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Figure 7.16. Chemical potential of a noninteracting, nonrelativistic Fermi gas
in a three-dimensional box, calculated numerically as described in Problem 7.32.
At low temperatures µ is given approximately by equation 7.66, while at high
temperatures µ becomes negative and approaches the form for an ordinary gas
obeying Boltzmann statistics.

Now admittedly, that was a lot of work just to get a factor of π2/4 (since we
had already guessed the rest by dimensional analysis). But I’ve presented this
calculation in detail not so much because the answer is important, as because the
methods are so typical of what professional physicists (and many other scientists
and engineers) often do. Very few real-world problems can be solved exactly, so it’s
crucial for a scientist to learn when and how to make approximations. And more
often than not, it’s only after doing the hard calculation that one develops enough
intuition to see how to guess most of the answer.

Problem 7.29. Carry out the Sommerfeld expansion for the energy integral
(7.54), to obtain equation 7.67. Then plug in the expansion for µ to obtain the
final answer, equation 7.68.

Problem 7.30. The Sommerfeld expansion is an expansion in powers of kT/εF,
which is assumed to be small. In this section I kept all terms through order
(kT/εF)2, omitting higher-order terms. Show at each relevant step that the term
proportional to T 3 is zero, so that the next nonvanishing terms in the expansions
for µ and U are proportional to T 4. (If you enjoy such things, you might try
evaluating the T 4 terms, possibly with the aid of a computer algebra program.)

Problem 7.31. In Problem 7.28 you found the density of states and the chemical
potential for a two-dimensional Fermi gas. Calculate the heat capacity of this gas
in the limit kT � εF. Also show that the heat capacity has the expected behavior
when kT � εF. Sketch the heat capacity as a function of temperature.

Problem 7.32. Although the integrals (7.53 and 7.54) for N and U cannot be
carried out analytically for all T , it’s not difficult to evaluate them numerically
using a computer. This calculation has little relevance for electrons in metals (for
which the limit kT � εF is always sufficient), but it is needed for liquid 3He and
for astrophysical systems like the electrons at the center of the sun.

(a) As a warm-up exercise, evaluate the N integral (7.53) for the case kT = εF
and µ = 0, and check that your answer is consistent with the graph shown
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above. (Hint: As always when solving a problem on a computer, it’s best to
first put everything in terms of dimensionless variables. So let t = kT/εF,
c = µ/εF, and x = ε/εF. Rewrite everything in terms of these variables,
and then put it on the computer.)

(b) The next step is to vary µ, holding T fixed, until the integral works out to
the desired value, N . Do this for values of kT/εF ranging from 0.1 up to 2,
and plot the results to reproduce Figure 7.16. (It’s probably not a good idea
to try to use numerical methods when kT/εF is much smaller than 0.1, since
you can start getting overflow errors from exponentiating large numbers.
But this is the region where we’ve already solved the problem analytically.)

(c) Plug your calculated values of µ into the energy integral (7.54), and evaluate
that integral numerically to obtain the energy as a function of temperature
for kT up to 2εF. Plot the results, and evaluate the slope to obtain the
heat capacity. Check that the heat capacity has the expected behavior at
both low and high temperatures.

Problem 7.33. When the attractive forces of the ions in a crystal are taken into
account, the allowed electron energies are no longer given by the simple formula
7.36; instead, the allowed energies are grouped into bands, separated by gaps
where there are no allowed energies. In a conductor the Fermi energy lies within
one of the bands; in this section we have treated the electrons in this band as
“free” particles confined to a fixed volume. In an insulator, on the other hand,
the Fermi energy lies within a gap, so that at T = 0 the band below the gap is
completely occupied while the band above the gap is unoccupied. Because there
are no empty states close in energy to those that are occupied, the electrons are
“stuck in place” and the material does not conduct electricity. A semiconductor
is an insulator in which the gap is narrow enough for a few electrons to jump across
it at room temperature. Figure 7.17 shows the density of states in the vicinity of
the Fermi energy for an idealized semiconductor, and defines some terminology
and notation to be used in this problem.

(a) As a first approximation, let us model the density of states near the bottom
of the conduction band using the same function as for a free Fermi gas, with
an appropriate zero-point: g(ε) = g0

√
ε − εc, where g0 is the same constant

as in equation 7.51. Let us also model the density of states near the top
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Figure 7.17. The periodic potential of a crystal lattice results in a density-
of-states function consisting of “bands” (with many states) and “gaps”
(with no states). For an insulator or a semiconductor, the Fermi energy
lies in the middle of a gap so that at T = 0, the “valence band” is completely
full while the “conduction band” is completely empty.


