Contents

Preface ... vii

Part I: Fundamentals

Chapter 1 Energy in Thermal Physics 1
 1.1 Thermal Equilibrium ... 1
 1.2 The Ideal Gas .. 6
 Microscopic Model of an Ideal Gas
 1.3 Equipartition of Energy .. 14
 1.4 Heat and Work .. 17
 1.5 Compression Work ... 20
 Compression of an Ideal Gas
 1.6 Heat Capacities ... 28
 Latent Heat; Enthalpy
 1.7 Rates of Processes ... 37
 Heat Conduction; Conductivity of an Ideal Gas;
 Viscosity; Diffusion

Chapter 2 The Second Law ... 49
 2.1 Two-State Systems .. 49
 The Two-State Paramagnet
 2.2 The Einstein Model of a Solid 53
 2.3 Interacting Systems .. 56
 2.4 Large Systems .. 60
 Very Large Numbers; Stirling’s Approximation;
 Multiplicity of a Large Einstein Solid;
 Sharpness of the Multiplicity Function
 2.5 The Ideal Gas .. 68
 Multiplicity of a Monatomic Ideal Gas;
 Interacting Ideal Gases
 2.6 Entropy ... 74
 Entropy of an Ideal Gas; Entropy of Mixing;
 Reversible and Irreversible Processes

iii
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Interactions and Implications</td>
<td>85</td>
</tr>
<tr>
<td>3.1</td>
<td>Temperature</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>A Silly Analogy; Real-World Examples</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Entropy and Heat</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Predicting Heat Capacities; Measuring Entropies; The Macroscopic View of Entropy</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Paramagnetism</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Notation and Microscopic Physics; Numerical Solution; Analytic Solution</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Mechanical Equilibrium and Pressure</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>The Thermodynamic Identity; Entropy and Heat Revisited</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Diffusive Equilibrium and Chemical Potential</td>
<td>115</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary and a Look Ahead</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Part II: Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Engines and Refrigerators</td>
<td>122</td>
</tr>
<tr>
<td>4.1</td>
<td>Heat Engines</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>The Carnot Cycle</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Refrigerators</td>
<td>127</td>
</tr>
<tr>
<td>4.3</td>
<td>Real Heat Engines</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Internal Combustion Engines; The Steam Engine</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Real Refrigerators</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>The Throttling Process; Liquefaction of Gases; Toward Absolute Zero</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Free Energy and Chemical Thermodynamics</td>
<td>149</td>
</tr>
<tr>
<td>5.1</td>
<td>Free Energy as Available Work</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Electrolysis, Fuel Cells, and Batteries; Thermodynamic Identities</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Free Energy as a Force toward Equilibrium</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Extensive and Intensive Quantities; Gibbs Free Energy and Chemical Potential</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Phase Transformations of Pure Substances</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Diamonds and Graphite; The Clausius-Clapeyron Relation; The van der Waals Model</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Phase Transformations of Mixtures</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Free Energy of a Mixture; Phase Changes of a Miscible Mixture; Phase Changes of a Eutectic System</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Dilute Solutions</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Solvent and Solute Chemical Potentials; Osmotic Pressure; Boiling and Freezing Points</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Chemical Equilibrium</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Nitrogen Fixation; Dissociation of Water; Oxygen Dissolving in Water; Ionization of Hydrogen</td>
<td></td>
</tr>
</tbody>
</table>
Part III: Statistical Mechanics

Chapter 6 Boltzmann Statistics 220
6.1 The Boltzmann Factor ... 220
\textit{The Partition Function; Thermal Excitation of Atoms}
6.2 Average Values ... 229
\textit{Paramagnetism; Rotation of Diatomic Molecules}
6.3 The Equipartition Theorem 238
6.4 The Maxwell Speed Distribution 242
6.5 Partition Functions and Free Energy 247
6.6 Partition Functions for Composite Systems 249
6.7 Ideal Gas Revisited .. 251
\textit{The Partition Function; Predictions}

Chapter 7 Quantum Statistics 257
7.1 The Gibbs Factor ... 257
\textit{An Example: Carbon Monoxide Poisoning}
7.2 Bosons and Fermions .. 262
\textit{The Distribution Functions}
7.3 Degenerate Fermi Gases .. 271
\textit{Zero Temperature; Small Nonzero Temperatures; The Density of States; The Sommerfeld Expansion}
7.4 Blackbody Radiation ... 288
\textit{The Ultraviolet Catastrophe; The Planck Distribution; Photons; Summing over Modes; The Planck Spectrum; Total Energy; Entropy of a Photon Gas; The Cosmic Background Radiation; Photons Escaping through a Hole; Radiation from Other Objects; The Sun and the Earth}
7.5 Debye Theory of Solids ... 307
7.6 Bose-Einstein Condensation 315
\textit{Real-World Examples; Why Does it Happen?}

Chapter 8 Systems of Interacting Particles 327
8.1 Weakly Interacting Gases .. 328
\textit{The Partition Function; The Cluster Expansion; The Second Virial Coefficient}
8.2 The Ising Model of a Ferromagnet 339
\textit{Exact Solution in One Dimension; The Mean Field Approximation; Monte Carlo Simulation}
Contents

* * *

Appendix A Elements of Quantum Mechanics 357

A.1 Evidence for Wave-Particle Duality 357
 * The Photoelectric Effect; Electron Diffraction*
A.2 Wavefunctions 362
 * The Uncertainty Principle; Linearly Independent Wavefunctions*
A.3 Definite-Energy Wavefunctions 367
 * The Particle in a Box; The Harmonic Oscillator; The Hydrogen Atom*
A.4 Angular Momentum 374
 * Rotating Molecules; Spin*
A.5 Systems of Many Particles 379
A.6 Quantum Field Theory 380

Appendix B Mathematical Results 384

B.1 Gaussian Integrals 384
B.2 The Gamma Function 387
B.3 Stirling’s Approximation 389
B.4 Area of a d-Dimensional Hypersphere 391
B.5 Integrals of Quantum Statistics 393

Suggested Reading ... 397

Reference Data ... 402

Index .. 406