i
END

After the OPEN statement that identifies the printer, a plain
PRINT statement will still “print” to the screen, but PRINT #1 will
send output to the printer. You may want to print input prompts
on the screen, but send the results of a calculation to the printer. If
you want results to go to both the printer and the screen, you must
have two print statements for each output line.

You can also open a channel to a file and PRINT output to that file.
Chapter 13 tells more about using files with your programs.

Printing graphics output is a bit trickier. Chapter 17 in this book
has a brief introduction to this process.

Using Line Numbers

True BASIC’s structures and editing features make it unneces-
sary to use line numbers on your programs. Although True
BASIC recognizes and allows statements that rely on line num-
bers (such as GOTO 1025), such statements are a holdover from
the days before good structured programming languages were
developed. You won’t find them described in this manual. For
information on using line numbers on True BASIC programs see
the True BASIC Bible.

Some of the Edit menu commands, introduced in the next
chapter, let you specify lines by sequence number. For example,
1-10 refers to the first 10 lines of an unnumbered program.

True BASIC Free – User Guide 53

12. Editing Hints and Shortcust

You’ve already edited several small True BASIC programs, and
you’ve seen in the previous chapter how you can improve the
format of your programs. True BASIC has some special editing
commands and shortcuts that you may find useful as you
continue working with more and larger programs.

The Edit menu contains four sections of commands. This chapter
explains the first two groups of command. The last two groups
are introduced briefly; you’ll find them more helpful later as you
begin to work with larger programs.

Selecting, Deleting, Moving, and Copying

The Cut, Copy, and Paste commands in True BASIC’s Edit
menu work just like those commands in just about any
application. Use these commands to move lines or parts of lines
or to duplicate a part of the program.

If you are not familiar with Cut, Copy, and Paste, practice using
them with the SMOKY demo program as described below. (Just
don’t save your changes without using Save As... to rename the
program; you’ll use SMOKY again in Chapter 18.)

Selecting Text. To delete, move, or copy something, you must
first select or highlight the desired text. Use the mouse to:

• drag across the desired words or lines

• double-click on a word to select that word

• double-click at the beginning or end of a word to select the word
along with adjacent space and punctuation

• triple-click to select an entire line

You can extend a selection by moving the mouse pointer and then
holding the Shift key while you click with the mouse.

Open the demo program SMOKY and run it to see what it does.
Now practice selecting the four lines of DATA statements. Try
both methods of selecting lines:

• Triple-click to select the first DATA statement (move the
pointer to that line and click three times quickly without moving
the mouse). Next, move the pointer down to the last DATA
statement and Shift-click (hold the Shift key while you click on
the mouse).

• Drag across the four lines (hold the mouse button down while
you move the pointer across the lines).

True BASIC Free – User Guide 54

Deleting Lines. Once you’ve selected something, use the Cut
command to remove the text.

Select the two comment lines in the SMOKY program and choose
Cut in the Edit menu (or press Command-X). The lines will
disappear and True BASIC will print the message “2 lines
deleted” at the bottom of the window.

The Cut command puts these lines into the “clipboard” (usually
invisible) so you can get them back. Choose Paste in the Edit
menu (or press Command-V). True BASIC will put the lines back
and print the message “2 lines put back” at the bottom of the
window.

——————————————————————————————
The Cut command removes selected text from your
program and puts it in the clipboard.

——————————————————————————————

Note that you can also use the Delete key to remove selected
lines. But, unlike Cut, the Delete key does not put anything in
the clipboard. You cannot Paste something that has been
“deleted”.

Moving Lines. Use Cut and Paste to remove selected lines and
then insert them elsewhere in the file.

This time, select the four DATA lines in the SMOKY program.
Use the Cut command to remove the lines (and put them in the
clipboard). Then move the insertion point to the left of the DO
statement. Now choose the Paste command. True BASIC puts
the DATA lines before the DO loop and prints the message “4
lines put back”.
——————————————————————————————

The Paste command puts the current contents of the
clipboard at the current insertion point in your pro-
gram.

——————————————————————————————

Run the program again. It still works, regardless of the location
of the DATA lines. You’ll learn more about this statement in the
next section.

Notice that the two comment lines disappeared from the clipboard
when you copied the four DATA lines. The clipboard holds only
one selection at a time. It contains the last thing you cut or
copied. Previous contents are lost each time you use Cut or
Copy, but you may Paste the same text from the clipboard as
many times as you wish.

Copying Lines. You can copy selected lines to another part of
your program by using Copy and Paste. Copy puts the selected

True BASIC Free – User Guide 55

lines into the clipboard without removing them from the program.
You can then Paste a copy to another spot.

Make a second copy of the four DATA lines to follow the existing
DATA lines. Select the four DATA lines in the SMOKY demo
program and choose Copy in the Edit menu. The selection will
go away and the insertion point will reappear.

——————————————————————————————
The Copy command puts a copy of selected text in the
clipboard without removing the text from your pro-
gram.

——————————————————————————————

Move the insertion point to the line below the last DATA
statement, and choose Paste in the Edit menu . True BASIC
inserts a new copy of the four DATA lines and prints the message
“4 lines put back”.

Run the program again. You’ll hear the same lines twice.
(Remember you can stop the program at any point by selecting
Stop in the Run menu.)

Search and Replace

Finding Words. Put the insertion point at the beginning of the
SMOKY program, and choose Find... from the Edit menu. True
BASIC will present a box with buttons for “OK” and “Cancel”.
Type:

data

in either upper or lowercase. Press the Return or the Enter key,
or click the OK button on the right side of the box. True BASIC
will select the first occurrence of the word data in the program:

DO while more data

To find the next occurrence of the word data, choose Find Again
in the Edit menu (or press Command-G). True BASIC will select
the next occurrence of the word data, which is the first DATA
statement.

——————————————————————————————
When searching for whole words, True BASIC finds the
word regardless of whether it is in lowercase or capital
letters.

——————————————————————————————

Finding Parts of Words. Choose the Find... command again.
This time, type:

dat

True BASIC Free – User Guide 56

and click OK. True BASIC will tell you, “Not found” and the inser-
tion point will stay on the first DATA statement. Although dat is
part of data, and there are three more occurrences of data in the
program, Find... doesn’t normally locate just part of a word.

If you want to find just part of a word, you must first remove the
X from the “Find Whole Word” check box. Choose Find... from
the Edit menu again. Retype dat so that it is in uppercase
letters:.

DAT

Click the “Find Whole Word” check box so that the X disappears
(this turns the option off), and click OK. This time True BASIC
will move down to the next DATA statement. If the search fails,
it’s because your upper or lowercase letters didn’t match those in
the program.
——————————————————————————————

With Find Whole Word turned off, the characters you
type must exactly match the characters in the pro-
gram.

——————————————————————————————
Without moving your insertion point, choose Find... one more
time. This time look for the word:

read

Click to put a check next to “Find Whole Word” again, and click
OK. Even though the program SMOKY contains a READ
statement, True Basic won’t find it because the insertion point
was below the READ statement when you used Find...

——————————————————————————————
Summary: True BASIC always searches from the inser-
tion point to the end of the program, and then stops.

——————————————————————————————

Now move the insertion point to the very beginning of the
program. Choose Find Again. True BASIC will find the READ
statement now, because you started the search at the very
beginning of the program.

Changing Text

The Change... command lets you change all occurrences of a
word or number to a different word or number. Choose
Change... from the Edit menu. On the Macintosh, you’ll see a
box with two places for you to type. In the rectangle marked
“Change:”, type the word music$. Press the Tab key or click to
move your insertion point to the “To:” rectangle, and type the
word notes$.

True BASIC Free – User Guide 57

Change Box for MacOS

Leave the preset values of “Ask Each Time” and “Find Whole
Word” as they are, and click the Change button at the right of the
box.

The Change... command, like Find..., won’t change just part of a
word or number unless you ask it to do so. To change part of a
word, click the “Find Whole Word” check box so that the X
disappears. That will make the Change... command look for just
part of a word.

The option “Ask Each Time” lets you decide whether to make the
change for each occurrence. Choose Change..., and type:

Click the “Ask Each Time” box to put an X in it, then click the
Change button. True BASIC will highlight the first occurrence of
the word “the” in your program and present a new box with the
question “Change?”.

Click “No” and no change will be made at that place in your
program. True BASIC then highlights the next occurrence of the
word and you’ll have the same chance to decide whether to make
the change. Click “Yes” to make that change. You can stop at any
point just by clicking “Cancel”.

PC Version Change from? and Change to? box

On the PC version of True BASIC Free, the Change... is
performed by presenting two dialog boxes. In the first you enter
the ‘Change From’ text, click OK and then you will see the
Change To dialog box. Enter the text for the change and click OK.

True BASIC Free – User Guide 58

On both the MacOS and the PC versions, True BASIC will
confirm how many changes were made.

Extracting Parts or Merging Programs

The next two commands in the Edit menu will become useful as
you begin to work with larger programs.

If you want to remove all but one section of a program, use the
Keep...command. Select the part you want to keep and then
choose Keep... from the Editmenu. True BASIC will delete
everything in your program except the selected text.

The Include... command lets you add the contents of another file
to your program. Put the insertion point at the place where you
wish to add the new file and select Include... from the Edit
menu. You’ll get a dialog box where you can specify any existing
file in any folder on any disk. True Basic will insert the contents
of that file at the insertion point of your current program.

Edit..., Select..., and Move To...

The three remaining commands in the Edit menu are also useful
as you work with larger programs.

The Edit... choice lets you restrict your editing (such as use of
Find... or Change...) to a selected group of lines.

The Select... and Move To... commands let you select a group of
lines or move to a specific place in the program by specifying line
numbers or the name of a particular subroutine or function. For
example, you can move to the beginning of your program by using
Move To... and specifying line 1. You can select the first 10 lines
of your program by using Select... and specifying 1-10. You’ll
learn more about subroutines and functions in section 15.

For more details on these last two groups of Edit menu
commands, see the True BASIC Bible.

True BASIC Free – User Guide 59

13. Using and Storing Data
So far, you’ve used the LET and INPUT statements to assign
values to variables. These work fine if you have just a few values.
The READ and DATA statements described in this chapter let
you supply a list of numbers or strings in your program and
assign them, one by one, to variables. They always go together:
the DATA statement lists all the values, and the READ statement
assigns them to variables.

You can also assign values to variables from data stored in files.
The latter sections of this chapter describe how you can use text
files to store data for use by your programs.

The DATA and READ Statements

Call up the demo program TRIVIA and look at how it uses READ
and DATA statements.

! Trivia quiz.
!
READ num_quest ! Number of questions

FOR i = 1 to num_quest ! Read all questions

READ question$, answer$

PRINT question$;
LINE INPUT reply$! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count right replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”

END IF

NEXT i

PRINT “You got”; 100 * right/num_quest; “% right.”

DATA 5

DATA What is the capital of Austria, Vienna
DATA What year did Franklin Pierce take office, 1853
DATA “What is the capital of Manitoba, Canada”, Winnipeg
DATA “How many years, on average, does a baboon live”, 20
DATA How about a gray squirrel, 5

END

The first executable statement after the initial comment lines is a
READ statement. This “reads” the first item in the first DATA

True BASIC Free – User Guide 60

statement and assigns that value to the variable num_quest. The
value of num_quest determines how many times the program goes
through the FOR-NEXT loop.

The second READ statement is inside the FOR-NEXT loop. It
gets the next two values from the list of DATA statements and
assigns them to the two variables in the READ statement.
Question$ takes the value “What is the capital of Austria” and
answer$ gets the value “Vienna”. The next time through the loop,
question$ and answer$ take the next two values in the DATA
statements, and so on.

Run the program to see how it works. You can give any answers
you want; the dialog below is just a sample.

What is the capital of Austria? Salzburg
No, the correct answer is Vienna.
What year did Franklin Pierce take office? 1844
No, the correct answer is 1853.
What is the capital of Manitoba, Canada? Winnipeg
Correct.
How many years, on average, does a baboon live? 20
Correct.
How about a gray squirrel? 15
No, the correct answer is 5.
You got 40 % right.

——————————————————————————————
DATA statements may be placed anywhere in your
program.

——————————————————————————————

You saw that the location of the DATA statements didn’t matter
when you moved them in the SMOKY program in the last
chapter. Often they go at the very end of a program; sometimes
it’s more convenient to put them right after a READ statement.
You may use a separate DATA statement for each item, or use
commas to put several items on one statement. True BASIC
lumps all the DATA statements in a program together, in order,
into one long list of data items. Each time it executes a READ
statement, True BASIC reads the next item in the DATA list,
regardless of where it appeared in the program.

——————————————————————————————
READ and DATA statements can use either numbers or
strings.

——————————————————————————————

You may freely mix strings and numbers in your DATA
statements. Just be sure that the variable name type (numeric or
string) is reading an appropriate type of data item. You can’t

True BASIC Free – User Guide 61

read a string data item into a numeric variable, but you can read
a number into a string variable. The TRIVIA program reads
some numbers for the string variable answer$. This is perfectly
legal in True BASIC, as long as you don’t try to use that variable
to do arithmetic calculations.

——————————————————————————————
You must put double quote marks around string data
items that contain commas, or around items that begin
or end with spaces.

——————————————————————————————

If you don’t use quote marks, True BASIC will assume that any
commas are separating data items, and it will ignore any extra
spaces before or after the data.

Checking for More Data

The TRIVIA program stores the number of questions in the first
item in the DATA statements. The number of questions then
controls the FOR-NEXT loop so that it reads the correct number
of items. If the program tried to read more items than are
contained in the DATA statements, True BASIC would give you
an error message.

It is not always convenient to count the number of DATA
statement item, however. True BASIC provides a way that you
can use a DO loop to check whether there are any more data
items available. The SMOKY Demo Program you edited in the
last chapter illustrates this method. You haven’t learned the
PLAY statement yet for performing music, but you should be able
to follow the logic of the program.

! Plays the beginning of “On Top of Old Smoky”.

DO while more data

READ music$! Get the string representations
PLAY music$! And play the notes

LOOP

DATA O4 L4 C C E G O5 L2 C. O4 A.
DATA L4 A F G A L1 G
DATA L4 C C E G L2 G. D.
DATA L4 E F E D L2 C.

END

The DO WHILE MORE DATA statement means “keep looping
while there are more data items to read”. This is why the

True BASIC Free – User Guide 62

program still worked even when you copied and pasted an extra
set of the DATA statements.

——————————————————————————————
MORE DATA is true as long as there are more items in
the DATA list.

——————————————————————————————

DO WHILE MORE DATA makes it easier to change the amount
of data at the end of the program. You never have to count the
data items, or remember to change the number saying how many
data items there are. After all, the computer should do all this
bookkeeping work!

(As a practice exercise, rewrite the TRIVIA program to use a DO
WHILE MORE DATA statement instead of the FOR-NEXT loop.)

Besides the MORE DATA condition, True BASIC also has an
END DATA condition, which works just the opposite way. END
DATA is true if you’ve run out of data to read. It’s probably
easiest to use END DATA with a DO UNTIL or LOOP UNTIL
statement. For example, you could rewrite the SMOKY program
to use a plain DO statement with a LOOP UNTIL END DATA
statement.

——————————————————————————————
END DATA is true when there are no more items in the
DATA list.

——————————————————————————————

Reusing Data Values

So far, the TRIVIA and SMOKY programs have read each data
item once and only once.

——————————————————————————————
True BASIC’s RESTORE statement lets you reuse data
values that have already been assigned to variables.

——————————————————————————————

After you use a RESTORE statement, True BASIC begins reading
again at the first item in the list of DATA statements. The
following version of SMOKY uses a RESTORE statement
whenever the end of the data is reached. This program also
illustrates the END DATA condition which is the opposite of
MORE DATA.

True BASIC Free – User Guide 63

! Plays the beginning of
! “On Top of Old Smoky”.

DO while more data

READ music$! Get the string representations
PLAY music$! And play the notes

IF end data then RESTORE

LOOP

DATA O4 L4 C C E G O5 L2 C. O4 A.
DATA L4 A F G A L1 G
DATA L4 C C E G L2 G. D.
DATA L4 E F E D L2 C.

END

Notice that this program now contains an infinite loop. The
program will never end on its own. First, it will play through to
the end of the data. When the last item is read, the IF END
DATA condition will then be true and the RESTORE statement
will “reset” True BASIC to the beginning of the DATA items. DO
WHILE MORE DATA will therefore still be true. Thus, the data
will play again, and again be restored after the last item. To stop
such a program, you must use the Stop command in the Run
menu.

Notice also, that you may use the END DATA or MORE DATA
conditions anywhere that you can use a logical condition. Thus,
you can use them in IF-THEN statements as well as on a DO
WHILE or DO UNTIL.

You can also combine checks for END DATA or MORE DATA
with other conditions using AND or OR. With AND, both
conditions must be true. With OR, if just one condition is true
then the test is true. Can you figure out how the following
version of the TRIVIA program will work?

! Trivia quiz.
!
DO

READ question$, answer$

PRINT question$;
LINE INPUT reply$! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count correct replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”

True BASIC Free – User Guide 64

END IF

IF end data and right <3 then
RESTORE
LET right = 0

END IF

LOOP until end data or right >=3

DATA What is the capital of Austria, Vienna
DATA What year did Franklin Pierce take office, 1853
DATA “What is the capital of Manitoba, Canada”, Winnipeg
DATA “How many years, on average, does a baboon live”, 20
DATA How about a gray squirrel, 5

END

Storing Data in Files

True BASIC also lets you write and read data to and from other
files. A file is a unit of information saved on a disk in your com-
puter. Files may contain text, data, or programs; each of the True
BASIC programs you’ve been creating are saved in separate files.
Because files continue to exist after your program stops and even
after you turn off your computer, they serve as long-term storage.
There are several advantages to storing your data in one or more
files separate from the file containing your program:

• It is easier to create and maintain a large amount of data in a sep-
arate file. You need no DATA statements, and your data takes no
space in your program.

• You can run a program with several different sets of data (each
stored in a different file), or have one set of data that can be used by
several programs.

• A program can change or make additions to data stored in files.
You can store results for use in later program runs.

True BASIC programs can read and write to three kinds of files:
text, record, and byte files. Here, we’ll look at just text files as
these are the easiest to create and understand.

A text file contains lines that True BASIC can display on the
screen. You can create text-file lines at the keyboard using True
BASIC’s screen editor or by printing output from a True BASIC
program to a file. All of the True BASIC programs you’ve been
looking at are actually text files.

Reading Data From Text Files

The demo program TRIVIA2 is a version of the Trivia quiz that
gets its data from the text file TRIVDATA. Open the TRIVIA2 pro-
gram and notice how it differs from the versions you’ve seen so far:

True BASIC Free – User Guide 65

! Trivia quiz -- reads data from a file.
!
OPEN #1: name “TrivData” ! Open file as channel #1

DO
INPUT #1: question$, answer$! Get data from channel #1
LET total = total + 1 ! Count the questions
PRINT question$;
LINE INPUT reply$! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count right replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”

END IF

LOOP until end #1

PRINT “All done. You answered”; right; “out of”; total;
PRINT “questions correctly.”

CLOSE #1 ! Close the file

END

The OPEN statement “opens a channel” to the file TRIVDATA.
This channel, #1 in this case, then serves as a shorthand name for
the file you have opened. (This is similar to the way you “open a
channel” to the printer as seen in section 11. The PRINTER and
NAME keywords tell True BASIC what you want. By using differ-
ent channel numbers, you can open a printer and one or more files
at the same time.)

??? Difference in writing OPEN and CLOSE path names between
MacOS and PC versions

The INPUT #1: statement looks at the opened file for input rather
than asking for it at the keyboard. The LOOP UNTIL END #1
statement works as does LOOP UNTIL END DATA, but it looks for
data in the opened file rather than in DATA statements within the
program. You may also use MORE #1 wherever you might use a
MORE DATA statement.

True BASIC Free – User Guide 66

Similarly, if you add the statement:
IF end #1 then RESET #1: begin

just before the LOOP statement, the program will run continu-
ously using the TRIVDATA questions over and over again. In that
case, you would have to use the Stop command in the Run menu to
stop the program.

The CLOSE #1 statement closes the channel to the file. Although
True BASIC automatically closes any open files at the end of a pro-
gram, it’s a good idea to close a channel when you no longer need it.

The TRIVDATA file must contain the data just as you would type it
on the keyboard in response to an INPUT statement. The INPUT
#1 statement asks for two input items. Look at TRIVDATA and
you’ll see that each line (except the last two) contains two input
items separated by a comma.

Which part of a lemon provides the zest, skin
What is a German motorway or freeway called, Autobahn
Which is the most populous country in the world, China
What year did the SS Titanic sink, 1912
What is the largest snake in South America, Anaconda
What shape does a honeybee make its cell, hexagonal
What is the main power source for orbiting research
satellites,solar

——————————————————————————————
The data-file lines must exactly match the INPUT
requests as the program cannot “re-ask” a file for
input.

——————————————————————————————

If there are too few or too many items, or the types do not match,
your program will stop with an error. If you can’t fit all required
input items on one line (as with the last question), you can end a
line with a comma to indicate that another input item follows on
the next line.

Use the arrow keys to move to the end of the TRIVDATA file and
you’ll see that the last line of data is the last line of the file. There
is no extra return or linefeed at the end of the file. (If a data file
ends with a blank line, you may receive an error message such as
“Too few input items” when True BASIC expects more data but
finds no input items on the line.)

You may also use the LINE INPUT, MAT INPUT, and MAT LINE
INPUT statements to read from text files. LINE INPUT is, in fact,
the best statement to use with strings that might have commas or
quotes in them; see the section “Using LINE INPUT with String
Data in Text Files” below. Just be sure that the data in the file
matches the appropriate format for the input statement or state-

True BASIC Free – User Guide 67

ments in the program. (The MAT statements read from arrays and
are explained in the next chapter.)

Creating Text Files

You may use True BASIC’s screen editor to enter data into a text
file. Create a new file as if you were creating a new program, and
then type in your data in the proper format. Do not use any DATA
statements — and of course no line numbers!

You can also create data files with any application (such as a word
processor, spreadsheet, or database program) that lets you save
text-only files. Check the instructions for your application to learn
how to save such files and how to put commas between data items
if necessary.

For practice, create an alternative set of questions for the TRIVIA2
program. You can then edit TRIVIA2 to open your new data file, or
you can modify the program to ask you what file to use for input:

INPUT PROMPT “What file contains the questions? “: filename$
OPEN #1: name filename$

True BASIC programs can also create text files and put data in
them, as described in the next section.

Printing String Data to Text Files

Just as you can open a channel to a printer and then PRINT to the
printer instead of the screen (see section 11), you can open a chan-
nel to a file and PRINT to that file. You can easily adapt any pro-
gram you’ve written so far to send output to a file rather than to the
screen or printer:

OPEN #1: name “outfile” ! Opens channel #1 to a file
ERASE #1! Make sure file is empty
FOR i = 1 to 10

PRINT #1: i ! Print to #1 file
NEXT i
CLOSE #1! Close the file
END

Simply opening a file and replacing your PRINT statements with
PRINT #1 statements works fine if you merely want to save your
output — perhaps for later listing on a printer. However, if you are
storing data for future use by a program, you must plan ahead.

——————————————————————————————
If you want to print data to a file for later use by a pro-
gram, you must put the data into the file in a format
appropriate for input.

——————————————————————————————

True BASIC Free – User Guide 68

Consider the following variation on TRIVIA2.
! Trivia quiz -- reads data from a file.
!
INPUT PROMPT “File containing the questions? “: filein$
OPEN #1: name filein$

INPUT PROMPT “File to store missed questions? “: fileout$
OPEN #2: name fileout$, create newold ! Open or create 2nd file
RESET #2: end ! Move to end of 2nd file

DO
INPUT #1: question$, answer$! Get data from channel #1
LET total = total + 1 ! Count the questions
PRINT question$;
LINE INPUT reply$! Get user’s guess

IF reply$ = answer$ THEN ! If correct...
LET right = right + 1 ! Count correct replies
PRINT “Correct.” ! And say bravo

ELSE
PRINT “No, the correct answer is “; answer$; “.”
PRINT #2: question$; “,”; answer$! Save question

END IF

LOOP until end #1

PRINT “All done. You answered”; right; “out of”; total;
PRINT “questions correctly.”

CLOSE #1 ! Close the files
CLOSE #2

END

This program opens a second file and prints to it each missed ques-
tion along with the correct response. Notice that the PRINT #2
statement also prints the comma that must separate these two
items if you later wish to use the file for input.

The CREATE NEWOLD keywords on the second OPEN statement
tell True BASIC to create a new file if it can’t find one with the
specified name.

The RESET #2: END statement tells True BASIC to move to the
end of the second file. True BASIC is always “looking” at the begin-
ning of a newly opened file, which is fine if you are using the file for
input or if the file is empty. But True BASIC can print only to the
end of existing text files, so you must either erase the file or move to
the end before you can PRINT. (If the file is empty; the RESET
statement has no effect.)

True BASIC Free – User Guide 69

——————————————————————————————
If you want to PRINT to a text file that is not empty,
you must first ERASE the file or RESET to the END of
the file.

——————————————————————————————

Make these changes to the TRIVIA2 program and try it out.

Reusing Stored Data for Input

Each time you run the above program, it adds any missed ques-
tions to the end of the #2 file — your “output file”. If you send out-
put to the same file for several runs of the program, it may eventu-
ally contain a long list of questions.

You could later use those saved questions to quiz yourself again
because the questions and answers were printed to the file in a
proper format for input. For example, assume you ran the program
with TRIVDATA as the source of the questions and a file called
REQUIZ for the missed questions. You could then run the pro-
gram again, naming REQUIZ as the source of questions and giving
a new file name to receive the missed questions.

Note! Do not open the same file for both channel #1 and #2. This is
rarely, if ever, desirable, and with the TRIVIA program as written
above, you’ll get an error message if you attempt to do so. This is
because True BASIC normally opens a file with “permission” to
read from it and write to it, and one file can give only one “write
permission” at a time. For more information on file permissions,
see the True BASIC Bible.

Using LINE INPUT with String Data in Text Files

Look at the following question, which you might want to add to a
data file read by the TRIVIA2 program:

Who wrote 20,000 Leagues Beneath the Sea, Jules Verne

As written above, this line would produce the error message “Too
many input items.” True BASIC would interpret the comma in
20,000 as marking the end of the first input item. You can place
such an input string in double quotes to indicate that the comma is
part of the string:

“Who wrote 20,000 Leagues Beneath the Sea”, Jules Verne

But what if you want to place the title “20,000 Leagues Beneath
the Sea” in quotes? You would have to use single quotes for the
title, or you could repeat the double quotes where you want True
BASIC to see them as quotes and not as markers for the end of the
string:

“Who wrote ‘20,000 Leagues Beneath the Sea’”, Jules Verne

True BASIC Free – User Guide 70

or
“Who wrote ““20,000 Leagues Beneath the Sea”””, Jules Verne

Although you can add quotes as necessary if you create the data file
yourself, you could easily make mistakes. And it becomes even
more complex if you want your program to PRINT such strings to a
file for later use as input!

The LINE INPUT statement provides a much “cleaner” way to use
strings for input to text files. To “fix” the TRIVIA2 program, first
place the questions and answers on different lines in your data file.
For example:

Who wrote “20,000 Leagues Beneath the Sea”
Jules Verne
What name is given to burnt sugar used as flavoring
caramel

You can then easily change the TRIVIA2 program to read a com-
plete input line for each variable, regardless of punctuation:

LINE INPUT #1: question$, answer$

And, you can very easily PRINT strings to a file that could later be
used for input:

PRINT #2: question$
PRINT #2: answer$

These two PRINT statements put each string on a separate line in
file #2.

Printing Numeric Data to Text Files

The demo program BALANCE shows how you can send both
numeric and string data to a file and then reuse the data in that file
when the program is run again:

! Check balance program - keeps current data in a text file

! Open the data file and get existing values, if any
OPEN #1: name “CHKDATA”, create newold

! If file contains data, get it & report current amounts
IF more #1 then

LINE INPUT #1: bal_date$
INPUT #1: curbal, lastcheck_amt, lastdep_amt
PRINT “As of “; bal_date$; “, your balance was $”;curbal
PRINT “Your last check was $”;lastcheck_amt
PRINT “Your last deposit was $”;lastdep_amt
PRINT
PRINT “Input all checks and deposits since “;bal_date$

ELSE
PRINT “Input all checks and deposits.”

END IF

True BASIC Free – User Guide 71

! Get new transactions

PRINT “Enter one per line: use - for checks, + for deposits”
PRINT “Enter 0 (zero) when done”

DO ! Get new transactions
INPUT amount
LET curbal = curbal + amount ! Update balance
IF amount < 0 THEN

LET lastcheck_amt = amount*(-1)
ELSE IF amount > 0 THEN

LET lastdep_amt = amount
END IF

LOOP UNTIL amount = 0

LINE INPUT PROMPT “Date of last transaction: “: bal_date$
PRINT “Your current balance is $”;curbal

! Clear data file and enter new amounts
ERASE #1! Remove any existing data
PRINT #1: bal_date$
PRINT #1: curbal; “,”; lastcheck_amt; “,”; lastdep_amt
CLOSE #1

END

This program uses a single data file CHKDATA. The program
first reads the current values (if any) from the file to variables
used by the program. After it calculates all new transactions, the
program erases the data file and prints the new information to it.
Thus, you could use CHKDATA again and again, and you will
always be working with the most recent information about your
bank balance.

If you run this program and then open the CHKDATA file, you’ll
see the data as follows:

July 4, 1993
460.93 , 436.5 , 1000

Notice that the program prints commas between the three
numeric data items to match the INPUT statement. It prints the
string bal_date$ to a line by itself and uses a LINE INPUT
statement to read that line. This avoids the problem that a
comma within the date would cause with an INPUT statement.

More About File Input and Output

When a True BASIC program opens a text file, the program is nor-
mally “looking” at the beginning of the file. The first input state-
ment reads the first line of data, the second input statement reads
the second line, and so on. You can re-use the data in a text file by
using a RESET statement:

True BASIC Free – User Guide 72

RESET #1: begin

A True BASIC program can print only to the end of a text file. You
must move to the end of the file by first reading all the data, by
erasing the file, or by using a RESET statement:

RESET #1: end

Record files let you move around within a file more easily, and
the True BASIC language provides additional statements for use
with files. For more information about all three of True BASIC’s
data-file types and the statements used with them, see the True
BASIC Bible.

True BASIC Free – User Guide 73

14. Arrays and Matrices
Problems often arise that would require an unreasonable number
of variables to solve. Open the demo program INVNTORY, which
keeps the inventory of a hardware store:

! Inventory for 5 items.
!
READ item1$, number1
READ item2$, number2
READ item3$, number3
READ item4$, number4
READ item5$, number5

PRINT “You have these items:”
PRINT item1$, item2$, item3$, item4$, item5$
PRINT number1, number2, number3, number4, number5

DATA hammers, 4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END

Imagine how much trouble it would be to change this program to
handle thirteen items! Now consider that a large store might
have thousands of different items in stock. Clearly, you need a
better way of handling many similar values.

One-Dimensional Arrays

This problem calls for array variables. An array is a variable
that can hold several different values at once. You could think of
it as a list of items. You identify each item with the name of the
list and the item’s position in the list.

Rewrite the INVNTORY program to use two arrays, item$ and
number as shown below:

! Inventory with arrays
!
DIM item$(5), number(5)

FOR i = 1 to 5
READ item$(i), number(i)

NEXT i

PRINT “You have these items:”
FOR i = 1 to 5

PRINT item$(i), number(i)
NEXT i

DATA hammers, 4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END

True BASIC Free – User Guide 74

When you run this program, you get the following output:
You have these items:
hammers 4
umbrellas 2
wood stoves 1
bags of salt 4
pliers 2

The table below illustrates the two arrays item$ and number.
The DIM statement declares that the variables are arrays and
sets their size; each array can hold five different values. (DIM is
short for “dimension,” as it fixes an array’s dimensions.)

item$

item$(1) item$(2) item$(3) item$(4) item$(5)

number

number(1) number(2) number(3) number(4) number(5)

——————————————————————————————
You must name every array in a DIM statement before
you can use it in the program.

——————————————————————————————

The ten individual values within item$ and number are the
elements of the arrays. The elements of item$ are strings, and
the elements of number are numbers. The name of a string array
must end in a dollar sign, just like the name of a regular string
variable. You cannot mix numbers and strings in a single array.

Array Subscripts

The numbers used to identify a particular element of an array are
subscripts. Subscripts must be enclosed in parentheses () after
the array name. The elements of item$ and number
automatically use subscripts from 1 to 5 because the DIM
statement set the size of the arrays to 5.

Each time through the FOR-NEXT loops, True BASIC reads and
prints different elements of item$ and number. The first time
through the loop, i equals 1, so the program reads and prints
item$(1) and number(1). The second time through, i equals 2, so
the program reads and prints item$(2) and number(2), and so on.
(You describe elements in an array as “item-dollar-sub-one” or
“number-sub-two.)

4 2 1 4 2

hammers umbrellas wood stoves bags of salt pliers

True BASIC Free – User Guide 75

You can use the elements in an array in any order. For example,
you could change the second FOR statement to print the elements
in reverse order.

! Inventory with arrays
!
DIM item$(5), number(5)

FOR i = 1 to 5
READ item$(i), number(i)

NEXT i

PRINT “You have these items:”
FOR i = 5 to 1 step -1

PRINT item$(i), number(i)
NEXT i

DATA hammers, 4, umbrellas, 2, wood stoves, 1
DATA bags of salt, 4, pliers, 2
END

The program will print the items in reverse order:

You have these items:
pliers 2
bags of salt 4
wood stoves 1
umbrellas 2
hammers 4

Array Bounds

In the INVNTORY program, item$ and number both have five
elements, numbered from 1 to 5. In True BASIC, however, you
can use any numbers as the lower bound and upper bound for
the array. That is, instead of having a lower bound of 1, the array
could have a lower bound of 1991. Instead of having an upper
bound of 5, you might use 1995. You still have an array with five
elements, but with different bounds.

You may want to adjust array bounds to make a particular
problem easier to solve. The following program shows how you
could read and compare census figures for a couple of towns:

! View census figures
!
DIM springfield(1985 to 1990), woodsville(1985 to 1990)

FOR y = 1985 to 1990
READ springfield(y), woodsville(y)

NEXT y

INPUT PROMPT “What year are you interested in? “: year
IF springfield(year) > woodsville(year) then

True BASIC Free – User Guide 76

LET town$ = “Springfield”
ELSE

LET town$ = “Woodsville”
END IF
PRINT “In”; year; town$; “ had the largest population.”

DATA 17635, 16413, 17986, 16920, 18022, 17489
DATA 18130, 17983, 18212, 18433, 18371, 18778
END

A sample run produces output such as:
What year are you interested in? 1987
In 1987 Springfield had the largest population.

The DIM statement declares bounds from 1985 to 1990 for the
arrays springfield and woodsville, so each array has six elements.

You may use any numbers you wish for an array’s upper and
lower bounds. For example, to keep track of Centigrade
temperatures in the northern United States or Canada, you
might want to dimension an array such as temp(-40 to 40). This
array has 81 elements.

Naturally, as your arrays get bigger, they take more computer
memory to store. True BASIC limits the size of your arrays only to
what will fit in your computer’s memory.

Arrays of Two or More Dimensions

So far, you’ve seen only “one-dimensional” arrays. These arrays
require only one number as subscript. But True BASIC lets you
have arrays with 2, 3, 4, or almost any number of dimensions.
(The maximum number of dimensions is 255.)

Typically, you would use a two-dimensional array when you
have two different sets of strongly related values. Open the Demo
Program STATES, which plays a trivia quiz with state capitals,
and run it.

! State capital quiz.
!
RANDOMIZE
DIM state$(50,2) ! 50 states, 2 items per state

FOR i = 1 to 50
READ state$(i,1) ! Read state name
READ state$(i,2) ! And capital

NEXT i

FOR i = 1 TO 10! Ask 10 questions
LET n = Int(50*Rnd) + 1 ! Pick a number between 1 and 50
PRINT “The capital of “; state$(n,1); “ is”;
LINE INPUT capital$! Get the reply

True BASIC Free – User Guide 77

IF Lcase$(capital$) = Lcase$(state$(n,2)) THEN
PRINT “RIGHT!”

ELSE
PRINT “Nope, it’s “; state$(n,2); “.”

END IF
NEXT i

DATA Alabama,Montgomery, Alaska,Juneau, Arizona,Phoenix
DATA Arkansas,Little Rock, California,Sacramento
DATA Colorado,Denver, Connecticut,Hartford, Delaware,Dover
DATA Florida,Tallahassee, Georgia,Atlanta, Hawaii,Honolulu
DATA Idaho,Boise, Illinois,Springfield, Indiana,Indianapolis
DATA Iowa,Des Moines, Kansas,Topeka, Kentucky,Frankfort
DATA Louisiana,Baton Rouge, Maine,Augusta, Maryland,Annapolis
DATA Massachusetts,Boston, Michigan,Lansing
DATA Minnesota,St. Paul, Mississippi,Jackson
DATA Missouri,Jefferson City, Montana,Helena
DATA Nebraska,Lincoln, Nevada,Carson City
DATA New Hampshire,Concord, New Jersey,Trenton
DATA New Mexico,Santa Fe, New York,Albany
DATA North Carolina,Raleigh, North Dakota,Bismarck
DATA Ohio,Columbus, Oklahoma,Oklahoma City, Oregon,Salem
DATA Pennsylvania,Harrisburg, Rhode Island,Providence
DATA South Carolina,Columbia, South Dakota,Pierre
DATA Tennessee,Nashville, Texas,Austin, Utah,Salt Lake City
DATA Vermont,Montpelier, Virginia,Richmond, Washington,Olympia
DATA West Virginia,Charleston, Wisconsin,Madison
DATA Wyoming,Cheyenne
END

(Note: This program uses the LCASE$ built-in function to
convert all answers to lowercase for comparison since upper and
lowercase letters are not equal. The next chapter explains the
use of functions.)

A good way to visualize a two-dimensional array is as a table with
rows and columns. In the STATES program state$(50,2) has 50
rows corresponding to the 50 states, and 2 columns corresponding
to the two items for each state. The state name is in the first
column and the state capital is in the second column.

state$

state$(1,1) Alabama Montgomery state$(1,2)

state$(2,1) Alaska Juneau state$(2,2)

state$(3,1) Arizona Phoenix state$(3,2)

state$(4,1) Arkansas Little Rock state$(4,2)

state$(5,1) California Sacramento state$(5,2)

A Two-dimensional Array

True BASIC Free – User Guide 78

The MAT Statements

The sample programs you’ve seen so far have used FOR-NEXT
loops to READ each value into an array or to PRINT each value of
an array. True BASIC has several MAT statements that let you
do something for a whole array in one statement. The keyword
MAT is short for matrix which is another word for a two-
dimensional array. However, you may use MAT statements with
arrays of any dimension.

The MAT READ statement lets you read an entire array in one
statement. For example, you could remove the FOR loop from the
revised INVNTORY program and substitute a MAT READ
statement. Notice that you must also edit the DATA statements!

! Inventory with arrays
!
DIM item$(5), number(5)

MAT READ item$, number

PRINT “You have these items:”
FOR i = 5 to 1 step -1

PRINT item$(i), number(i)
NEXT i

DATA hammers, umbrellas, wood stoves, bags of
salt, pliers

DATA 4, 2, 1, 4, 2
END

The MAT keyword tells True BASIC to read the entire array, so
you don’t put anything in parentheses after the array name.

——————————————————————————————
MAT READ fills the first array named before reading
to any other arrays named in the statement.

——————————————————————————————

You must therefore edit the DATA statements to put all the
values for item$ first, followed by all the values for number. If
you don’t, you’ll get the error message “Data item isn’t a number”
when the program tries to read a string item into an element of
number. (Remember that True BASIC lets you read a number as
a string, but cannot accept anything but numeric constants for
numeric items.)

The MAT PRINT statement lets you print out the contents of an
array with a single statement. You could replace the remaining
FOR loop from the INVNTORY program:

True BASIC Free – User Guide 79

! Inventory with arrays
!
DIM item$(5), number(5)

MAT READ item$, number

PRINT “You have these items:”
MAT PRINT item$, number

DATA hammers, umbrellas, wood stoves, bags of
salt, pliers

DATA 4, 2, 1, 4, 2
END

The output will be different from the previous version, because
MAT PRINT prints all the elements of item$ and leaves a blank
line before it prints the elements of number. Commas and
semicolons in MAT PRINT statements have the same effect as in
regular PRINT statements.

You have these items:
hammers umbrellas wood stoves bags of salt pliers

4 2 1 4 2

True BASIC prints arrays of two or more dimensions in similar
fashion, except that it moves to a new line for each new dimension
printed. For example, a MAT PRINT state$ statement in the
STATES quiz would begin a new line after of each row of two
items:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
. . . (etc.)

MAT INPUT and MAT LINE INPUT let you input a whole
array in one statement. For example:

DIM expense(1980 to 1989)
PRINT “Please enter the 10 expense items”
MAT INPUT expense

For more information on using these statements see the True
BASIC Bible.

Advanced Work with Arrays and Matrices

As your programming skills increase, you may wish to explore
further about how you can use arrays in True BASIC. This
section gives you a quick introduction to some of these features.
For more information, see the True BASIC Bible.

True BASIC Free – User Guide 80

You can redimension arrays as a program is running. You can’t
actually change the number of dimensions, but you can change
the bounds or sizes of the dimensions of an array. This lets you
write flexible programs that can adjust array sizes to different
sets of data. Both the MAT INPUT and MAT READ statements
have versions that let you change the size of an array to fit the
number of items available. You can also change the size of an
array with the MAT REDIM statement. True BASIC also has
built-in functions to let the program figure out the current size or
upper and lower bounds of any array. (The next chapter
introduces built-in functions; Appendix C lists most of True
BASIC’s built-in functions.)

You can make matrix assignments with the simple MAT
statement. You can assign the same value to every element in
an array:

MAT initial = 10

You can also assign one array to another as long as they have the
same number of dimensions. The array being assigned to adjusts
its size to match the other array. In the following statements, the
question mark (?) with the MAT INPUT statement adjusts the
size of the array scores to equal the number of items entered. The
following MAT statement assigns the same values to the array
initial and adjusts the size of initial so that it matches scores.

DIM initial(100), scores(100)
MAT INPUT scores(?) ! input any number of items
MAT initial = scores ! arrays are equal & same size

True BASIC’s matrix arithmetic lets you add, subtract, and
multiply arrays. For addition or subtraction, two arrays must
have the same size and shape. To multiply two arrays, the
number of columns in the first array must equal the number of
rows in the second. You can also multiple an array by a single
number.

For more information about using these array features, see the
True BASIC Bible.

True BASIC Free – User Guide 81

15. Functions and Subroutines
As your programs get bigger and bigger, you’ll find them easier to
read and “debug” if you have them segmented into smaller parts.
True BASIC’s subroutines and functions offer you ways to break
down your programs into logical units.

Subroutines

Call up the demo program CRAPS, which introduced the
SELECT CASE structure Chapter 10. Notice that the four lines
that simulate the dice roll (three LETs and one PRINT) appear
twice in the program. The first time is right after the FOR
statement, and the second is right after the DO statement.

! Craps game.
!
RANDOMIZE

FOR game = 1 to 10 ! Play 10 games

LET die1 = Int(6*Rnd + 1) ! Roll 1 die
LET die2 = Int(6*Rnd + 1) ! And the other
LET dice = die1 + die2 ! Sum of two dice

PRINT dice; ! Print this roll

SELECT CASE dice ! Branch on roll
CASE 2, 3, 12 ! dice = 2, 3, or 12

PRINT “You lose.”

CASE 7, 11 ! dice = 7 or 11
PRINT “You win.”

CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

LET die1 = Int(6*Rnd + 1) ! Roll again
LET die2 = Int(6*Rnd + 1) ! Both dice
LET dice = die1 + die2
PRINT dice; ! Print this roll

LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END

True BASIC Free – User Guide 82

You can rewrite this program to use a subroutine. Move one set
of the dice-rolling lines (the three LETs and one PRINT) to the
beginning of the program following RANDOMIZE, and remove
the other set. Add SUB and END SUB statements to define the
group of statements as a subroutine. Insert CALL statements
where you want to use the subroutine:

! Craps game with subroutine for rolling the dice.
!
RANDOMIZE

SUB Rolldice
LET die1 = Int(6*Rnd + 1) ! Roll 1 die
LET die2 = Int(6*Rnd + 1) ! And the other
LET dice = die1 + die2 ! Sum of two dice

PRINT dice; ! Print this roll
END SUB
FOR game = 1 to 10 ! Play 10 games

CALL Rolldice ! Subroutine rolls dice

SELECT CASE dice ! Branch on roll

CASE 2, 3, 12 ! dice = 2, 3, or 12
PRINT “You lose.”

CASE 7, 11 ! dice = 7 or 11
PRINT “You win.”

CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

CALL Rolldice ! Roll again
LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END

True BASIC skips around the subroutine when you run the
program. The statements in the subroutine are used only when a
CALL statement in the main part of the program (the main
program) “calls” that subroutine name. At the END SUB
statement, True BASIC returns to the line following the CALL
statement.

When True BASIC returns to the CALL statement in the main
program in the above example, the variable dice has the new
value assigned by the subroutine. Thus the SELECT CASE or

True BASIC Free – User Guide 83

LOOP UNTIL statements share the variable dice with the
subroutine in this program.

Run this edited version of CRAPS and you should find that it
works just as before.

Subroutines with Parameters

Subroutines let you write general purpose “tools” that you can use
anywhere in your programs. You can use the subroutine from
CRAPS any time you want to simulate the rolling of two dice.
However, in this version of the subroutine, you have to refer to
the result by the same variable name that the subroutine uses (in
this case, dice).

To make subroutines more general and more helpful to you, you
can use parameters in your SUB statements and arguments in
your corresponding CALL statements. To illustrate, rewrite the
subroutine Rolldice so that it can simulate the rolling of any given
number of dice:

SUB Rolldice (sum_dice, num_dice)
LET sum_dice = 0 ! Initialize
FOR i = 1 to num_dice

LET roll = Int(6*Rnd + 1) ! Roll a die
LET sum_dice = sum_dice + roll ! Add to sum

NEXT i
PRINT sum_dice; ! Print this roll

END SUB

You’re now using two parameters in the SUB statement above.
Sum_dice represents the sum of the rolls, and num_dice gives the
number of dice rolled. The subroutine doesn’t change num_dice
but it does change sum_dice.

To use this new subroutine, you must also use two arguments in
the CALL statement. For example:

CALL Rolldice (dice, 2)

The first argument, dice, is the main program’s name for the sum
of dice rolls, and 2 is the number of dice to be thrown.
——————————————————————————————

Arguments share values with their corresponding
parameters when the subroutine runs.

——————————————————————————————

Dice and sum_dice temporarily become equivalent so that when
True BASIC returns to the main program dice has the value of
sum_dice. Similarly, num_dice has the value of 2 during this call
to the subroutine.

True BASIC Free – User Guide 84

This subroutine illustrates two kinds of parameters:

• Num_dice is an input parameter that is only for sending
information into a subroutine. Since an input parameter returns
nothing, you may use constants for the corresponding argument
on CALL statements as in the example above.

• Output parameters are variables whose values are changed
by the subroutine. They send information out from the
subroutine to the corresponding argument in the main part of the
program. Sum_dice is an output parameter.

Built-in Functions

You’ve already seen several of True BASIC’s built-in functions:
RND, INT, SQR, and LCASE$, for example. Appendix C lists
most of True BASIC’s built-in functions.

To use a built-in function, all you do is refer to the function by
name (perhaps giving it some information such as the number
whose square root you want). True BASIC then “returns” a value
to the program (such as the square root of the number you used
with the function.) In the following short example, answer
acquires the value 3.16228, which is returned by the function
SQR.

LET answer = Sqr(10)
PRINT answer
END

You can think of a function as a machine that takes some
numbers or strings as input, and produces one number or string
as output. Functions differ from subroutines in that

• functions can return only one value and

• functions cannot change the values of any parameters sent to
them.

Now you’ll see how to define your own functions and use them to
break your programs into logical units.

One-line Functions

One-line functions are the simplest kind of function. You can
simulate the rolling of one die as a one-line function. Here’s the
CRAPS program again, rewritten to use a function Rolldie.

! Craps game with one-line function for rolling one die.
!
RANDOMIZE

DEF Rolldie = Int(6*Rnd + 1) ! Roll 1 die

True BASIC Free – User Guide 85

FOR game = 1 to 10! Play 10 games

LET dice = Rolldie + Rolldie ! Rolldie function twice

SELECT CASE dice ! Branch on roll
CASE 2, 3, 12 ! dice = 2, 3, or 12

PRINT “You lose.”
CASE 7, 11! dice = 7 or 11

PRINT “You win.”
CASE ELSE! Anything else

LET POINT = dice ! Remember that roll
DO

LET dice = Rolldie + Rolldie ! Roll again
LOOP until dice = 7 or dice = point
IF dice=point then PRINT “You win” else PRINT “You lose”

END SELECT

NEXT game

END

Once you have defined a function in a DEF statement, you use
that function simply by using its name where you would a variable.
True BASIC carries out the instructions in the DEF statement and
the resulting value is “returned” to the function name.

——————————————————————————————
You must define a function before you use it in your
program.

——————————————————————————————

If you don’t define it first, True BASIC won’t know that you are
referring to a function and not a variable when you use the
function name.

Multi-line Functions

You can also write multi-line functions to solve problems that
require several lines of True BASIC statements. DEF and END
DEF statements define a multi-line function. As with one-line
functions, you must define your multi-line functions before you
use them.

The SGN function is a multi-line function already built into True
BASIC. SGN returns the sign of a number. That is, you give it a
single number as an argument, and it returns:

-1 if the number is negative
0 if the number equals 0
+1 if the number is positive

You could easily define a SGN function yourself and test it as
follows:

True BASIC Free – User Guide 86

! Define the Sgn function
!
DEF Sgn(x)

SELECT CASE x
CASE is < 0! If negative . . .

LET Sgn = -1 ! . . .return -1
CASE 0 ! If zero . . .

LET Sgn = 0 ! . . .return a 0
CASE else! Otherwise must be positive

LET Sgn = +1 ! . . .return +1
END SELECT

END DEF

INPUT n ! Input a number
PRINT Sgn(n)! Print its sign
PRINT Sgn(3-5*2)! And the sign of this formula
END
If you run this program and give 35 as input, you will see the
following results:
? 35
1
-1

Inside the definition of Sgn, the program selects one of three
cases depending upon the sign of the parameter and assigns a
value to Sgn. At the END DEF line, the function actually
produces its output value, which is whatever value was assigned
during the execution of the function. (If no value is assigned, then
0 is returned.)

Global Variables

You’ve seen how you can pass variables as parameters to
subroutines and functions, but what about other variables used
within a subroutine or function definition? They, too, are shared
with the rest of the program. Such variables shared by two parts
of a program are global variables.

Global variables are sometimes useful, but often they are a source
of hard-to-spot program bugs. Consider the example in the Demo
Programs folder – BUG:

! An insidious bug
!
DEF XXX$(n) ! Return a string of n X’s

LET s$ = ““ ! Start with an empty string
FOR i = 1 to n ! Loop. . .

LET s$ = s$ & “x” ! . . . adding an X each time
NEXT i
LET XXX$ = s$

END DEF

FOR i = 1 to 4 ! Ask four times
PRINT “How many X’s”;
INPUT n
PRINT XXX$(n)

True BASIC Free – User Guide 87

NEXT i
END

When you run this program and give an input of 10, you would
see the following:

How many X’s? 10
xxxxxxxxxx

What happened? This program should ask for input four times
and draw four sets of X’s. The problem is that two different parts
of the program are using the variable i, and one part is causing
trouble for the other. Follow the program step by step:

• First, the function definition is created but not used.

• The FOR-NEXT loop that asks for input four times begins and i
takes the value 1. The program asks “How many X’s?” and you
reply “10”. The program calls the function XXX$ with 10 as its
argument; in other words, XXX$ should return a string of ten x’s.
So far, so good.

• Within the XXX$ definition, s$ starts as an empty string. Then
a FOR-NEXT loop adds an “x” to the value of s$ 10 times. After
10 times through the loop, i equals 11 so the loop stops. The
program assigns the value of s$ to XXX$ and returns to the main
program where it prints that returned value (“xxxxxxxxxx”).
That looks OK.

• The program moves on to the NEXT i statement where it
increases the value of i by one. Here is the problem! At the end of
the function, i is 11 and that value is shared with the main pro-
gram. After the NEXT i statement in the main program, i equals
12! The FOR-NEXT loop in the main program never runs again
and the program ends.

The function uses two variables that are not parameters: s$ and
i. This is a dangerous situation, since some other part of the
program might use either variable as happens in this example.

Bugs of this sort are very typical when you use global, or shared,
variables within a function or subroutine. You may be more
likely to avoid this kind of error if you keep all the statements
that use a certain variable within a few lines of each other. In
True BASIC, you may also escape these pitfalls by using
external subroutines and external functions or by declaring
variables in a LOCAL statement.

True BASIC Free – User Guide 88

External Subroutines and Functions
External subroutines and functions are like internal ones, but
with two important differences.

• They are all defined after the END statement. They are outside
the main program.

• All their variables are local to the function or subroutine
definition. Except for parameters, no variables share values with
the main program, even if they have the same names.

To see how this works, you can rewrite the “buggy” example from
the previous section.

! Using an external function

DECLARE DEF XXX$

FOR i = 1 to 4 ! Ask four times
PRINT “How many X’s”;
INPUT n
PRINT XXX$(n)

NEXT i
END

! XXX$ -- returns n x’s

DEF XXX$(n) ! Return a string of n X’s
LET s$ = ““ ! Start with an empty string
FOR i = 1 to n! Loop. . .

LET s$ = s$ & “x” ! . . . adding an X each time
NEXT i
LET XXX$ = s$

END DEF

When you run this version of the program, you’ll find that it now
correctly asks for x’s four times:

How many X’s? 10
xxxxxxxxxx
How many X’s? 4
xxxx
How many X’s? 7
xxxxxxx
How many X’s? 2
xx

You must add one new statement when you use an external
function. The DECLARE DEF statement tells True BASIC
that XXX$ is a function and not a variable or an array.

——————————————————————————————
The DECLARE DEF statement must appear before an
external function is used.

——————————————————————————————

True BASIC Free – User Guide 89

You need only give the function’s name in a DECLARE DEF
statement; you do not have to list parameters or even say how
many there are.

External subroutines go after the END statement, just like
external functions. However, because you use subroutine names
only in a CALL statement, you do not have to declare them with a
DECLARE SUB statement. True BASIC knows that anything in
a CALL statement is a subroutine.

The LOCAL Statement

If you name variables in a LOCAL statement within a subroutine
or function, those variables will not share values with the main
program. Here is the XXX$ function from the BUG program
written with a local statement:

DEF XXX$(n) ! Return a string of n X’s
LOCAL i, s$
LET s$ = ““ ! Start with an empty string
FOR i = 1 to n ! Loop. . .

LET s$ = s$ & “x” ! . . . adding an X each time
NEXT i
LET XXX$ = s$

END DEF

Now, XXX$ can be an internal function and you could safely
use the variable names i and s$ in the main program. Those
variables will not share values.

You can also use the LOCAL statement in main programs along
with the OPTION TYPO statement to help catch misspelled
variable names. Chapter 19 describes this programming
technique.

True BASIC Free – User Guide 90

16. Creating and Using Libraries
Subroutines and functions — sometimes called procedures — let
you segment your True BASIC programs. They may be either
internal or external. Internal procedures are part of the program
that uses them. External procedures are outside the “calling”
program. In the examples you’ve seen they appear after the END
statement of the main program.

External functions and subroutines are even more useful when
you put them into libraries and modules.

Libraries
A library is a file that has no main program. It is only a
collection of external functions and subroutines. Any program
can use these procedures. All you have to do is include a
LIBRARY statement in the program to identify the library file.
Thus, a library file acts as a “tool kit” of useful functions and
subroutines.

——————————————————————————————
Each library file must begin with an EXTERNAL state-
ment, which indicates that the file has no main pro-
gram in it.

——————————————————————————————

The GAMESLIB file in the Demo Programs folder is a library file.
It’s a small library, with a subroutine that simulates rolling any
number of dice, and a function that simulates flipping a coin:

EXTERNAL

SUB Rolldice (sum_dice, num_dice)

LET sum_dice = 0
FOR i = 1 to num_dice

LET roll = Int(6*Rnd + 1)
LET sum_dice = sum_dice + roll

NEXT i

END SUB

DEF Coin$

IF Rnd < .5 then
LET Coin$ = “heads”

ELSE
LET Coin$ = “tails”

END IF

END DEF

You can revise the CRAPS program to use this library:

True BASIC Free – User Guide 91

! Craps game using Library file.
!
LIBRARY “gameslib”
RANDOMIZE

FOR game = 1 to 10 ! Play 10 games

CALL Rolldice(dice,2) ! Subroutine rolls 2 dice

SELECT CASE dice ! Branch on roll

CASE 2, 3, 12 ! dice = 2, 3, or 12
PRINT “You lose.”

CASE 7, 11! dice = 7 or 11
PRINT “You win.”

CASE ELSE ! Anything else
LET POINT = dice ! Remember that roll
DO

CALL Rolldice(dice,2) ! Roll again
LOOP until dice = 7 or dice = point

IF dice=point then PRINT “You win” else PRINT “You lose”
END SELECT

NEXT game

END

The above program doesn’t use the function to flip a coin. You
don’t have to use everything in the library. But, you can expand
CRAPS so that it flips a coin to decide which of two players goes
first. Notice that you must use a DECLARE DEF statement
before you use the function, just as you must with an external
function in the same file.

! Craps game.
!
LIBRARY “gameslib”
DECLARE DEF Coin$
RANDOMIZE

INPUT PROMPT “Heads or tails? “: choice$
LET toss$ = Coin$! Flip the coin

IF Lcase$(choice$) = toss$ then ! Tell who won
PRINT choice$; “, you go first”
LET player$ = “You “

ELSE
PRINT toss$; “, I go first”
LET player$ = “I “

END IF

FOR game = 1 to 10 ! Play 10 games

CALL Rolldice(dice,2) ! Subroutine rolls 2 dice

SELECT CASE dice ! Branch on roll

CASE 2, 3, 12 ! dice = 2, 3, or 12

True BASIC Free – User Guide 92

PRINT player$; “lose.”

CASE 7, 11! dice = 7 or 11
PRINT player$; “win.”

CASE ELSE! Anything else
LET POINT = dice ! Remember that roll
DO

CALL Rolldice(dice,2) ! Roll again
LOOP until dice = 7 or dice = point

PRINT player$;
IF dice=point then PRINT “win” else PRINT “lose”

END SELECT

IF player$ = “You “ then ! Switch players
LET player$ = “I “

ELSE
LET player$ = “You “

END IF

NEXT game

END

Notice that this program has several new or revised statements.
New statements include the group near the beginning that tells
who won the coin toss, and the group at the end of the FOR loop
that switches players after each game. Several PRINT
statements now use the variable player$ to indicate whose game
it is.

The built-in function LCASE$ lets you enter answers in upper or
lowercase when you run the program; LCASE$ translates all
answers to lowercase. You do not declare LCASE$ because True
BASIC already knows about all built-in functions.

Appendix C in this manual lists most of True BASIC’s built-in
functions. For complete details on built-in functions, see the
True BASIC Bible.

If the file named on the LIBRARY statement is not in the same
directory as the program you are running, or in the TB Library
folder you copied from the original True BASIC diskette, you
must give True BASIC information about where to find the file.

For Further Study – Modules

Modules are libraries of external procedures that give you extra
control over which variables are shared or local. Modules also let
you share variables among some procedures but not with others.
The True BASIC Bible explains the format and use of modules.

True BASIC Free – User Guide 93

17. Graphics
Using True BASIC, you can write programs to draw points, lines,
curves, and filled regions. You can produce animation and color,
you can easily mix text with your graphics, and you can supply
graphical input while your program is running. True BASIC’s
Pictures let you create re-usable graphics procedures. This
chapter introduces several aspects of True BASIC graphics. For
full information, see the True BASIC Bible.

Drawing Points
The easiest kind of graphics is marking points or drawing lines on
a coordinate grid. The PLOT statement lets you do this on your
output screen.

For each point you plot, you must give two coordinates: the X-
axis or horizontal coordinate, and the Y-axis or vertical coordi-
nate. Unless you specify otherwise (you’ll see how to do that in a
bit), True BASIC assumes your output screen uses a horizontal
(X) axis from 0 to 1 and a vertical (Y) axis from 0 to 1. A simple
True BASIC program to draw this point on your screen has just
two lines:

PLOT .2,.4
END

Figure 16.1: PLOT .2, .4

To plot additional points, you just add more PLOT statements.
The following program puts four points on the screen. Create this
program and run it.

True BASIC Free – User Guide 94

PLOT .2,.4
PLOT .4,.4
PLOT .4,.6
PLOT .2,.6
END

Graphics Output
If your output window is active, the points appear there;
otherwise, your output will occupy the full screen. You can force
your graphics output to always occupy the full screen by adding
the following statement to your program:

SET MODE “graphics”

You may find the output window especially useful for graphics,
however, because you can adjust it to the shape that’s best for
showing off your output. The axes adjust to fit the window shape
so the objects you draw may be distorted. If 0 to 1 on the X-axis is
longer than 0 to 1 on the Y-axis, square objects will not appear
square and circles will not be round.

True BASIC clears the output window at the start of each program
run. Within a program, you can use the CLEAR statement to
erase the contents of the output window.

You can also use just part of an output window or open several
windows and put different displays in each. The True BASIC
Bible explains the OPEN and WINDOW statements that let you
control graphics output this way.

Drawing Lines
To draw lines, you use semicolons with your PLOT statements.
Imagine that you are drawing with a light pen. A simple PLOT
statement uses the pen’s beam to draw a point and then turns the
beam off. A semicolon at the end of a PLOT statement (or
between two points in the PLOT statement) leaves the beam on.
When True BASIC moves to the next point, it draws a line with
the light pen. The beam stays on until a PLOT statement ends
without a semicolon.

Add semicolons to the above program so that it connects points to
draw two horizontal lines (Figure 16.2):

PLOT .2,.4; ! Draw a line to next point
PLOT .4,.4 ! Turn the “pen” off
PLOT .4,.6; ! Draw a line to the next point
PLOT .2,.6
END

When drawing lines, you can combine several points on one PLOT
statement. The following program connects all the points to draw

True BASIC Free – User Guide 95

a box (Figure 16.3). Notice that you must add another PLOT
statement to close the box:

PLOT .2,.4; .4,.4; .4,.6; .2,.6; ! Connect all points
PLOT .2,.4 ! Close the box and turn off the “pen”
END

Figure 16.2: Horizontal Lines Figure 16.3: A Box

Changing the Coordinates
As you saw above, True BASIC assumes the output coordinates go
from 0 to 1 in both the horizontal and vertical directions.
However, you can use a SET WINDOW statement to set any
boundaries you want.

For example, if you want the coordinates to go from 0 to 10 in both
directions, you could include the following statement before you
give any PLOT statements:

SET WINDOW 0, 10, 0, 10

The first two numbers give the start and end values for the
horizontal axis, the second numbers give the start and end for the
vertical axis.

Your coordinate system need not begin at zero, and the horizontal
and vertical axes need not match. For example if you were
plotting a graph to show production of cars over this century, you
might set your coordinates as follows:

SET WINDOW 1900, 1990, 0, 10000000

The horizontal axis would show the range of years, and the
vertical axis would let you plot production amounts from 0 to
10,000,000.

You can change the coordinates within a program. All PLOT
statements use the coordinate system specified in the most recent
SET WINDOW statement.

True BASIC Free – User Guide 96

Drawing Shapes

True BASIC gives you two ways to draw empty or solid shapes.
The BOX statements are the easiest and fastest method.

The BOX LINES statement draws the outline of a square or
rectangle. You give the coordinates of the left, right, bottom, and
top edges in the same way as in the SET WINDOW statement.
The following program outlines a square as shown in Figure 16.4.

! Draw a square
!
SET WINDOW 0, 30, 0, 20 ! 15,10 is center of window
BOX LINES 10, 20, 5, 15 ! Draw box with sides = 10
END

Figure 16.4: BOX LINES 10, 20, 5, 15

Similarly, the BOX AREA statement draws a solid square or
rectangle using the coordinates you give in the statement:

! Draw a solid square

!

SET WINDOW -15, 15, -10, 10 ! 0,0 is center of

window

BOX AREA -5, 5, -5, 5 ! 5*2 is length

of each side

END

True BASIC Free – User Guide 97

Figure 16.5: BOX AREA -5, 5, -5, 5

You can draw circles and ellipses using the BOX CIRCLE or
BOX ELLIPSE statement. You give coordinates to these
statements just as you do for BOX LINES and BOX AREA. True
BASIC draws a circle or ellipse inside the border of the invisible
box defined by the coordinates. It doesn’t matter whether you use
the CIRCLE or ELLIPSE keyword. If your coordinates define an
invisible square, you get a circle; if the coordinates define a
rectangle, you get an ellipse.

If you wish to draw a solid circle or ellipse, first draw the figure
and then fill it in with the FLOOD statement. For the FLOOD
statement, you give the coordinates for some point inside the
object you want to fill. True BASIC fills the object from that point
out to its boundaries. For example (Figure 16.6):

SET WINDOW -10,10,-10,10
BOX CIRCLE -5, 5, -5, 5
FLOOD 0,0
END

You can draw more complex objects using a series of PLOT state-
ments ending in semicolons. If you wish to fill the object you can
then use a FLOOD statement. The following program outlines a
knight from a chess set and then fills the object (Figure 16.7):

! Draw a knight
!
PLOT .2,.1;.8,.1;.8,.2; ! Draw the outline
PLOT .7,.25;.7,.3;.8,.4;.65,.7;.6,.9;.55,.9;
PLOT .5,.82;.2,.75;.2,.6;.3,.6;.4,.55;
PLOT .25,.45;.2,.37;.3,.3;.3,.25;.2,.2;.2,.1
FLOOD .5,.5 ! Fill it in
END

True BASIC Free – User Guide 98

Figure 16.6: Figure 16.7: Figure 16.8:
BOX CIRCLE and FLOOD PLOT and FLOOD PLOT AREA

The PLOT AREA statement connects a series of points and fills
in the object. It works much as a series of PLOT statements
except that PLOT AREA always connects the last point to the
first. So you need not repeat the first point. The following
statements draw and fill a triangle (Figure 16.8). Note that the
PLOT AREA statement has a colon after the AREA keyword.

SET WINDOW -2, 2, -2, 2
PLOT AREA: -1,-1; 1,-1; 0,1
END

Using Colors
In the examples used so far in this chapter, all solid objects are
filled with black. You can also use different colors, or shades of
gray if you have a black and white monitor. The SET COLOR
statement lets you set a color or shade for succeeding PLOT
statements. You can set colors by number or name:

SET COLOR “red”
SET COLOR 3

If you have a black and white monitor, you can use color names or
numbers 1 to 5 to obtain equivalent shades of gray. The table
shows the equivalent color names, numbers, and shades of gray
for a black and white monitor.

Name Number Meaning
background 0 current background color
black 1 black
green 2 dark gray
blue 2 dark gray
magenta 3 medium gray
red 3 medium gray
cyan 4 light gray
yellow 4 light gray
brown 4 light gray
white 5 white

True BASIC Free – User Guide 99

The following program (SQUARES in the Demo Programs folder)
draws a series of solid squares in different colors or shades of
gray:

! Draw six squares
!
SET WINDOW -10, 10, -10, 10
BOX AREA -6, 6, -6, 6 ! Draw outer square in black
FOR i = 5 to 1 step -1 ! From large to small

SET COLOR i ! Change color
BOX AREA -i, i, -i, i ! Draw next square

NEXT i
END

Figure 16.9: Six squares.

If you have a color monitor, you can use the nine True BASIC
color names (listed in the table above). If your computer can
produce more colors, you can use color numbers and the SET
COLOR MIX statement for greater variety. The color numbers
you can use depend on the color mode of your Macintosh. If your
Macintosh has 256 colors, you can use color numbers 0 through
255. SET COLOR MIX lets you control the red, green, and blue
elements producing a given color number. For more information
on using colors, see the True BASIC Bible.

Animation
True BASIC’s BOX KEEP, BOX CLEAR, and BOX SHOW
statements let you simulate movement on the screen. The idea is
to draw an image within a rectangular area on the screen, save
that image as a string variable, and then redraw the image a
slight distance away.

BOX KEEP saves the contents of a rectangular area on the screen
in a string variable. You then erase the rectangular area on the
screen with BOX CLEAR, and redraw the object somewhere else
with BOX SHOW.

True BASIC Free – User Guide 100

The ARROW program in the Demo Programs folder uses these
statements to shoot an arrow across the screen. Open it and run
it.

! Shoot an arrow across the screen
!
SET MODE “graphics” ! Force use of full screen
SET WINDOW 0, 10, 0, 10

PLOT 0,5; 1,5! Draw arrow
PLOT .6,4.5; 1,5; .6,5.5
BOX KEEP 0, 1, 4, 6 in arrow$! Memorize arrow
PAUSE 1! Pause before shooting

LET x = 0
FOR move = 1 to 50! Move in small steps

BOX CLEAR x, x+1, 4, 6 ! Erase old arrow
LET x = x + .2! Advance x position
BOX SHOW arrow$ at x,4 ! Draw at new position

NEXT move

END

Notice that the BOX KEEP and BOX CLEAR statements take
coordinates to define a rectangular area just as the other BOX
statements. For BOX SHOW you specify just the lower left corner
where you want to draw the new image.

The PAUSE statement makes True BASIC wait before it erases
and begins to move the arrow. The number tells how many
seconds to pause. To slow the progress of the arrow across the
window, you can add a PAUSE statement inside the FOR loop,
just before the NEXT statement.

BOX CLEAR clears just the specified area so that other images
can remain. If you wish to clear the entire screen, use the CLEAR
statement.

For a more sophisticated program using animation, look at the
Demo Program KNIGHT.

For more details on these and related statements, see the True
BASIC Bible.

Pictures

Pictures are like subroutines for graphics. You can think of them
as stencils. Define a picture and you can use it repeatedly to
redraw an object at different locations.

As you will see, pictures are more flexible than stencils. You can
draw the same picture repeatedly, but change its size or shape, or
rotate it on the screen.

True BASIC Free – User Guide 101

A picture is much like a subroutine. You name it and put the
statements that plot it inside PICTURE and END PICTURE
statements. When you want to use the picture, you “call” it with a
DRAW statement. The following program uses a picture to
draw a knight from a chess game. You’ll notice that the picture
contains the same statements used to draw a knight in the
previous section on “Drawing Shapes”. The following version is
saved as PICTURE in the Demo Programs folder.

! Draw a knight using a picture
!
PICTURE Knight

PLOT .2,.1;.8,.1;.8,.2; ! Draw the outline
PLOT .7,.25;.7,.3;.8,.4;.65,.7;.6,.9;.55,.9;
PLOT .5,.82;.2,.75;.2,.6;.3,.6;.4,.55;
PLOT .25,.45;.2,.37;.3,.3;.3,.25;.2,.2;.2,.1
FLOOD .5,.5 ! Fill it in

END PICTURE

DRAW Knight

END

Like subroutines and functions, pictures may be internal or
external. External pictures may be stored in Library files.

Transformations
So far there doesn’t seem to be any great benefit to defining a
picture. The true power of pictures comes when you use them
with transformations and parameters. Transformations let you
move pictures or rotate, re-scale, or tilt them when you draw
them. For example, you could replace the DRAW statement
above with the following lines to draw lots of knights all over the
screen.

SET WINDOW 0, 10, 0, 10
FOR x = 0 to 9

FOR y = 0 to 9
DRAW Knight with shift(x,y)

NEXT y
NEXT x

The SHIFT transformation moves horizontal and vertical
coordinates by the amounts you specify. The above statements
use a larger coordinate system (SET WINDOW 0, 10, 0, 10) and
then draw the knight 100 times within that window. Try it!

Similarly, you can double the size of the knight:
DRAW Knight with scale (2,2)

or make it twice as tall as wide:
DRAW Knight with scale (2,4)

True BASIC Free – User Guide 102

SCALE multiplies the horizontal and vertical coordinates of your
picture by the amounts you specify. Be aware that your scaled pic-
ture may become bigger than the window coordinates! Use a SET
WINDOW statement to give enlarged coordinates if necessary.

Other transformations let you “shear” (or tilt) the picture or
rotate the picture. You must give the amount of tilt or rotation in
radians unless you include an OPTION ANGLE DEGREES
statement first. You may then use degrees.

The SHEAR transformation leans vertical lines forward
(clockwise) by the angle you specify. For example,

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with shear (45)

makes the knight lean to the right by 45 degrees. Use a negative
angle to lean a picture to the left. As with SCALE, you may have
to use a SET WINDOW statement so that the picture doesn’t lean
out of the window.

ROTATE moves pictures counterclockwise (clockwise if you use a
negative angle) around the (0,0) point in the window. Note that
this is not the same as rotating a picture in place! You can easily
rotate a picture out of coordinate window, unless you adjust
coordinates with SET WINDOW or also shift the picture.

For example, if you rotate the knight 90 degrees, it would “fall on
its face to the left” and be out of the standard coordinate system
(0, 1, 0, 1). The upper right box of Figure 16.10 shows the knight
drawn in the standard coordinate system with no
transformations. The gray knight was rotated with the
statements:

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with rotate (90)

True BASIC rotates the knight about the point (0,0) and out of
the standard coordinate window.

DRAW Knight
with Rotate (90)

Figure 16.10: RotateTransformation

True BASIC Free – User Guide 103

DRAW Knight

You can combine transformations on one DRAW statement by
placing an asterisk (*) between transformations. For example,
you could rotate the knight and then move it back into the (0, 1, 0,
1) window:

OPTION ANGLE DEGREES ! Use degrees
DRAW Knight with rotate (90) * shift (1,0)

When you use more than one transformation, True BASIC
performs them in order from left to right. Because of this, the
order of transformations can make a difference. You’re most
likely to get the results you expect if you use SHIFT as the last
transformation.

Much more information about pictures and transformations is
found in the True BASIC Bible.

Creating Complex Pictures
With pictures and transformations you can create complex
graphics. You can transform pictures and use them within other
picture definitions. The HOUSES program in the Demo
Programs folder combines simple pictures and transformations to
provide a “neighborhood” of houses. Look at the program and run
it. Try some variations of your own!

The GraphLib Library

Your True BASIC Free program also comes with a folder called
TB Library. This folder contains libraries of subroutines that you
can use in your True BASIC programs. The GRAPHLIB library
provides the following routines:

Frame frames the graphics window
Axes draws X and Y axes
Ticks draws X and Y axes with tick marks
Polygon draws a polygon with any number of sides
Bars draws a bar graph of data
Fplot plots a function
Arc draws the arc of a circle

These are all subroutines; use them with a CALL statement. You
must give arguments for several of the subroutines. Open the
GRAPHLIB file in the TB Library folder to see what each
subroutine expects.

Remember that your program must include a LIBRARY
statement to identify the GRAPHLIB file. Your program must
either be in the same folder as GRAPHLIB, or you must give more
information in the LIBRARY statement. For example, if you save

True BASIC Free – User Guide 104

your program in the same location as (but not inside) the TB
Library folder, you could use the following LIBRARY statement.
This program draws coordinate axes with tick marks at every
unit.

LIBRARY “TB Library:GraphLib”
SET WINDOW 0, 10, 0, 10
CALL Ticks(1,1)
END

Other Graphics Features
As you become more proficient, you might want to use some of
True BASIC’s other graphics statements. Several of these are
briefly described below. For complete information, see the True
BASIC Bible.

Text in Graphics Output. You can use the PRINT command in
a graphics window, but it is hard to control the location and
appearance of the text. The PLOT TEXT command lets you
specify a coordinate location for the string you wish to print:

PLOT TEXT, at -1, 5 : “Test Results”

The coordinates designate the lower left corner of the text unless
you control the location with a command such as SET TEXT
JUSTIFY “center”, “bottom”.

Graphics Input. The GET POINT and GET MOUSE commands
let you give coordinates to your program by “pointing to” a spot in
the output window while the program is running. Using these
commands, you could draw a figure by pointing to various places
on the screen and having your program connect the points.

MAT PLOT Statements. If you are plotting many points, you
could compute the coordinates and store them in a two-
dimensional array with one row for each point (with X coordinates
in the first column, and Y coordinates in the second). You can
then use MAT PLOT POINTS, MAT PLOT LINES, and MAT
PLOT AREA to plot the coordinates in the array.

Open the MATPLOT program in the Demo Programs folder to see
the following example of a MAT PLOT AREA statement. (This
uses the SIN, COS, and PI built-in functions; Appendix C lists
most of True BASIC’s built-in functions.)

True BASIC Free – User Guide 105

! MAT PLOT AREA example
!
DIM points (201,2)
SET WINDOW -1, 1, -1, 1

FOR t = 0 to 2 step .01 ! Compute points
LET c = c+1! Count points
LET points(C,1) = sin(3*t*pi) ! x-coordinate
LET points(c,2) = cos(5*t*pi) ! y-coordinate

NEXT t

MAT PLOT AREA: points ! Draw and fill in

END

Printing a Graphic Image

True BASIC Free allows you to print graphics output by taking
a screen “snapshot”. The process for doing this will depend on the
operating system you are using.

On a PC, press the Prt Sc or Print Screen key.

On the MacOS, press the Shift-Command-3 key combination.

Other editions of the True BASIC Language System (Bronze,
Silver and Gold) allow you to print graphics directly from the
program output window.

True BASIC Free – User Guide 106

18. Sound and Music
You’ve already seen the demo program SMOKY that plays the
first few lines of “On Top of Old Smoky”. True BASIC’s PLAY and
SOUND statements let you produce melodies and general sound
effects on your computer.

The PLAY Statement

The PLAY statement lets you play simple melodies on your
computer. When you use a PLAY statement, you give it a string
consisting of codes for notes, tempo, and how the notes should be
played.

Open the SMOKY program, run it again, and then take a look at
the music codes in the DATA statements.

! Plays the beginning of
! “On Top of Old Smoky”.

DO while more data

READ music$! Get the string representations
PLAY music$! And play the notes

LOOP
DATA O4 L4 C C E G O5 L2 C. O4 A.
DATA L4 A F G A L1 G
DATA L4 C C E G L2 G. D.
DATA L4 E F E D L2 C.

END

Look at the first DATA statement, which represents the first six
notes of “On Top of Old Smoky.” The letters A through G
represent the notes A through G. The other codes give True
BASIC information about how to play the sequence of notes.

The letter O followed by a digit sets the current octave. The
octaves start at C and go up to B, as on a piano keyboard. (Middle
C is the first note in octave 5.) This song begins in the fourth
octave, so the first string item is “O4”.

Next, the letter L followed by a digit tells True BASIC the
length of the note or notes to play. The larger the number
with the code L, the shorter the length of the note. Therefore,
“L4” means a quarter note, “L2” a half note, and “L1” a whole
note. True BASIC plays all notes following an L code at that
length until another L appears in the string expression.

True BASIC Free – User Guide 107

After the first DATA statement sets the octave and the length of
notes, “C C E G” tells True BASIC to play two C’s, an E, and a G
as quarter notes. The next note, however, is in the next octave, so
you need another O code to set the octave to O5.

After O5, the next note is a 3/4 note C. This is done by changing
the length to L2 (half note) and adding a dot after the letter C.
The dot multiplies the length of the note by 3/2, just as it
does in written music. The line ends by going back down to octave
4 and playing another 3/4 note, A.

The remaining string data use these codes to play the next three
lines of the song. You may type the letters in the codes in upper
or lowercase. Also, the spaces between the codes don’t matter to
True BASIC, but they do make the program easier to read!

True BASIC has other music codes that give you more control
over the notes and the way they’re played. The letter T sets the
tempo, or speed, for the rest of the melody. The number given
with T represents the number of quarter notes played in one
minute. If you don’t specify the tempo, True BASIC plays 120
quarter notes per minute. Add the code T180 to the first DATA
statement, and run SMOKY again.

The ML code plays music legato, and MS plays staccato.
(Legato means play the music smoothly with a connection
between successive notes. Staccato means play the music briskly
with no connection between notes.) Add some of these codes to
Smoky, and run it again. You can use the MN code to set the
music style back to normal.

You can include sharps and flats in your music by adding a “+”
or “#” after the note to indicate a sharp, or “-” after the note to
indicate a flat. You can also write lengths of single notes by
putting the appropriate digit after the letter for that note. For
example, the first two lines of “America” in the key of F would
look like this:

F4 F4 G4 E4. F8 G4
A4 A4 B-4 A4. G8 F4

The letter R stands for rest. The number given with R has the
same meaning as the numbers associated with the code L. That
is, R4 means rest for the length of a quarter note, R2 means rest
for the length of a half note, etc.

True BASIC Free – User Guide 108

The following table summarizes the PLAY codes.

Code Meaning

A to G Play a note in current octave, at current
tempo, etc.

L n Set the length of subsequent notes.

ML Play music legato, or smoothly.

MN Play music normally (not legato or staccato).

MS Play music staccato, or briskly.

O n Set current octave. Middle C is the first note
in octave 5.

R n or P n Rest (pause) for length n.

T n Set the tempo.

or + Sharp.

- Flat.

. Play dotted note.

The SOUND Statement
The SOUND statement makes your computer emit sounds that
are not necessarily musical notes. You specify the frequency of
the sound in Hertz (cycles per second) and the duration of the
sound in seconds. For example, the statement:

SOUND 440, 10

plays concert A, which has a frequency of 440 Hertz, for 10
seconds.

Here’s a familiar noise you can imitate. You can create a trilling
sound with a fast alternation between two frequencies. The fol-
lowing program imitates the ringing of a telephone by alternating
between the frequencies of 600 and 1500. Type it in and run it.
Remember that you can stop a program with the Run menu!

! Imitate ringing of a telephone.
!
FOR ring = 1 to 8 ! Let ring 8 times

FOR i = 1 to 30 ! Each ring = 30 alternations
SOUND 600, .03 ! Freq 600 for .03 sec
SOUND 1500, .03 ! Then 1500 for .03 sec

NEXT i
PAUSE 2 ! Pause 2 seconds

NEXT ring
END

The PAUSE statement tells True BASIC to pause for the given
number of seconds.

True BASIC Free – User Guide 109

19. Correcting Errors and
Debugging Your Programs

There are three kinds of mistakes you might make when writing
a program: (1) improperly used True BASIC statements, (2)
errors that occur when a program runs, and (3) “bugs” that
prevent your program from working as you intended. True
BASIC can help you find many of these errors, and you can learn
some tricks to help you find others.

Illegal Statements
One of the easiest things that True BASIC can find for you is a
statement or structure you have used incorrectly. When you
attempt to run a program with an illegal statement, True
BASIC prints an error message at the bottom of the window and
places the cursor at the offending spot in your program. You can
then correct that error and run the program again. If there are
more errors of this type, True BASIC finds them one at a time and
prints appropriate messages.

Consider the following:
PIRNT “You are about to toss a coin”
IF rnd<.5 PRINT “Heads, you win” else PRINT “Tails, you lose”

The first time you attempt to run this program, True BASIC
prints the message “Illegal statement” and places the cursor
before the misspelled keyword PIRNT. If you correct that and
again run the program, you would see the message “Expected
‘then’.” and the cursor would appear just before the first PRINT in
the second line. Finally, you would receive a message “Missing
end statement.” Your corrected program should look like this:

PRINT “You are about to toss a coin”
IF rnd<.5 then PRINT “Heads, you win” else PRINT “Tails, you lose”
END

Appendix D lists and briefly explains the error messages you are
likely to see as you write programs using the statements
introduced in this book. If you are not sure of the corrections you
need to make, reread the appropriate sections of the book.

If you use Do Format to indent your programs, you can often
catch problems in multi-line structures such as IF-THEN-ELSE
decisions or FOR-NEXT loops.

True BASIC Free – User Guide 110

Errors During Program Runs — Exceptions
A program can sometimes cause errors when it is run (executed).
For example, the statement

LET answer = a/b

is a “legal” statement. But if b equals 0 when this statement is
carried out, the program would stop and you would get a “Division
by zero” error. Errors that happen during program runs are
called exceptions. The list of error messages in Appendix D
includes exceptions.

True BASIC has a structure and three built-in functions that you
can include in your programs to intercept this type of error and
provide a remedy that can enable the program to keep running.

The WHEN structure lets you tell True BASIC what to do if an
error occurs in a statement included in the structure. For
example, consider a program such as those in section 13 that ask
the user to input the name of a file containing data for the
program to read. If the user types the file name incorrectly or
names a file that True BASIC can’t find, the program would stop
with an “exception”. The following WHEN structure protects
against this error:

DO
PRINT “File containing data”; ! Ask user for file
INPUT filename$
WHEN error in

OPEN #1: name filename$
LET success = 1 ! Set success “flag”

USE
PRINT “Cannot find that file.”

END WHEN
LOOP until success = 1 ! Repeat until successful

If the statements following WHEN ERROR IN cause no errors the
program skips ahead to the END WHEN statement; the loop does
not repeat because success now equals 1. If the input value
causes an error in the OPEN statement, however, the skips to the
USE part of the structure and the loop repeats, again asking the
user for a file name.

This WHEN structure and the EXLINE$, EXTEXT$, and
EXTYPE functions are explained in the True BASIC Bible.

True BASIC Free – User Guide 111

Correcting Bugs in Your Programs
True BASIC cannot detect the third type of programming error.
Your program may be “legal” and contain no “exceptions”, but it
still gives the “wrong” answers. Somehow, you’ve not written the
program correctly to accomplish what you wanted to do.

True BASIC can’t tell what you want your program to do, so it
can’t tell you where you’ve gone wrong, but there are some tools
you can use to debug your programs.

• One of the first things to do is use DO FORMAT to make the
program more readable (see section 11). Next, get a printed
listing of your program and read it carefully.

• As you read, check your variable names. Have you spelled them
correctly and consistently throughout the program? The OPTION
TYPO and LOCAL statements described below can help you catch
spelling errors in variable names.

• If you are not sure where your errors are, but suspect parts of
the program, insert some extra PRINT statements to see what
values your variables have at various points in your program.

If these simple methods don’t help, try one of the following
debugging features. These are described more completely in the
True BASIC Bible.

OPTION TYPO and LOCAL. You can put an OPTION TYPO
statement at the beginning of your program to request True
BASIC to check all variables in that program. For this to work,
all variable names must be declared in a LOCAL statement or
appear as parameters in a SUB, DEF, FUNCTION, or PICTURE
statement. (All arrays must be declared in DIM or LOCAL
statements.) True BASIC gives an “Unknown variable” error for
any undeclared variable that it sees. You have to do some extra
typing to list all variables in a LOCAL statement, but it can save
debugging time by finding misspelled variables. Section 15
introduces the LOCAL statement. (You may also declare variable
names in PUBLIC, SHARE, or DECLARE PUBLIC statements as
described in the True BASIC Bible.)

Breakpoints. You can insert breakpoints into your program.
When you run the program, True BASIC halts at each
breakpoint. You can then use PRINT statements in the command
window to see the current value of any variables. Type the
CONTINUE command to resume the program run. (For a review
on using the command window, see Chapter 11.)

To insert a breakpoint, move the cursor to the desired line and
choose Breakpoint from the Run menu. To remove a
breakpoint, select the line and again choose Breakpoint from
the Run menu.

True BASIC Free – User Guide 112

DO TRACE. This is a powerful tool that lets you step through
the program line by line seeing how values of selected variables
change. Use this in the command window. As an example,

do trace, step (miles, first, name$)

will step through the program instruction by instruction (waiting
for you to press the space bar between each step) showing every
time the value of one of the three variables miles, first, or name$
changes. You can trace up to 8 variables. For more information
about this command and other options available with it, see the
True BASIC Bible.

DO XREF prints your program with line numbers and then
prints a table of every variable, number, and keyword in the
program, with the numbers of the lines on which they occur.
Examining this may help you spot a bug. To use DO XREF you
must have a printer available to your computer. Then type do
xref at the Ok prompt in the command window.

For more information about this command and other options
available with it, see the True BASIC Bible.

True BASIC Free – User Guide 113

Appendix A: The ASCII Character Set
This table lists the ASCII character set. The order of characters
determines how string conditions are evaluated. The decimal and
hexademinal equivalents given for each character are useful for
advanced programmers.

The True BASIC Bible contains additional information how you
can use the ASCII character set in various programming
situations.

Decimal Name Hex Decimal Name Hex

0 nul 0 27 esc 1B

1 soh 1 28 fs 1C

2 stx 2 29 gs 1D

3 etx 3 30 rs 1E

4 eot 4 31 us 1F

5 enq 5 32 space 20

6 ack 6 33 ! 21

7 bel 7 34 “ 22

8 bs 8 35 # 23

9 ht 9 36 $ 24

10 lf 0A 37 % 25

11 vt 0B 38 & 26

12 ff 0C 39 ’ 27

13 cr 0D 40 (28

14 so 0E 41) 29

15 si 0F 42 * 2A

16 dle 10 43 + 2B

17 dc1 11 44 , 2C

18 dc2 12 45 - 2D

19 dc3 13 46 . 2E

20 dc4 14 47 / 2F

21 nak 15 48 0 30

22 syn 16 49 1 31

23 etb 17 50 2 32

24 can 18 51 3 33

25 em 19 52 4 34

26 sub 1A 53 5 35

True BASIC Free – User Guide 114

Decimal Name Hex Decimal Name Hex
54 6 36 91 [5B
55 7 37 92 \ 5C
56 8 38 93] 5D
57 9 39 94 ^ 5E
58 : 3A 95 _ 5F
59 ; 3B 96 ` 60
60 < 3C 97 a 61
61 3D 98 b 62
62 > 3E 99 c 63
63 ? 3F 100 d 64
64 @ 40 101 e 65
65 A 41 102 f 66
66 B 42 103 g 67
67 C 43 104 h 68
68 D 44 105 i 69
69 E 45 106 j 6A
70 F 46 107 k 6B
71 G 47 108 l 6C
72 H 48 109 m 6D
73 I 49 110 n 6E
74 J 4A 111 o 6F
75 K 4B 112 p 70
76 L 4C 113 q 71
77 M 4D 114 r 72
78 N 4E 115 s 73
79 O 4F 116 t 74
80 P 50 117 u 75
81 Q 51 118 v 76
82 R 52 119 w 77
83 S 53 120 x 78
84 T 54 121 y 79
85 U 55 122 z 7A
86 V 56 123 { 7B
87 W 57 124 | 7C
88 X 58 125 } 7D
89 Y 59 126 ~ 7E
90 Z 5A 127 del 7F

True BASIC Free – User Guide 115

Appendix B: List of True BASIC Statements

This appendix lists all of the statements in True BASIC, and then
lists an example or two of those statements that are discussed in
this book. For a more complete explanation, see the True BASIC
Bible which is available for sale from True BASIC Inc.

Ordinary Statements and Structures
These statements are fundamental to almost all programs.

PROGRAM FOR Loop Structure
END EXIT FOR
LET NEXT
DO Loop Structure

EXIT DO SELECT CASE Structure
LOOP CASE

IF CASE ELSE
IF Structure END SELECT

ELSEIF
ELSE
END IF

These statements are of a miscellaneous type; some are discussed
in this manual.

ASK FREE MEMORY RANDOMIZE
DIM REM
LOCAL STOP
PAUSE

These statements deal with line-number programs; they are not
discussed in this guide but found in the True BASIC Bible.

GOSUB ON GOTO
GOTO RETURN
ON GOSUB

These statements allow setting various options; only the first and
last are discussed in this manual.

OPTION ANGLE OPTION NOLET
OPTION BASE OPTION TYPO

True BASIC Free – User Guide 116

Input and Output Statements
These are the main statements dealing with input and output
that are discussed in this manual.

DATA MAT PRINT
INPUT MAT READ
LINE INPUT PRINT
MAT INPUT READ
MAT LINE INPUT RESTORE

These input-output statements are not discussed in this book.
ASK MARGIN SET MARGIN
ASK ZONEWIDTH SET ZONEWIDTH

Functions and Subroutines
These statements are the heart and soul of organizing
complicated programs.

CALL EXTERNAL
DECLARE DEF LIBRARY
DEF LOCAL
DEF Structure SUB Structure

EXIT DEF EXIT SUB
END DEF END SUB

The following statements are not discussed in this book.

FUNCTION DECLARE FUNCTION
FUNCTION Structure DECLARE SUB

EXIT FUNCTION CHAIN
END FUNCTION

Graphics and Sound Statements
These graphics and sounds statements are discussed in this
manual.

BOX AREA PICTURE Structure
BOX CIRCLE EXIT PICTURE
BOX CLEAR END PICTURE
BOX ELLIPSE PLAY
BOX KEEP PLOT
BOX LINES PLOT AREA
BOX SHOW PLOT LINES
CLEAR PLOT POINTS
DRAW PLOT TEXT
FLOOD SOUND

SET WINDOW

True BASIC Free – User Guide 117

These graphics statements are not discussed in this manual.
ASK BACK GET POINT
ASK COLOR MAT PLOT
ASK COLOR MIX MAT PLOT AREA
ASK CURSOR MAT PLOT LINES
ASK MAX COLOR MAT PLOT POINTS
ASK MAX CURSOR OPEN SCREEN
ASK MODE SET BACK
ASK PIXELS SET COLOR
ASK SCREEN SET COLOR MIX
ASK TEXT JUSTIFY SET CURSOR
ASK WINDOW SET MODE
GET KEY SET TEXT JUSTIFY
GET MOUSE

MAT Statements

Several of these MAT statements are discussed in this book.
DIM MAT PRINT
MAT INPUT MAT READ
MAT LINE INPUT

Some of the MAT statements are not discussed in this book.
MAT REDIM MAT PLOT AREA
MAT WRITE MAT PLOT LINES

MAT PLOT POINTS
Files Statements

Four file statements are introduced in this manual. The following
file statements are not discussed:

ASK #n: ACCESS ASK #n: SETTER
ASK #n: DATUM ASK #n: ZONEWIDTH
ASK #n: DIRECTORY READ #n:
ASK #n: ERASABLE SET #n: DIRECTORY
ASK #n: FILESIZE SET #n: MARGIN
ASK #n: FILETYPE SET #n: NAME
ASK #n: MARGIN SET #n: POINTER
ASK #n: NAME SET #n: RECORD
ASK #n: ORGANIZATION SET #n: RECSIZE
ASK #n: POINTER SET #n: ZONEWIDTH
ASK #n: RECORD UNSAVE
ASK #n: RECSIZE WRITE #n:
ASK #n: RECTYPE

True BASIC Free – User Guide 118

Module Structures
These statements, that deal with modules, are not discussed in
this book.

MODULE Structure
PRIVATE DECLARE PUBLIC
PUBLIC END MODULE
SHARE

Exception Handling
Exception handling is not discussed in this book.

CAUSE
WHEN Structure

USE
END WHEN

Alphabetical Listing of Statements

This section gives examples and brief descriptions of the
statements and structures discussed in this manual.

BOX AREA Statement
BOX AREA left, right, lower, upper

Draws the rectangle specified and fills it with the current
foreground color.

BOX CIRCLE Statement
BOX CIRCLE left, right, lower, upper

Draws an ellipse (or circle) inscribed in the rectangle specified in
the current foreground color.

BOX CLEAR Statement
BOX CLEAR left, right, lower, upper

Clears the rectangular region specified; that is, it fills that region
with the current background color.

BOX ELLIPSE Statement
BOX ELLIPSE left, right, lower, upper

BOX ELLIPSE is the same as BOX CIRCLE.

BOX KEEP Statement
BOX KEEP left, right, lower, upper IN stringvar$

Stores the entire rectangular region specified into stringvar$.

True BASIC Free – User Guide 119

BOX LINES Statement
BOX LINES left, right, lower, upper

Draws the outline of a rectangle specified in the current
foreground color.

BOX SHOW Statement
BOX SHOW stringvar$ AT left, lower

BOX SHOW restores the image previously stored in stringvar$ to
the rectangular position whose lower left corner is specified.

CALL Statement
CALL subroutine-name (arg1, arg2, ..., argn)

The CALL statement invokes the subroutine given by the SUB
statement with the same name. The arguments in the CALL
statement must match with the parameters in the SUB
statement (in number, positions, type, and number of
dimensions.)
Parameter passing by reference; that is, changes to them within
the subroutine will cause simultaneous changes the arguments in
the CALL statement.

CLEAR Statement
CLEAR

Clears the screen or output window and resets the text cursor to
the row 1, column 1; also switches to the full screen for output.

CLOSE Statement
CLOSE #n

The CLOSE statement closes the channel (a file or printer)
opened as #n. You must close a channel before you can OPEN a
new channel with the same number.

DATA Statement
DATA: element, ..., element

The data elements can be quoted or unquoted strings.
At program startup, all the data in the collection of DATA
statements in a program-unit are collected into a data list, in the
order in which they are encountered.
(See also READ and RESTORE).

True BASIC Free – User Guide 120

DECLARE DEF Statement
DECLARE DEF funcname, …, funcname

DECLARE DEF statements must name all external functions
used in the given program-unit before their first use. DECLARE
DEF statements must name all internal functions used in the
given program-unit whose definitions occur later in the program-
unit than their first use.

DEF Statement
DEF identifier = numeric-expression
DEF identifier (parm1, ..., parm n) = numeric-expression
DEF identifier$ = string-expression
DEF identifier$ (parm1, ..., parm n) = string-expression

The DEF statement allows the programmer to define single-line
functions.
The function is invoked by including its name, with suitable
arguments, in an expression. The arguments must match the
parameters in the DEF statement in number, position, type, and
number of dimensions.

DEF Structure
DEF identifier (parm1, ..., parm n)

...
EXIT DEF [optional]
...

END DEF
The DEF structure may contain one or more EXIT DEF
statements. The DEF structure allows the programmer to define
new multi-item functions.
The function is invoked by including its name, with suitable
arguments, in an expression. The arguments must match the
parameters in the DEF structure in number, position, type, and
number of dimensions. Parameter passing is by value; that is
any changes to the parameters will not cause changes to the
corresponding arguments.
The defined function can also contain DECLARE DEF and
LOCAL statements.

DIM Statement
DIM array (bounds), ..., array (bounds)

Except for function or subroutine parameters, each array in a pro-
gram-unit must be dimensioned in a DIM or LOCAL statement
that occurs lexically before the first reference to that array.

True BASIC Free – User Guide 121

DO Loop
DO { | WHILE condition | UNTIL condition | }

. . .
EXIT DO [optional]
. . .

LOOP { WHILE condition | UNTIL condition | }
The DO statement can contain either a WHILE or UNTIL part, or
nothing, and the same for the LOOP statement. There can be any
number of EXIT DO statements.

DRAW Statement
DRAW picture name (arg 1, ..., arg n)
DRAW picture name (arg 1, ..., arg n) WITH trans *... * trans
trans:: SCALE (size)

SCALE (xsize, ysize)
ROTATE (angle)
SHIFT (xshift, yshift)
SHEAR (angle)

The (argument-list) is optional. The DRAW statement causes the
picture named to be drawn on the screen, just as if the DRAW
statement were replaced by the code of the picture definition. The
angles in ROTATE and SHEAR are measured in radians unless
OPTION ANGLE DEGREES is in effect.
If the WITH clause is present, then the transformation applies
applies to PLOT, FLOOD, and MAT PLOT statements (but not
BOX statements) in the picture before drawing it. If a picture also
contains DRAW statements with WITH clauses, then the final
transformation is the “product” of the transformations along the
way. The transformation consists of shifts, rotations, shears, or
changes of scale, or any sequence thereof.
SCALE with one argument is the same as SCALE with two
arguments with the same scale factor applied to both the x- and y-
directions. That is, SCALE(a)= SCALE(a,a).
ROTATE causes the picture to be rotated counter-clockwise
through the given angle.
SHIFT causes the picture to be shifted in the x-direction by an
amount given by the first argument, and in the y-direction by an
amount given by the second argument.
SHEAR causes the picture to be tilted clockwise through the
specified angle. That is, it leaves horizontal lines horizontal, but
tilts vertical lines through the given angle.

True BASIC Free – User Guide 122

END Statement
The END statement must be the last statement of a program and is
required. Only one END statement is allowed. The file that con-
tains the program can also contain external procedures and mod-
ules following the END statement. Executing the END statement
stops the program.

END DEF Statement
The END DEF statement must appear as the last statement of a
DEF structure.

END IF Statement
The END IF statement must appear as the last statement of an
IF structure.

END PICTURE Statement
The END PICTURE statement must appear as the last statement
of a PICTURE structure.

END SELECT Statement
The END SELECT statement must appear as the last statement
of a SELECT structure.

END SUB Statement
The END SUB statement must appear as the last statement of a
SUB structure.

ERASE Statement
ERASE #n

The ERASE statement erases the contents of the file opened as
channel #n. An error occurs if you attempt to erase a file opened
access INPUT.

EXIT DEF Statement
EXIT DEF

The EXIT DEF statement jumps to just beyond the END DEF
statement of the innermost function that contains it, and is
optional.

EXIT DO Statement
EXIT DO

The EXIT DO statements jumps to just beyond the LOOP
statement of the inner-most DO loop containing the EXIT DO,
and is optional.

True BASIC Free – User Guide 123

EXIT FOR Statement
EXIT FOR

The EXIT FOR statement jumps to just beyond the NEXT
statement of the inner-most FOR loop containing the EXIT FOR,
and is optional.

EXIT PICTURE Statement
EXIT PICTURE

The EXIT PICTURE statement jumps to just beyond the END
PICTURE statement of the innermost picture that contains it,
and is optional.

EXIT SUB Statement
EXIT SUB

The EXIT SUB statement jumps to just beyond the END SUB
statement of the innermost subroutine that contains it, and is
optional.

EXTERNAL Statement
EXTERNAL

The EXTERNAL statement must appear at the start of a
LIBRARY file of external procedures.

FLOOD Statement
FLOOD xcoord, ycoord

FLOOD will fill, with the current foreground color, the closed
graphical region containing the point whose x-coordinate is
xcoord and whose y-coordinate is ycoord.

FOR Loop
FOR forvar = numeric-expression TO numeric-expression STEP

numeric-expression
...
EXIT FOR [optional]
...

NEXT forvar
The simple numeric variable (not a numeric array element) in the
NEXT statement must be the same as the numeric variable
appearing in the FOR statement. The STEP part is optional. If
missing, the increment is 1.

True BASIC Free – User Guide 124

IF Statement
IF condition THEN simple-statement ELSE simple-statement

If the condition is “true,” then the simple-statement following the
keyword THEN will be executed, following which control will pass
to the next line.
If the condition is “false,” and the ELSE clause is present, its
simple-statement will be executed, following which control will
pass to the next line. If the ELSE clause is not present, then
control will pass directly to the next line.

IF Structure
IF condition1 THEN

...
ELSEIF condition2 THEN

...
ELSEIF condition3 THEN

...
ELSE

...
END IF

The IF structure can have 0 or more ELSEIF parts and 0 or 1
ELSE. If ELSE is present, it must follow any ELSEIF part. The
keyword ELSEIF can be spelled ELSE IF.
If condition 1 is “true,” the statements immediately following are
executed, up to the first ELSEIF, ELSE, or END IF, following
which control jumps to the statement following the END IF.
If condition 1 is “false,” control passes to the first ELSEIF part
following the IF line. If condition 2 is “true,” the statements
immediately following it are executed, up to the next ELSEIF,
ELSE, or END IF, following which control passes to the
statement following the END IF line. If condition 2 is “false,” this
process is repeated.
If there are no more ELSEIF parts, then control is passed to the
ELSE part, and the statements following the ELSE line are
executed, up to the END IF line. If there is no ELSE part, control
is passed to the statement following the END IF line.

INPUT Statement
INPUT variable, ..., variable
INPUT PROMPT string-constant: variable, ..., variable

When the INPUT statement is executed, the program awaits an
input-response from the user. The input-response consists of
quoted-strings and unquoted-strings, separated by commas.
The items in the input-response are assigned to the variables in
the INPUT statement. String variables can receive any input-

True BASIC Free – User Guide 125

item, but numeric variables can receive only input-items whose
characters form a numeric-constant. The rules are similar to
those for READ and DATA statements.

LET Statement
LET variable = formula

The LET statement computes the formula on the right of the
equal sign and then assigns the value to the variable on the left of
the equal sign.

LIBRARY Statement
LIBRARY quoted-string …, quoted-string

The LIBRARY statement names the file or files containing
external routines needed by the entire program.

LINE INPUT Statement
LINE INPUT stringvar$, ..., stringvar$
LINE INPUT PROMPT string-constant: strvarvar$, ...,

strvarvar$
A LINE INPUT statement requests one or more lines of input
from the user. The first line is supplied to the the first stringvar$,
the second to the second, and so on. All characters in the
response-line are supplied, including leading and trailing spaces,
embedded commas, and quote marks.

LOCAL Statement
LOCAL variable, ..., variable

A LOCAL statement specifies that the variables named in it are
local to the routine containing the statement. If an array is
named in a LOCAL statement, it must also include its subscript
bounds. The LOCAL statement is normally irrelevant in external
routines, since all variables except parameters are automatically
local, but it can be important in internal routines. The LOCAL
statement can be used in conjunction with the OPTION TYPO
statement to avoid typographical errors in variable names.

LOOP Statement
The LOOP statement may occur only as the last statement of a
DO loop, and is required. (See the DO Loop.)

MAT INPUT Statement
MAT INPUT array, ..., array

MAT INPUT assigns values from the input-response to the
elements of the arrays, in order. There must be a separate input-
response for each array in the inputlist. For each array, the

True BASIC Free – User Guide 126

elements are assigned values in “odometer” order. (That is, if A is
a 2-by-2 array, odometer order is A(1,1), A(1,2), A(2,1), A(2,2).)
The input-response must contain a sufficient number of values of
the appropriate type (numeric or string), separated by commas, in
a single input-response or in a collection of input-responses with
all but the last ending with a comma. (See the INPUT statement
for details of input-responses.)

MAT LINE INPUT Statement
MAT LINE INPUT strarray$..., strarray$

MAT LINE INPUT assigns response-lines to the elements of the
arrays in the redimarraylist, in order from left to right, and
within each array in odometer order. The entire line of input is
assigned to an array element, including leading and trailing
spaces and embedded commas.

MAT PRINT Statement
MAT PRINT array, ..., array

The MAT PRINT statement prints the elements of each array in
its matprintlist to the screen. The values of each array are
printed separately, with a blank line following the printed values
for each array. For two-dimensional arrays, the values for each
row start on a new line. This rule also applies to arrays of three or
more dimensions.
Any command may be replaced by a semicolon, in which case the
elements of that array are printed side by side.

MAT READ Statement
MAT READ array, ..., array

MAT READ assigns values from the DATA list to the elements of
each of the arrays, in order. For each array in the readarraylist, the
values are assigned in “odometer” order – that is, the last subscript
changes most rapidly, then the next to last, and so on.
A strvar can receive any valid datum. A numvar can receive only
a datum that happens to be a valid and unquoted numeric-
constant.

NEXT Statement
The NEXT statement can be used only as part of a FOR loop and
is required.

True BASIC Free – User Guide 127

OPEN Statement
OPEN #n: PRINTER
OPEN #n: NAME filename
OPEN #n: NAME filename, CREATE new-or-old

The OPEN statement opens a channel to a printer or file. You
subsequently refer to the printer or file by its channel number on
appropriate statements such as PRINT, INPUT, ERASE, SET or
CLOSE.
You may give the file name as a string constant (in double quotes)
or a string variable name. Allowable CREATE keywords are OLD
(the default), NEW, or NEWOLD.

OPTION ANGLE Statement
OPTION ANGLE DEGREES
OPTION ANGLE RADIANS

The OPTION ANGLE statement allows you to specify the type of
angle measure to be used with trigonometric functions and
graphics transforms. In the absence of an OPTION ANGLE
statement, the default angle measure is RADIANS.

OPTION TYPO Statement
OPTION TYPO

The OPTION TYPO statement requires that all non-array
variables that appear lexically after it be declared explicitly. They
must be declared in a LOCAL statement, or by appearing as
parameters in a SUB, DEF, or PICTURE statement.
An OPTION TYPO statement applies to the rest of the procedure
containing it and to all subsequent procedures in the program or
library file.

PAUSE Statement
PAUSE seconds

The PAUSE statement stops the program for a time (in seconds)
and then continue.

PICTURE Structure
PICTURE picture-name (parameter-list)

...
EXIT PICTURE [optional]
...

END PICTURE
A PICTURE structure may contain one or more EXIT PICTURE
statements.

True BASIC Free – User Guide 128

A PICTURE is drawn with a DRAW statement. Other than that,
a PICTURE acts exactly like a subroutine. The parameter
passing mechanism is that of subroutines.
If the PICTURE contains PLOT statements (PLOT, MAT PLOT,
FLOOD, GET POINT, or GET MOUSE) or contains CALL or
DRAW statements to other pictures or subroutines, then the final
picture will reflect all the transforms applied through all the
DRAW statements.
‘

PLAY Statement
PLAY string-expression

See the True BASIC Bible for a full explanation of all the options.

PLOT Statements
For convenience, the term point means two coordinates (x and y)
separated by a comma, as in “xcoord, ycoord”.
All PLOT statements in pictures are subject to the effects of the
current transform.
All PLOT statements, except for PLOT TEXT, are clipped at the
edges of the current window. That is, the portion of the drawing
that is inside the window is shown, while the portion outside the
window is not.

PLOT POINTS Statement
PLOT POINTS: point; ...; point
PLOT point

PLOT POINTS plots the points as dots. PLOT x,y is an
abbreviation for PLOT POINTS: x,y.

PLOT LINES Statement
PLOT LINES: point; ...; point
PLOT point; ...; point
PLOT LINES: point; ...; point;
PLOT point; ...; point;

PLOT LINES plots the line-segments that connect the points. A
line is drawn from the previous point to the first point if and only
if the beam was left on.
The following two statements are equivalent:

PLOTx1, y1; x2, y2; x3, y3
PLOT LINES: x1, y1; x2, y2; x3, y3

If the PLOT LINES and PLOT statements end with a semicolon,
the beam stays on so that subsequent PLOT LINES or PLOT
statements will continue plotting the line without a break;
otherwise, the beam is turned off.

True BASIC Free – User Guide 129

PLOT AREA Statement
PLOT AREA: point; ...; point

PLOT AREA plots the polygon defined by connecting the points
and fills it with the current foreground color. The last point need
not repeat the first point, as the line segment needed to close the
polygon is automatically supplied.

PLOT TEXT Statement
PLOT TEXT, AT point: textstring$

PLOT TEXT plots the text string in the current color at the point
specified in the AT clause.

Vacuous PLOT Statement
PLOT
PLOT LINES
PLOT LINES:

These statements turn off the beam in case a previous PLOT or
PLOT LINES statement ended with a semicolon. They have no
effect if the beam is already off.

PRINT Statement
PRINT
PRINT print-list
PRINT USING string: using-list
print-list:: printitem … separator printitem

printitem … separator printitem separator
using-list:: usingitem …, usingitem

usingitem …, usingitem ;
separator:: , or ;

Items in a print-list can be separated by commas or semicolons,
and be followed by a final comma or semicolon. Items in a using-
list can be separated only by commas, and be followed only by a
semicolon.
The printitems are printed on the screen. Numeric values are
printed with a trailing space and, for positive numbers, a leading
space. String values are printed as is, with no additional leading
or trailing spaces. If the separator between two items is a
semicolon, then the items are printed juxtaposed. If the separator
is a comma, then the next item is printed in the next print zone.
If a USING clause is present, the values are then printed
according to the format specified, without regard to print zones.
The string following the word USING determines the format.
If the PRINT statement ends with a semicolon, subsequent
printing will occur immediately following on the same line. If the

True BASIC Free – User Guide 130

PRINT statement ends with a comma, then subsequent printing
will occur on the same line but in the next print zone. Otherwise,
subsequent printing will start on the next line.

PROGRAM Statement
PROGRAM program-name

The PROGRAM statement, if used, must be the first statement of
the main program, other than comment lines. For ordinary
programs it serves no purpose other than to provide a place for
the program name.

RANDOMIZE Statement
RANDOMIZE

The RANDOMIZE statement produces a new seed for the random
number generator. It should not be used more than once in the
running of a program.

READ Statement
READ variable, ..., variable

The READ statement assigns to its variables the next datum from
the DATA list.
A string variable can receive any valid datum. A numeric variable
can receive only a datum that is unquoted and is a valid numeric-
constant.

REM Statement
REM character ... character

The REM statement allows you to add comments to your
program. You can use any characters you want in the REM
statement. REM statements are ignored.
A REM statement is equivalent to a comment line that begins
with an exclamation mark (!). In addition, a (!) can be used to
place comments on the same lines as other True BASIC
statements.

RESET Statement
RESET #n: BEGIN
RESET #n: END

The RESET statement resets the data pointer to the beginning or
end of the file opened as channel #n.

True BASIC Free – User Guide 131

RESTORE Statement
RESTORE

The RESTORE statement resets the data pointer to the start of
the data-list, and thus lets you reuse the data-list.

SELECT CASE Structure
SELECT CASE select-expression
CASE case-specifier

. . .
CASE case-specifier

. . .
CASE ELSE

. . .
END SELECT

case-specifier:: case-part, …, case-part
case-part:: constant

constant TO constant
IS relational-operator constant

The SELECT CASE structure may have zero or more CASE
parts, and zero or one CASE ELSE parts, but must have at least
one of either a CASE or CASE ELSE part. The constants in a
case-specifier must be of the same type (numeric or string) as the
select-expression in the SELECT CASE statement.
The select-expression in the SELECT CASE statement is first
evaluated. The case-specifier in the first CASE part is then
examined. If it satisfies any of the case-parts, then the statements
following that CASE statement are executed and control passes to
the first statement following END SELECT.
If no case-part in the first CASE statement is satisfied, then the
second CASE statement is examined in a like manner, and so on.
If no CASE statement is satisfied, then the statements following
the CASE ELSE statement are executed. If no CASE statement is
satisfied and there is no CASE ELSE part, an exception occurs.

SET COLOR Statement
SET COLOR colornumber
SET COLOR colorname

The SET COLOR statement sets the foreground color used in
subsequent PLOT statements to the color number or name used
in the statement. True BASIC always assigns 0 to the current
background color (usually white).
With a monochrome monitor, 0 is the white background, 1 is the
black foreground, and the numbers 2 through 5 give gray patterns
going from dark to white; numbers greater than 5 turn to white.

True BASIC Free – User Guide 132

SET COLOR MIX Statement
SET COLOR MIX (colornumber) red-intensity, green-

intensity, blue-intensity
The SET COLOR MIX statement lets you adjust the shade of any
color number. The intensity values may be any decimal fraction
from 0 (off) to 1 (on). This statement has no effect with a
monochrome monitor.

SET MODE Statement
SET MODE “graphics”

The SET MODE “graphics” statement forces True BASIC to use
the full screen for graphical output on a Macintosh, even if you
have opened an output window. For other uses of this command
see the True BASIC Bible.

SET WINDOW Statement
SET WINDOW left, right, lower, upper

Sets the window coordinates for graphics in the current window.

SOUND Statement
SOUND frequency, seconds

The SOUND statement sounds a note with the specified
frequency and duration.

STOP Statement
STOP

Stops execution of the program.

SUB Structure
SUB identifier (parm 1, ... , param n)

...
EXIT SUB [optional]
...

END SUB
The subroutine may contain one or more EXIT SUB statements.
A CALL statement invokes the subroutine; that is, starts it
running. The arguments in the CALL must match the parameter
in the SUB statement in number, position, type, and number of
dimensions. Parameter passing is by reference; that is, changes
to the parameter within the subroutine will cause simultaneous
changes to the arguments in the CALL statement.

True BASIC Free – User Guide 133

WHEN ERROR IN Structure
WHEN ERROR IN
when-part
USE
use-part
END WHEN

The WHEN structure lets you provide statements to be carried out
if a runtime error (exception) occurs. True BASIC uses the state-
ments in the use-part when an error occurs in the statements in
the when-part; otherwise, it skips the use-part statements.

True BASIC Free – User Guide 134

Appendix C: True BASIC Built-in Functions
This appendix lists most of True BASIC’s functions. Functions
are first grouped by general type, and then listed alphabetically
with a brief explanation. For complete information and examples
of all built-in functions, see the True BASIC Bible.

Mathematical Functions
Function Result

ABS(x) Absolute value
ANGLE(x,y) Angle between x-axis and (x,y)
ATN(x) Arctangent
COS(x) Cosine
DEG(x) Translates radians to degrees
EXP(x) Exponential function
FP(x) Fractional part of x
INT(x) Integer part
IP(x) Greatest integer <= x
LOG(x) Natural logarithm
LOG10(x) Common logarithm (base 10)
LOG2(x) Logarithm to the base 2
MAX(x,y) Larger of two numbers
MIN(x,y) Smaller of two numbers
MOD(x,y) Remainder when x is divided by y
PI Value of pi
RAD(x) Translates degrees to radians
REMAINDER(x,y) Remainder of x divided by y
RND Random number between 0 and 1
ROUND(x,n) Rounds x to n decimal places
SGN(x) Sign of x
SIN(x) Sine
SQR(x) Square root
TAN(x) Tangent
TRUNCATE(x,n) Truncates x to n decimal places

Date and Time Functions
Function Result
DATE Year and day of year as a number
DATE$ Year, month, and day of month as a string
TIME Seconds since midnight
TIME$ 24-hour clock time as a string

True BASIC Free – User Guide 135

String to Number Functions
Function Result
CHR$(x) Character represented by ASCII number x
ORD(x$) Ordinal position of x$ in ASCII character set
STR$(x) Changes number to a string
VAL(x$) Changes string containing digits to a number

String Transforming Functions
Function Result
LCASE$(x$) Change letters to lowercase
UCASE$(x$) Change letters to uppercase
LTRIM$(x$) Remove leading blanks
RTRIM$(x$) Remove trailing blanks
TRIM$(x$) Remove leading & trailing blanks
REPEAT$(x$,n) x$ repeated n times

String Search Functions
Function Result
LEN(x$) Number of characters in x$
POS(x$,y$,n) First occurrence of y$ in x$ after character n
POSR(x$,y$) Ditto POSR but starting from the end
CPOS(x$,y$) First occurrence in x$ of any character in y$
CPOSR(x$,y$) Ditto CPOS but starting from the end
NCPOS(x$,y$) First occurrence in x$ of any character not in y$
NCPOSR(x$,y$) Ditto, but starting from the end

Array Functions
Function Result
DET(a) Determinant for the square matrix a
DOT(a,b) Dot product of arrays a and b
LBOUND(a,n) Lower bound of dimension n for array a
UBOUND(a,n) Upper bound of dimension n for array a
SIZE(a,n) Number of element in dimension n of array a

MAT Functions that can appear only in MAT assignment statements
Function Result
CON Array of ones
IDN Identity matrix
INV(a) Inverse of array a
NUL$ Array of empty strings
TRN(a) Transpose of array a
ZER Array of zeroes

True BASIC Free – User Guide 136

The descriptions in the alphabetical list use the following terms:
numeric-expression numeric expression
rnumeric-expression rounded numeric expression
string-expression string expression
redim array redimensioning expression
arrayarg array argument (array name with

optional parentheses)

ABS Function
ABS(numeric-expression)

Returns the absolute value of the argument.

ANGLE Function
ANGLE(numeric-expression, numeric-expression)

ANGLE(x,y) returns the counterclockwise angle between the
positive x-axis and the point (x,y). Note that x and y cannot both
be zero. The angle will be given in radians or degrees depending
on whether the current OPTION ANGLE is RADIANS (default)
or DEGREES. The angle will always be in the range -180 <
ANGLE(x,y) <= 180 (assuming that the current OPTION ANGLE
is DEGREES).

ATN Function
ATN(numeric-expression)

ATN(x) returns the arctangent of x, which is the angle whose
tangent is x. The angle will be given in radians or degrees
according to whether the current OPTION ANGLE is RADIANS
(default) or DEGREES. The angle will always be in the range -90
< ATN(x) < 90 (assuming that the current OPTION ANGLE is
DEGREES).

CHR$ Function
CHR$(rnumeric-expression)

Returns the character whose ASCII decimal number is rnumeric-
expression (see Appendix A). If rnumeric-expression is not in the
range 0 to 255, inclusive, it is adjusted modulo 256 before the
function is evaluated.

CON Array Constant
CON redim
CON

CON is an array constant that yields a numeric array consisting
entirely of ones. CON can appear only in a MAT assignment
statement.

True BASIC Free – User Guide 137

COS Function
COS(numeric-expression)

Returns the value of the cosine function. The argument is
assumed to be in radians or degrees depending on whether the
current OPTION ANGLE is RADIANS (default) or DEGREES.

CPOS Function
CPOS(string-expression, string-expression)
CPOS(string-expression, string-expression, rnumeric-

expression)
Returns the position of the first occurrence in the first argument
of any character in the second argument. If no character in the
second argument appears in the first argument, or either string is
empty, then CPOS returns 0.
If a third argument is present, then the search for the first
occurrence starts at the character position in the first string given
by that number and proceeds to the right. The first form of CPOS
is equivalent to the second form with the third argument equal to
one.

CPOSR Function
CPOSR(string-expression, string-expression)
CPOSR(string-expression, string-expression, rnumeric-

expression)
Returns the position of the last occurrence in the first argument
of any character in the second argument. If no character in the
second argument appears in the first argument, or either string is
empty, then CPOSR returns 0.
If a third argument is present, then the search for the last
occurrence starts at the character position in the first string given
by that number and proceeds to the left (that is, backwards). The
first form of CPOSR is equivalent to the second form with the
third argument equal to the length of the first argument.

DATE Function
DATE

DATE, a no-argument function, returns the current date in the
decimal numeric form YYDDD, where YY is the last two digits of
the year and DDD is the day number in the year. If your
computer cannot tell the date, DATE returns -1.

DATE$ Function
DATE$

DATE$, a no-argument string-valued function, returns the
current date in the character string form “YYYYMMDD”. Here

True BASIC Free – User Guide 138

YYYY is the year, MM is the month number, and DD is the day
number. If your computer cannot tell the date, then DATE$
returns “00000000”.

DEG Function
DEG(numeric-expression)

Returns the number of degrees in numeric-expression radians.
This function is not affected by the current OPTION ANGLE.

DET Function
DET (numarr)
DET

Returns the value of the determinant for the square numeric
matrix named as its argument.

DOT Function
DOT(arrayarg, arrayarg)

DOT computes and returns the dot product of two arrays, which
must be one-dimensional, numeric, and have the same number of
elements. (The subscript ranges need not be the same, however.)
If both arrays have no elements, then DOT returns 0.

EPS Function
EPS(numeric-expression)

EPS(x) returns the smallest positive number that can “make a
difference” when added to or subtracted from x.

EXP Function
EXP(numeric-expression)

Returns the natural exponential of the argument. That is,
EXP(x) calculates e^x, where e = 2.718281828..., the base of the
natural logarithms.

FP Function
FP(numeric-expression)

Returns the fractional part of the argument.

IDN Array Constant
IDN redim
IDN

IDN is an array constant that yields an identity matrix, which is
a square numeric matrix consisting of ones on the main diagonal
and zeroes elsewhere. IDN can appear only in a MAT assignment
statement.

True BASIC Free – User Guide 139

INT Function
INT(numeric-expression)

Returns the greatest integer that is less than or equal to numeric-
expression.

INV Array Function
INV(numarr)

Returns the inverse of its argument, which must be a square two-
dimensional numeric matrix. INV can appear only in a MAT
assignment statement.

IP Function
IP(numeric-expression)

Returns the greatest integer that is less than or equal to numeric-
expression without regard to sign, that is, towards zero.

LBOUND Function
LBOUND(arrayarg, rnumeric-expression)
LBOUND(arrayarg)

If there are two arguments, LBOUND returns the lowest value
(lower bound) allowed for the subscript in the array and in the
dimension specified by rnumeric-expression. If there is no second
argument, arrayarg must be one-dimensional array, and
LBOUND returns the lowest value (lower bound) for its subscript.

LCASE$ Function
LCASE$(string-expression)

Returns the value of string-expression with all ASCII uppercase
letters converted into lowercase. Characters outside the range of
the ASCII uppercase letters are unchanged.

LEN Function
LEN(string-expression)

Returns the length (that is, the number of characters) of the
argument string-expression. All characters count, including
control characters and other nonprinting characters.

LOG Function
LOG(numeric-expression)

Returns the natural logarithm of numeric-expression, which must
be greater than 0. The natural logarithm of x may be defined as
that value v for which e^v = x, where e = 2.718281828....

True BASIC Free – User Guide 140

LOG10 Function
LOG10(numeric-expression)

Returns the common logarithm of numeric-expression, which
must be greater than 0. The common logarithm of x is defined as
that value v for which 10^v = x.

LOG2 Function
LOG2(numeric-expression)

Returns the logarithm to the base 2 of numeric-expression, which
must be greater than 0. The logarithm to the base 2 of x is defined
as that value v for which 2^v = x.

LTRIM$ Function
LTRIM$(string-expression)

Returns the value of string-expression but with leading blank
spaces removed. Trailing spaces, if any, are retained.

MAX Function
MAX (numeric-expression, numeric-expression)

Returns the larger of the values of the two arguments.

MAXNUM Function
MAXNUM

A no-argument function, MAXNUM returns the largest number
that can be represented in your computer.

MIN Function
MIN (numeric-expression, numeric-expression)

Returns the smaller of the values of the two arguments. (Note: -2
is smaller than -1.)

MOD Function
MOD(numeric-expression, numeric-expression)

MOD(x,y) returns x modulo y, provided y is not equal to zero.

NCPOS Function
NCPOS(string-expression, string-expression)
NCPOS(string-expression, string-expression, numeric-

expression)
Returns the position of the first occurrence in the first argument
of any character that is not in the second argument. If all charac-
ters in the first argument appear in the second argument, or the

True BASIC Free – User Guide 141

first argument is empty, then NCPOS returns 0. If the second
argument is empty but not the first, then NCPOS returns 1.
If a third argument is present, then the search for the first non-
occurrence starts at the character position in the first string given
by that number and proceeds to the right. If the second argument
is empty but not the first, then NCPOS returns the starting
position.
The first form of NCPOS is equivalent to the second form with the
third argument equal to one.

NCPOSR Function
NCPOSR(string-expression, string-expression)
NCPOSR(string-expression, string-expression, numeric-

expression)
Returns the position of the last occurrence in the first argument
of any character that is not in the second argument. If all
characters in the first argument appear in the second argument,
or if the first argument is empty, then NCPOSR returns 0. If the
second argument is empty but not the first, then NCPOSR
returns the length of the first string.
If a third argument is present, then the search for the last non-
occurrence starts at the character position in the first string given
by that number and proceeds to the left (that is, backwards). If
the second argument is empty but not the first, then NCPOSR
returns the starting value.
The first form of NCPOSR is equivalent to the second form with
the third argument equal to the length of the first argument.

NUL$ Array Constant
NUL$ redim
NUL$

NUL$ is an array constant that yields a string array consisting
entirely of empty strings. NUL$ can appear only in a MAT
assignment statement.

ORD Function
ORD(string-expression)

Returns the ordinal position in the ASCII character set of the
character given by string-expression, which must be either a sin-
gle character or an allowable two- or three-character name of cer-
tain ASCII characters as described in Appendix A, except that
ORD(““) = -1. ORD is the opposite of the CHR$ function in that
ORD(CHR$(n)) = n for all n in the range 0 to 255. However,
CHR$(ORD(a$)) = a$ only if the value of a$ is a single ASCII char-
acter.

True BASIC Free – User Guide 142

PI Function
PI

A no-argument function, PI returns the value of pi, the ratio of a
circle’s circumference to its diameter (approximately equal to
3.14159265). It gives as much accuracy as possible on your
computer, but in any case at least ten decimal places.

POS Function
POS(string-expression, string-expression)
POS(string-expression, string-expression, numeric-

expression)
Returns the position of the first character of the first occurrence
of the entire second string in the first string. If the second string
does not appear in the first string, or if the first string is empty
while the second is not, then POS returns 0. If the second string
is empty, then POS returns 1.
If a third argument is present, then the search for the second
string starts at that character position in the first string given by
that number and proceeds to the right. If the second string is
empty, POS returns the starting position. The first form of POS is
equivalent to the second form with the third argument equal to
one.

POSR Function
POSR(string-expression, string-expression)
POSR(string-expression, string-expression, numeric-

expression)
Returns the position of the first character of the last occurrence of
the entire second string in the first string. If the second string
does not appear in the first string, or if the first string is empty
but the second is not, POSR returns 0. If the second string is
empty, then POSR returns the length of the first string plus one.
If a third argument is present, then the search for the last occur-
rence starts at the character position in the first string given by
that number and proceeds to the left (that is, backwards). If the
second string is empty, POSR returns the starting position.
The first form of POSR is equivalent to the second form with the
third argument equal to the length of the first argument plus one.

RAD Function
RAD(numeric-expression)

RAD(x) returns the number of radians in x degrees. This function
is not affected by the current OPTION ANGLE.

True BASIC Free – User Guide 143

REMAINDER Function
REMAINDER(numeric-expression, numeric-expression)

REMAINDER(x,y) returns the remainder obtained by dividing x
by y; y must not be equal to 0.

REPEAT$ Function
REPEAT$(string-expression, numeric-expression)

Returns the string consisting of rnumeric-expression copies of
string-expression.

RND Function
RND

A no-argument function, RND returns the next “pseudo-random”
number in the sequence. These numbers, which have no obvious
pattern, fall in the range 0 < = RND < 1. If the program
containing RND is rerun, True BASIC produces the same
sequence of RND values. If you want your program to produce
unpredictable results, use a RANDOMIZE statement before you
use the RND function.

ROUND Function
ROUND(numeric-expression, numeric-expression)
ROUND(numeric-expression)

ROUND(x,n) returns the value of x rounded to n decimal places.
Positive values of n round to the right of the decimal point;
negative values round to the left. ROUND(x) is the same as
ROUND(x,0).

RTRIM$ Function
RTRIM$(string-expression)

Returns the value of string-expression but with the trailing blank
spaces removed. Leading spaces, if any, are retained.

SGN Function
SGN(numeric-expression)

SGN(x) returns the “sign” of x.

SIN Function
SIN(numeric-expression)

Returns the sine of the angle numeric-expression. The angle is
measured in radians unless OPTION ANGLE DEGREES is in
effect, in which case the angle is measured in degrees.

True BASIC Free – User Guide 144

SIZE Function
SIZE(arrayarg, numeric-expression)
SIZE(arrayarg)

If there are two arguments, SIZE returns the number of elements in
the array named in the first argument and in the dimension
specified by rnumeric-expression. If there is no second argument,
then SIZE returns the total number of elements in the entire array.

SQR Function
SQR(numeric-expression)

SQR(x) returns the positive square root of x, where x must be
greater than or equal to zero.

STR$ Function
STR$(numeric-expression)

Returns the number converted to a string.

TAB Function
TAB(numeric-expression)
TAB(numeric-expression, numeric-expression)

TAB can appear only in PRINT statements. Strictly speaking,
TAB is not a function, as it does not return a value.
TAB(c) causes the printing cursor to “tab” over to print position
(column) cc TAB(r,c) causes the printing cursor to be positioned
on the screen at row r and column c of the current window.

TAN Function
TAN(numeric-expression)

TAN(x) returns the tangent of x. Here, x is assumed to be in
degrees if OPTION ANGLE DEGREES is in effect, and in radians
otherwise.

TIME Function
TIME

A no-argument function, TIME returns the number of seconds
since midnight. At midnight, TIME returns 0. If your computer
does not have a clock, then TIME returns -1.

TIME$ Function
TIME$

A no-argument function, TIME$ returns a string that contains
the time as measured by the 24-hour clock.

True BASIC Free – User Guide 145

TRIM$ Function
TRIM$(string-expression)

The value of the argument returned with leading and trailing
blank spaces removed.

TRN Array Function
TRN(numarr)

Returns the transpose of its argument, which must be a two-
dimensional numeric array. TRN can appear only in a MAT
assignment statement.

TRUNCATE Function
TRUNCATE(numeric-expression, numeric-expression)

TRUNCATE(x,n) returns the value of x truncated to n decimal
places. Positive values of n truncate to the right of the decimal
point; negative values truncate to the left. TRUNCATE(x,0) is
the same as IP(x).

UBOUND Function
UBOUND(arrayarg, numeric-expression)
UBOUND(arrayarg)

The two-argument form returns the largest value (upper bound)
allowed for the subscript in the dimension specified by rnumeric-
expression in the array named. The one-argument form returns
the largest value (upper bound) for the subscript in a one-
dimensional array.

UCASE$ Function
UCASE$(string-expression)

Returns the value of string-expression with all lowercase letters
in the ASCII code (see Appendix A) converted into their uppercase
equivalents. Characters outside the range of the ASCII lowercase
letters are unchanged.

USING$ Function
USING$(string-expression, expr …, expr)

expr:: numeric-expression
string-expression

USING$ returns the string of characters that would be produced
by a PRINT USING statement with string-expression as the
format string and with the exprs as the numeric or string
expressions to be printed.

True BASIC Free – User Guide 146

VAL Function
VAL(string-expression)

Returns the numerical value given by I>string-expression,
provided it represents a numerical constant in a form suitable for
use with the INPUT or READ statement. The string can contain
leading and trailing spaces, but not embedded ones.

ZER Array Constant
ZER redim
ZER

ZER is an array constant that yields a numeric array consisting
entirely of zeros. ZER can appear only in a MAT assignment
statement.

True BASIC Free – User Guide 147

Appendix D: Error Messages
This appendix contains a partial list of True BASIC error
messages, in alphabetic order. Error messages referring to
statements or features not introduced in this book are omitted.

The number following some messages is the error number for
error (exceptions) that occur when the program runs. These
numbers can be used with the WHEN structure and EXTYPE
function explained in True BASIC Bible.

Argument types don’t match.
You’re calling a routine with some arguments, but earlier in your
program you defined or called the same routine with different
arguments. Either you’re giving a different number of arguments
in the calls, or their types are different – that is, you’re passing
strings instead of numbers, or vice versa. Check this call against
preceding calls, and against the routine’s definition.

Bad FIND item; try using quotes.
When you’re trying to find a string which contains a comma or
quotation marks, you must enclose the entire string within quote
marks. (These rules are the same as the rules for strings in
INPUT replies or DATA statements.)

Badly formed input line. (8102)
Your reply to an INPUT statement (either from a file or from the
keyboard) is badly formed. Most likely you have not properly
matched up opening and closing quote marks.

Can’t continue.
You’ve just given a CONTINUE command, to resume running a
suspended program. However, True BASIC cannot continue the
program. There are several possible reasons. You cannot
continue a program that you haven’t yet started running, or one
which you’ve just changed. You cannot continue a program which
stopped because an error occurred. And you cannot continue a
suspended program after using a DO command. If you are trying
to debug a program which stopped because of an error, try using
the BREAK command to insert breakpoints before the erroneous
line, and then run the program again.

Can’t help with that. Try HELP TOPICS.
You’ve asked for help, with either the HELP command or the
HELP key. True BASIC can’t help you with the topic you’ve
requested. Make sure that you’ve spelled the topic name

True BASIC Free – User Guide 148

correctly, and in full. And make sure that you’ve got the True
BASIC disk in your computer, or that the TB Help folder was
copied to your hard disk.

Can’t invert singular matrix. (3009)
You are using the matrix INV function, but the matrix you want
to invert is singular. Singular matrices simply have no inverses.

Can’t PRINT to middle of text file. (7350)
You can not overwrite data in a text file. Use the RESET
statement to move to the end of the file, or ERASE the file, before
printing to it.

Can’t SET WINDOW in picture. (11004)
Pictures may not reset window or screen coordinates. Move the
OPEN SCREEN or SET WINDOW statement to outside the
picture.

Can’t use #0 here. (7002)
You may not use channel #0 in OPEN or CLOSE statements,
since #0 is always open.

Can’t use ANGLE(0,0). (3008)
ANGLE(0,0) is not defined. Make sure that at least one of its
arguments is nonzero.

Can’t use this statement here.
You’ve used part of a True BASIC structure, but in the wrong
place. For instance, you might have placed a CASE part outside of
any SELECT CASE statement, or ELSE IF statement outside of
any IF-THEN statement. True BASIC also prints this message if
you add an extraneous statement between the SELECT CASE
line and its first CASE part. Refer to the proper chapters of this
manual to see how the structured statements are formed.

Channel is already open. (7003)
You are trying to open a channel that is already open. Make sure
you are not already using that channel number somewhere else in
your program. Also, remember to CLOSE a channel when you’re
done using it.

Channel isn’t open. (7004)
You’re trying to use a channel that you haven’t yet opened. Be
sure you’ve used the correct channel number and that you’ve used
an OPEN statement for that channel before you attempt to use it.
Also, be sure you haven’t already closed that channel (with a

True BASIC Free – User Guide 149

CLOSE statement). If the channel was opened in a different
program unit, be sure that the channel was passed as an
argument.

Channel number must be 1 to 1000. (7001)
Channel numbers must lie in the range 1 to 1000.

Constant too large: constant in routine.
The numeric constant displayed is too large for your computer to
handle. Type PRINT MAXNUM in the command window to see
the largest possible number on your computer, and then change
your program to use a smaller number.

DET needs a square matrix. (6002)
The DET function can only be used on a square matrix, since the
determinant is mathematically defined only for such matrices.

Disk full. (9006)
You are writing output to a file, and the disk has become full.

Diskette removed, or wrong diskette. (9005)
You had opened a file, but, while True BASIC was using it, you
removed the diskette and inserted another one. Don’t switch
diskettes while they’re in use!

Division by zero. (3001)
One of your expressions tried to divide some quantity by zero. If
you want to substitute the largest possible number and continue
(without an error), enclose the expression in a WHEN statement:

WHEN ERROR IN
LET x = (1+2+3)/0

USE
LET x = Maxnum

END WHEN

MAXNUM is a True BASIC function which gives the largest
positive number available on your computer.

Do you want to save this file?
True BASIC gives you this reminder when you try to Open
another file, start a New file, or Quit your True BASIC session
without saving your current file. Answer “yes” if you do want to
save the file (replacing the current saved copy), “no” if you want to
discard your changes, or “cancel” if you want to do something else
(for example, save the file with a different name).

True BASIC Free – User Guide 150

Doesn’t belong here.
The cursor points to some word in your program which doesn’t
make sense. Look to see what kind of statement you are using,
and then look up the proper form of that statement in this book.
Then correct your program and continue.

Ending doesn’t match beginning.
You are using a structured statement, such as FOR-NEXT or IF-
THEN-ELSE, and the ending statement doesn’t properly match
the beginning of the structure. Most likely you have forgotten the
ending statement for some structure within this one. Or you may
have begun a FOR loop using one index variable, but used
another variable on the NEXT statement. Read the statements
inside the structure carefully to see what you’ve left out.

Error in PLAY string. (4501)
The string given in your PLAY statement doesn’t follow True
BASIC’s rules.

Expected “thing”.
The cursor points to a spot where True BASIC expected some
word or punctuation, but found something else. This message
may jog your memory enough so that you can repair the
statement. Otherwise, look up the statement in this manual, and
then fix your program.

Expected relational operator.
The cursor points to a spot where you must put a relational
operator, such as = or <. Finish writing out the comparison which
must be there. (Note that True BASIC does not allow testing
statements like IF A THEN ..., as some other BASICs do. Change
such statements to IF A<>0 THEN)

File already exists. (9004)
Your are trying to create a file that already exists. Check to make
sure that you’ve given the right name. If you want to use an
existing file, change the CREATE NEW i the OPEN statement to
CREATE NEWOLD.

File is read or write protected. (9001)
You are trying to input from or output to a file that has write- or
read-protection. Quit True BASIC and check the file and
diskette. If the write-protect tab on the diskette is open, close
that. Also, select the file’s icon and use Get Info in the
Macintosh File menu to be sure the “Locked” box is not checked.

True BASIC Free – User Guide 151

IDN must make a square matrix. (6004)
Identity matrices must be square. Therefore, when you use the
IDN(x,y) function, you must make sure that x = y.

Illegal array bounds. (6005)
You’ve redimensioned an array in a MAT REDIM statement or
with a redim-expression in a MAT statement where the upper
bound is less than the lower bound minus one (e.g., MAT A = Zer(-
5) or MAT REDIM X(10 to 5). True BASIC allows the lower bound
to exceed the upper bound by one – thus defining an array with no
elements.

Illegal array bounds for name in routine.
You’ve defined an array in a DIM, LOCAL, SHARE, or PUBLIC
statement with an upper bound less than the lower bound minus
one. (True BASIC allows the lower bound to exceed the upper
bound by one, thus defining an array with no elements.)

Illegal data.
Your DATA statement is not properly written. Put commas
between data items, but don’t put a comma at the end of the list of
items. Make sure that all quoted items are properly enclosed in
quote marks: items such as “abc” def are not allowed.

Illegal expression.
The cursor points to something in an expression that doesn’t
follow True BASIC’s rules. Check to make sure that you haven’t
given two operators in a row (such as “1++2”), that you haven’t
written down a number improperly (such as “1,000”), and that all
your variable names follow True BASIC’s rules.

Illegal keyword.
The cursor points to a word that doesn’t make sense in that
location. For instance, you may have forgotten to add LINES,
AREA, or CLEAR in a BOX statement. Look up the statement in
this book, and correct your program.

Illegal line number.
You might have a non-numbered line in a line-numbered
program, or vice versa, or a GOTO or GOSUB to a nonexistent
line number, or one in a control structure. You might have a
badly formed line number (e.g., more than six digits). Or you
might have a line with a number less than or equal to the
previous line.

True BASIC Free – User Guide 152

Illegal number.
The cursor points to some spot where a number is required, but
you’ve given something else. `If you’ve written a number there,
make sure that you’ve followed True BASIC’s rules on numeric
constants. Sometimes True BASIC is very finicky about what it
will accept as a number: for instance, only integer constants are
allowed as array bounds in DIM statements, and as line numbers.

Illegal option.
The only options supported by True BASIC are OPTION ANGLE,
OPTION BASE, OPTION NOLET, and OPTION TYPO. Make
sure you’ve spelled ANGLE, BASE, DEGREES, RADIANS,
NOLET, or TYPO properly.

Illegal parameter.
You’ve written a SUB or DEF or PICTURE line defining a
routine, but something is wrong with one of the parameters in the
parameter list. You may have listed one parameter twice, or used
something more complicated than a simple variable name.

Illegal statement.
Each statement must begin with some True BASIC keyword,
such as LET or SELECT. Check to make sure that you’ve spelled
the keyword properly.

Illegal statement: need LET for assignment, or try the NOLET
command.

This is a wordier version of the “Illegal statement” error message
if it looks like an assignment. Unless you use OPTION NOLET,
True BASIC requires that you use the word LET when assigning
to a variable.

Improper NUM string. (4020)
The string you’ve given to the NUM function doesn’t represent an
IEEE 64-bit floating point number. Check to make sure that
you’ve correctly created, or read in, the string.

Improper ORD string. (4003)
The ORD function requires either a one-character string, or a
string giving the official name of an ASCII character. No leading
or trailing spaces are allowed. See Appendix A for a list of all the
legal names for ASCII characters.

INV needs a square matrix. (6003)
Matrix inversion is defined only for square matrices. You are
trying to use the INV function on a non-square matrix. See that
matrix is two-dimensional, with the same size in each dimension.

True BASIC Free – User Guide 153

LBOUND index out of range. (4008)
You are using a call such as Lbound(A,3) and the array A doesn’t
have three dimensions. Check to make sure that the dimension
given lies between 1 and the number of dimensions in the array.

LOG of number <= 0. (3004)
Logarithms are only defined for positive numbers.

Mismatched array sizes. (6001)
You’re using a MAT statement that requires arrays of the same
size, but the arrays are different sizes. For example, matrix
addition requires the two arrays added together to have the same
sizes. Matrix multiplication has slightly more complicated rules.
See the True BASIC Bible for more information about arrays.

Missing end statement.
Your program doesn’t end with an END statement. All True
BASIC programs must contain END statements. Add an END
statement and try again.

MOD and REMAINDER can’t have 0 as 2nd argument. (3006)
The MOD and REMAINDER functions do not allow zero as their
second argument, since this is equivalent to dividing by zero.
Check to make sure you’re giving the arguments in the right
order.

Must be a function name.
You’ve written a DEF or FUNCTION line, but no proper function
name follows the DEF or FUNCTION.

Must be a number.
True BASIC allows numeric expressions almost anywhere that
simple numbers are allowed, but there are a few exceptions. For
instance, CASE tests may not use numeric expressions. Only
numeric constants are allowed. If you must use an expression,
rewrite the SELECT CASE structure as an IF-THEN-ELSE
structure.

Must be a picture name.
Your DRAW statement names something other than a picture.
Change the DRAW statement so it refers to a picture, and try
again.

Must be a string constant.
True BASIC allows string expressions almost anywhere that
string constants are legal, but there are a few exceptions. For

True BASIC Free – User Guide 154

instance, CASE tests may not use string expressions. If you must
use a string expression, rewrite the SELECT CASE structure as
an IF-THEN-ELSEIF structure.

Must be a subroutine name.
The CALL statement can only be used to call subroutines.
Change the statement so it uses a subroutine name.

Must be a variable.
You’ve used an expression, or a routine name, where only a
variable will do. For example, you must use variables in LET and
INPUT statements. Look up the statement in this book to make
sure you are using it properly. Also make sure that the variable
you’re using isn’t already used as a subroutine, picture, function,
or array.

Must be an array.
There are many places in True BASIC where you must give an
array’s name, instead of an ordinary variable. For instance, the
MAT statements work only on arrays. Various functions, such as
Lbound and Size, also work only on arrays. Make sure that you’re
spelling the array’s name correctly and that you’ve named the
array in a DIM statement.

Name can’t be redefined.
You can’t use the same name for two different things. Thus, if you
have a variable named X, you cannot also have a subroutine or
array named X. Rename one of the things, so everything has its
own unique name. True BASIC also prints this message when you
try to use a “reserved word” as a variable.

Negative number to non-integral power. (3002)
You’re trying to compute n^x, but n is negative and x is not an
integer. The results are mathematically meaningless.

No CASE selected, but no CASE ELSE. (10004)
You have executed a SELECT CASE statement, but no CASE test
has succeeded. Since you didn’t have a CASE ELSE part to catch
this problem, True BASIC prints this error message. Check to
make sure that the expression you’ve selected is reasonable. Add
a CASE ELSE part to handle all cases other than ones caught by
the tests. If you want to ignore anything besides those things
tested for, add a CASE ELSE part with no statements in it.

No main program.
Your current file contains functions, pictures, and/or subroutines,
but doesn’t contain a main program. Create a main program!

True BASIC Free – User Guide 155

No such color. (11008)
You’re using the SET COLOR statement with some color name
that True BASIC doesn’t recognize. You may give color names in
upper- or lowercase, but may not use extra spaces in the names.

No such file. (9003)
You’re trying to use a file which doesn’t exist. You can get this
error message from various commands (such as OLD), or from
within a program. Check to make sure you spelled the program’s
name properly, and to make sure you have inserted the correct disk
in your computer. Use the FILES command to see if that file exists
on a disk. See also Appendix E.

No such file. Do you want to create it?
You have tried to REPLACE a file which doesn’t yet exist. This
gives you the chance to create a file with the name you specified.
Answer “yes” to create the file, or “no” or “cancel” to cancel this
command. If you’re typing the reply, you can abbreviate it to one
letter.

No such function or subroutine.
You’ve named a function, subprogram, or picture in some
command, but this routine doesn’t exist. For instance, you may
have typed LIST MYFUNC. Check to make sure you spelled the
name properly.

No such line numbers.
You’ve given a range of line numbers in a command, but no lines
have those numbers.

Not found.
You’ve used the FIND menu item to find some word or phrase,
but it wasn’t found. Reread the section in this book on FIND to be
sure you have given the search phrase properly. Have you asked
to find whole word? Is this an instance when case much match?
Remember that True BASIC searches from where you are in the
program to the end and then stops.

Out of memory. (5000)
Your problem requires more memory than is attached to your
computer. Since True BASIC will use all the memory supplied
with your computer, you may be able to fix this problem by buying
more memory. Otherwise, you must try to use less memory. Here
are a few suggestions.

Use smaller arrays. Arrays can take up a surprising amount of
space, especially if they have more than one dimension. If you

True BASIC Free – User Guide 156

have big arrays, see if you can solve your problem using smaller
arrays.
Compile your program, and use the compiled version. See the
True BASIC Bible for information on compiling.
Check for “run-away” calls. You may have accidentally written a
procedure that calls itself. This is perfectly legal, and often
useful. But each call requires some amount of space, and such an
accident can cause this error.

Overflow. (1000)
You’ve computed a number bigger than the one your computer
can handle. PRINT MAXNUM to see the largest number that
your computer can use. If you wish to have overflows silently
turned into the largest possible number, enclose your
computation in a WHEN structure:

WHEN ERROR IN
LET x = 10^(10^10)

USE
LET x = Maxnum

END WHEN

Please try “CHANGE old, new”.
When changing a phrase in the command window, you must give
both the old phrase and its replacement. If either phrase contains
a comma or quote mark, enclose that entire phrase in quote
marks.

Please try “DO filename”.
You must give a filename when using the DO command in the
command window. Give the command again, specifying the name
of the file to execute.

Please try “ECHO” or “ECHO TO filename” or “ECHO OFF”.
You probably gave the ECHO command without the keyword TO.

Please try “INCLUDE filename”.
You must give a filename when using the INCLUDE command.
Retype the command, giving the name of the file to include.

Please try “LOCATE item”.
When trying to locate a phrase in the command window, you must
give the phrase to be located.

Please try “OLD filename”.
You must give a file name when using the OLD command in the
command window. Retype the command, giving the name of the
file to call up.

True BASIC Free – User Guide 157

Please try “RENAME new” or “RENAME old, new”.
You gave the RENAME command in the command window
without specifying a filename. Give one name to change the
current program name. Or give two names (old and new) to
change a saved file’s name.

Please try “SAVE filename” or “REPLACE filename”.
You must give a filename when saving a file in the command
window. Retype the command, giving a filename.

Please try “UNSAVE filename”.
You must give a filename when trying to unsave a file in the
command window. Retype the command, giving the name of the
file to unsave.

Please type line numbers as 100 or 100-150.
You’ve given a command such as DELETE, with a line number or
block of line numbers. But True BASIC can’t understand what
you said. Type a command such as DELETE 100 to delete line
100, or DELETE 100-120 to delete lines 100 through 120.

Program stopped.
You pressed the C-. key or selected Stop from the main menu.
The program stopped. There is no way your program can try to
intercept a “stop”.

Reading past end of data. (8001)
You’ve executed a READ statement, but have run out of DATA
items to read. Did you remember to include a DATA statement?
Check to make sure that you have as many data items as you
expect. You may find the MORE DATA test handy for dealing
with variable amounts of data.

Reading past end of file (8011)
You’re trying to input more than exits in the file. Check to see if
the file contains everything you think it should. You may find the
MORE or END tests useful.

REPEAT$ count < 0. (4010)
You’re using the REPEAT$(s$,n) function, but n is less than zero.
Check to make sure that you’ve typed the right variable name.

Screen bounds must be 0 to 1. (11003)
The bounds given on an OPEN SCREEN statement must lie in
the range 0 to 1 (inclusive). No matter how big your screen is, the
left and bottom edges are defined to be 0; the right and top edges

True BASIC Free – User Guide 158

are defined to be 1. See Chapter 12 for a description of how to
open windows on the screen.

SIZE index out of range. (4004)
You’re trying to take Size(A,3), for instance, when the array A has
fewer than three dimensions. Check the relevant DIM statement
to see how many dimensions the array has. The second argument
must lie between 1 and this number.

Sorry, can’t find HELP files.
The help files are not where True BASIC expects to find them.
Either they are missing, or they are in another folder.

SQR of negative number. (3005)
You are trying to take the square root of a negative number. This
is not possible.

Statement outside of program.
The cursor points to a statement outside of your main program,
and not included within any external routine. Check to make sure
you haven’t accidentally moved the END statement so that it is
no longer at the end of your program.

String given instead a number. (8103)
You’ve executed an INPUT statement which is trying to input a
number. However, the reply given isn’t a number – it only makes
sense as a string. If you’re inputting from the keyboard, and want
to avoid this message, you should convert your input statement so
it reads a string, and then use the VAL function to convert the
result to a number. (You can enclose the call to VAL within an error
handler to suppress the error message.) If this exception occurs,
you will be requested to reenter the entire input line.

String too long. (1051)
You’ve created a string longer than the maximum size allowed on
your computer.

Subscript out of bounds. (2001)
You’ve given an array subscript which lies outside the array’s
bounds. Try printing the subscript and then using Lbound and
Ubound to find the array’s bounds.

The BYE command is just “BYE”.
When you want to leave True BASIC in the command window,
just type BYE. Don’t add anything else.

True BASIC Free – User Guide 159

The CONTINUE command is just “CONTINUE”.
When you want to continue running a suspended program, just
type CONTINUE. Don’t add anything else.

The FORGET command is just “FORGET”.
When you want to “forget” the history or recent commands, delete
loaded routines, and recover as much memory as you can, just type
FORGET. Don’t add anything else.

The NOLET command is just “NOLET”.
When you want to allow the keyword LET to be omitted from LET
statements, just type “NOLET”. Don’t add anything else.

The RUN command is just RUN.
When you want to run your program from the command window,
just type “RUN”. Don’t add anything else.

This must first appear in a DIM or DECLARE DEF.
The cursor points to something that is evidently an array or a
function. But True BASIC can’t tell which it is. Be sure to add a
DIM or DECLARE DEF line before this line, so True BASIC will
know what it is.

Too few input items. (8002)
You’ve executed an INPUT statement, and the input reply doesn’t
contain as many items as the INPUT statement requested. If
input is coming from the keyboard, the “?” is repeated, and you
should just add more items. For file input, check the file to see if
you omitted any items from the input line. If you want to spread
out input items over several lines, be sure to end all lines but the
last with a comma.

Too many input items. (8003)
You’ve executed an INPUT statement, and the input reply line
contains more items than the INPUT statement requested. If the
reply came from the keyboard, the excess items are ignored. If
you are reading input from a file, check the file to make sure it
contains the right number of items on a line. If any input items
contain commas, be sure to enclose those items in quote marks.

Trouble using disk or printer. (9002)
True BASIC is having trouble using one of your disks or your
printer. This message is given for various reasons on different
computers. Check to make sure that the power is turned on, that
a diskette is inserted in your disk drive, that your printer has
sufficient paper and that it’s not jammed, that the connecting
cables are securely attached, and so forth.

True BASIC Free – User Guide 160

Try “LOAD lib, lib, ...”.
You have probably used incorrect punctuation in a LOAD
command.

Type is wrong for name in routine.
You’ve tried calling a routine named name within another routine
named routine. However, you got the arguments wrong in this
call. They don’t match the parameter list. You must give the
same number of arguments as parameters, and they must be
given in the same order. Check for passing numbers to strings, or
vice versa. Also make sure that you’re not trying to use a function
as a subroutine, or vice versa.

UBOUND index out of range. (4009)
You’ve tried calling something like Ubound(A,3), where A is an
array with less than 3 dimensions. Check the DIM statement for
A to see how many dimensions it has, or if you might have used
UBOUND without specifying a dim.

Undefined routine name in routine.
The routine named name has tried to use a function, subprogram,
or picture named name. Unfortunately, this function,
subprogram, or picture is nowhere defined. Check to see that you
spelled the name correctly, and that you included a LIBRARY
statement for the file which contains this routine.
True BASIC says “in MAIN program” if the error occurred in your
main program.

Unknown OPEN option. (7101)
The option you gave after CREATE in the OPEN statement
doesn’t exist. Check that you’ve spelled the option correctly.
Although you can write the option in any mixture of upper- and
lowercase letters, you may not abbreviate options or include extra
spaces.

Unknown variable.
You are using OPTION TYPO to check for spelling mistakes, and it
has found a variable name that you haven’t declared anywhere. If
True BASIC has found a typing mistake, just correct the spelling.
Otherwise, add a LOCAL statement that lists this variable, or
include the variable in its correct DECLARE PUBLIC or SHARE
statement.

VAL string isn’t a proper number. (4001)
You’ve called the VAL function, but the string you gave doesn’t
properly represent a number.

True BASIC Free – User Guide 161

What? (Please type HELP.)
You’ve typed a command that True BASIC doesn’t understand. If
you want further help from the computer, type HELP in the
command window or use the Help menu for more instructions.
You may abbreviate commands to three letters, but not fewer.

Window minimum = maximum. (11001)
You’ve executed a SET WINDOW statement that sets the vertical
or horizontal window maximum equal to the minimum. True
BASIC doesn’t allow this, as it wouldn’t let you see anything in
that window. Remember that the order of edges for the SET
WINDOW command is left, right, bottom, top.

Wrong number of arguments.
A function, subprogram, or picture was called with the wrong
number of arguments.

Wrong number of dimensions.
You’re trying to use an array, but have given the wrong number of
dimensions. Check this use against the array’s DIM statement,
and make sure that both have the same number of subscripts. If
you’re passing an array to a routine, check the routine’s
parameters. Remember that a two-dimensional array must be
indicated as A(,) in the parameter list, a three-dimensional array
by A(,,) and so forth.

Wrong type.
You’re trying to use a string where a number is needed, or a
number where a string is needed. Check to make sure you’re not
trying to assign a number to a string variable, or vice versa.
Remember, too, that string concatenation is written using an
ampersand (&) in True BASIC, and not a plus sign (+).

You have two routines called name in routine.
In the routine named routine, you’ve defined two different
routines named name. Since different things must have different
names, you must change the name of one of them. Be sure to go
through all calls to that routine, and change those names too.
True BASIC says “in MAIN program” if the error occurred in your
main program (before the END statement).

Zero to negative power. (3003)
You are trying to compute 0^n, where n < 0. This is
mathematically undefined, and so True BASIC gives an error.

True BASIC Free – User Guide 162

This is just the beginning . . .

This True BASIC Free edition is provided by True BASIC Inc. in
the hopes that it will introduce you to the exciting and wide-
ranging possibilities of computer programming.

If you find it useful and exciting, please preview the commerical
versions of the True BASIC Language System and a variety of
instructional books that are listed at our website,
http://www.truebasic.com.

The site also offers memberships in the True BASIC Institute.
As an Institute member you can download how-to information
and sample programs that will improve your skills and
understanding of programming.

True BASIC Free – User Guide 163

