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Figure 3.10. Heat capacity and magnetization of a two-state paramagnet (com-
puted from the analytic formulas derived later in the text).

case; instead, T = ∞ corresponds to the state of maximum “randomness,” with
exactly half the dipoles pointing down. The behavior at negative temperature is
essentially a mirror image of the positive-T behavior, with the magnetization again
saturating, but in the opposite direction, as T → 0 from below.

Problem 3.17. Verify every entry in the third line of Table 3.2 (starting with
N↑ = 98).

Problem 3.18. Use a computer to reproduce Table 3.2 and the associated graphs
of entropy, temperature, heat capacity, and magnetization. (The graphs in this
section are actually drawn from the analytic formulas derived below, so your nu-
merical graphs won’t be quite as smooth.)

Analytic Solution

Now that we have studied most of the physics of this system through numerical
calculations, let us go back and use analytic methods to derive some more general
formulas to describe these phenomena.

I will assume that the number of elementary dipoles is large, and also that at any
given time the numbers of up and down dipoles are separately large. Then we can
simplify the multiplicity function (3.27) using Stirling’s approximation. Actually,
it’s easiest to just calculate the entropy:

S/k = lnN ! − lnN↑! − ln(N − N↑)!

≈ N lnN − N − N↑ lnN↑ + N↑ − (N−N↑) ln(N−N↑) + (N−N↑)

= N lnN − N↑ lnN↑ − (N−N↑) ln(N−N↑).

(3.28)

From here on the calculations are fairly straightforward but somewhat tedious. I’ll
outline the logic and the results, but let you fill in some of the algebraic steps (see
Problem 3.19).


