Contents

Preface	·
	Part I: Fundamentals
Chapte	r 1 Energy in Thermal Physics
1.1	Thermal Equilibrium
1.2	The Ideal Gas
1.3	Equipartition of Energy
1.4	Heat and Work
1.5	Compression Work
1.6	Heat Capacities
1.7	Rates of Processes
Chapte	r 2 The Second Law
2.1	Two-State Systems
2.2	The Einstein Model of a Solid
2.3	Interacting Systems
2.4	Large Systems
2.5	The Ideal Gas
2.6	Entropy

Chapter 3 Interactions and Implications	5
3.1 Temperature	5
3.2 Entropy and Heat	2
3.3 Paramagnetism	8
3.4 Mechanical Equilibrium and Pressure	8
3.5 Diffusive Equilibrium and Chemical Potential	5
3.6 Summary and a Look Ahead	0
Part II: Thermodynamics	
Chapter 4 Engines and Refrigerators	2
4.1 Heat Engines	2
4.2 Refrigerators	7
4.3 Real Heat Engines	1
Internal Combustion Engines; The Steam Engine	
4.4 Real Refrigerators	7
Chapter 5 Free Energy and Chemical Thermodynamics 149	9
5.1 Free Energy as Available Work	9
5.2 Free Energy as a Force toward Equilibrium	1
5.4 Phase Transformations of Pure Substances	6
5.4 Phase Transformations of Mixtures	6
5.5 Dilute Solutions	0
5.6 Chemical Equilibrium	8

Part III: Statistical Mechanics

Chapte	r 6 Boltzmann Statistics	220
6.1	The Boltzmann Factor	220
6.2	Average Values	229
6.3	The Equipartition Theorem	238
6.4	The Maxwell Speed Distribution	242
6.5	Partition Functions and Free Energy	247
6.6	Partition Functions for Composite Systems	249
6.7	Ideal Gas Revisited	251
Chapte	r 7 Quantum Statistics	257
7.1	The Gibbs Factor	257
7.2	Bosons and Fermions	262
7.3	Degenerate Fermi Gases	271
7.4	Blackbody Radiation	288
7.5	Debye Theory of Solids	307
7.6	Bose-Einstein Condensation	315
Chapte	r 8 Systems of Interacting Particles	327
8.1	Weakly Interacting Gases	328
8.2	The Ising Model of a Ferromagnet	339

Appendix A Elements of Quantum Mechanics								357
A.1 Evidence for Wave-Particle Duality The Photoelectric Effect; Electron Diffraction			•		•			35'
A.2 Wavefunctions		•	•			•		362
A.3 Definite-Energy Wavefunctions The Particle in a Box; The Harmonic Oscillator; The Hydrogen Atom	•		•		•			36'
A.4 Angular Momentum		•	•		•		•	374
A.5 Systems of Many Particles								379
A.6 Quantum Field Theory			•					380
Appendix B Mathematical Results				•				38 4
B.1 Gaussian Integrals								384
B.2 The Gamma Function								38'
B.3 Stirling's Approximation								
B.4 Area of a d -Dimensional Hypersphere								39
B.5 Integrals of Quantum Statistics								
Suggested Reading							•	397
Reference Data								402