
Physics 2300 Name
Spring 2018

Lab partner

Project 2: Projectile Motion

You now know enough about VPython to write your first simulation program.
The idea of a simulation is to program the laws of physics into the computer,

and then let the computer calculate what happens as a function of time, step by
step into the future. In this course those laws will usually be Newton’s laws of
motion, and our goal will be to predict the motion of one or more objects subject to
various forces. Simulations let us do this for any forces and any initial conditions,
even when no explicit formula for the motion exists.

In this project you’ll simulate the motion of a projectile, first in one dimension
and then in two dimensions. When the motion is purely vertical, the state of the
projectile is defined by its position, y, and its velocity, vy. These quantities are
related by

vy =
dy

dt
≈ ∆y

∆t
=

yfinal − yinitial

∆t
. (1)

In a computer simulation, we already know the current value of y and want to
predict the future value. So let’s solve this equation for yfinal:

yfinal ≈ yinitial + vy ∆t. (2)

Similarly, we can predict the future value of vy if we know the current value as well
as the acceleration:

vy,final ≈ vy,initial + ay ∆t. (3)

These equations are valid for any moving object. For a projectile moving near earth’s
surface without air resistance, ay = −g (taking the +y direction to be upward). In
general, ay is given by Newton’s second law,

ay =

∑
Fy

m
, (4)

where m is the object’s mass and the various forces can depend on y, vy, or both.
In a computer simulation of one-dimensional motion, the idea is to start with

the state of the particle at t = 0, then use equations 2 through 4 to calculate y and
vy at t = ∆t, then repeat the calculation for the next time interval, and the next,
and so on. Fortunately, computers don’t mind doing repetitive calculations.

But there’s one remaining issue to address before we try to program these equa-
tions into a computer. Equation 2 is ambiguous regarding which value of vy appears
on the right-hand side. Should we use the initial value, or the final value, or some
intermediate value? In the limit ∆t → 0 it wouldn’t matter, but for any nonzero

2

value of ∆t, some choices give more accurate results than others. The easiest choice
is to use the initial value of vy, since we already know this value without any further
computation. Similarly, the simplest choice in equation 3 is to use the initial value
of ay on the right-hand side.

With these choices, we can use the following Python code to simulate projectile
motion in one dimension without air resistance:

while y > 0:

ay = -g

y += vy * dt # use old vy to calculate new y

vy += ay * dt # use old ay to calculate new vy

t += dt

This simple procedure is called the Euler algorithm, after the mathematician Leonard
Euler (pronounced “oiler”). As we’ll see, it is only one of many algorithms that give
correct results in the limit ∆t→ 0.

Exercise: Write a VPython program called Projectile1 to simulate the motion
of a dropped ball moving only in the vertical dimension, using the Euler algorithm
as written in the code fragment above. Represent the ball in the 3D graphics scene
as a sphere, and make a very shallow box at y = 0 to represent the ground. Use a
light background color for eventual printing. The ball should leave a trail of dots as
it moves. Be sure to put in the necessary code to initialize the variables (including
g, putting all values in SI units), add a rate function inside the simulation loop,
and update the ball’s pos attribute during each loop iteration. Also be sure to
format your code to make it easy to read, with appropriate comments. Use a time
step (dt) of 0.1 second. Start the ball at time zero with a height of 10 meters and a
velocity of zero. Notice that I’ve written the loop to terminate when the ball is no
longer above y = 0. Test your program and make sure the animated motion looks
reasonable.

Exercise: Most of the space on your graphics canvas is wasted. To fix this, set
scene.center to half the ball’s starting height (effectively pointing the “camera”
at the middle of the trajectory), and set scene.width to 400 or less.

Exercise: Let’s focus our attention on the time when the ball hits the ground, and
on the final velocity upon impact. To see the numerical values of these quantities,
add the following line to the end of your program:

print("Ball lands at t =", t, "seconds, with velocity", vy, "m/s")

Here we’re passing five successive parameters to the print function: three quoted
strings that are always the same (called literal strings), and the two variables whose
values we want to see. If you look closely, you’ll notice that the print function adds
a space between successive items in the output.

3

Exercise: Are the printed values of the landing time and velocity what you would
expect? Do a short calculation in the space below to show the expected values, as
you would predict them in an introductory physics class.

Exercise: The time and velocity printed by your program do not apply at the
instant when the ball reaches y = 0, because that instant occurs somewhere in the
middle of the final time interval. Add some code after the end of the while loop to
estimate the time when the ball actually reaches y = 0. (Hint: Use the final values
of y and vy to make your estimate. The improved time estimate still won’t be exact,
but it will be much more accurate than what your program has been printing so
far.) Have the program print out the improved value of t instead, as well as an
improved estimate of the velocity at this time. Write your new code and your new
results in the space below. Please have your instructor check your answer to this
exercise before you go on to the next.

Exercise: The inaccuracy caused by the nonzero size of dt is called truncation
error. You can reduce the size of the truncation error by making dt smaller. Try
it! (You’ll want to adjust the parameter of the rate function to make the program
run faster when dt is small. The slick way to do this is to make the parameter a
formula that depends on dt. You’ll also want to set the ball’s interval attribute
in a similar way, so the dot spacings are the same for any dt.) How small must dt

be to give results that are accurate to four significant figures? Justify your answer.

4

Air resistance

There’s not much point in writing a computer simulation when you can calculate
the exact answer so easily. So let’s make the problem more difficult by adding
some air resistance. At normal speeds, the force of air resistance is approximately
proportional to the square of the projectile’s velocity. This is because a faster
projectile not only collides with more air molecules per unit time, but also imparts
more momentum to each molecule it hits. So we can write the magnitude of the air
force as

|~Fair| = c|~v|2, (5)

for some constant c that will depend on the size and shape of the object and the
density of the air. The direction of the air force is always directly opposite to the
direction of ~v (at least for a symmetrical, nonspinning projectile).

Exercise: Assuming that the motion is purely in the y direction, write down a
formula for the y component of the air force, in terms of vy. Your formula should
have the correct sign for both possible signs of vy. (Hint: Use an absolute value
function.) If you have any doubt about whether you’ve found the correct formula,
have your instructor check it before you go on.

Exercise: Now modify your Projectile1 program to include air resistance. Define
a new variable called drag, equal to the coefficient c in equation 5 divided by the
ball’s mass. Then add a term for air resistance to the line that calculates ay.
Python’s absolute value function is called abs(). Run the program for the following
values of drag: 0 (to check that you get the same results as before), 0.01, 0.1,
and 1.0. Use the same initial conditions as before, with a time step small enough
to give about four significant figures. Write down the results for the time of flight
and final speed below.

Question: What are the SI units of the drag constant in your program?

5

Question: How can you tell that your program is accurate to about four significant
figures, when you no longer have an “exact” result to compare to?

Exercise: Modify your Projectile1 program to plot a graph showing the ball’s
velocity as a function of time. (By default the graph will appear above or below
the graphics canvas, and you may leave it there if you like. If you would prefer to
place the graph to the right of the canvas, you can do so by creating the graph first,
setting its attribute align="right", and immediately plotting at least one point
on the graph to make it appear before you set up the canvas.) Use the xtitle

and ytitle attributes to label both axes of the graph appropriately, including the
units of the plotted quantities. Use the interval parameter of the gdots function
to avoid plotting a dot for every loop iteration (which would be pretty slow). Run
your program again with drag equal to 1.0, and print the whole window including
your canvas and graph. Discuss the results briefly.

Exercise: When the projectile is no longer accelerating, the forces acting on it
must be in balance. Use this fact to calculate your projectile’s terminal speed by
hand, and compare to the result of your computer simulation.

A better algorithm

Today’s computers are fast enough that so far, you shouldn’t have had to wait long
for answers accurate to four signficant figures. Still, the Euler algorithm is suffi-
ciently inaccurate that you’ve needed to use pretty small values of dt, making the
calculation rather lengthy. Fortunately, it isn’t hard to improve the Euler algorithm.

6

Figure 1: The derivative of a function at the middle of an interval (point B) is a
much better approximation to the average slope (AC) than the derivative at the
beginning of the interval (point A).

Remember that the Euler algorithm uses the values of vy and ay at the beginning
of the time interval to estimate the changes in the position and velocity, respectively.
A much better approximation would be to instead use the values of vy and ay at
the middle of the time interval (see Figure 1). Unfortunately, these values are not
yet known. But even a rough estimate of these values should be better than none
at all. Here is an improved algorithm that uses such a rough estimate:

1. Use the values of vy and ay at the beginning of the interval to estimate the
position and velocity at the middle of the time interval.

2. Use the estimated position and velocity at the middle of the interval to cal-
culate an estimated acceleration at the middle of the interval.

3. Use the estimated vy and ay at the middle of the interval to calculate the
changes in y and vy over the whole interval.

This procedure is called the Euler-Richardson algorithm, also known as the second-
order Runge-Kutta algorithm.

Here is an implementation of the Euler-Richardson algorithm in Python for a
projectile moving in one dimension, without air resistance:

while y > 0:

ay = -g # ay at beginning of interval

ymid = y + vy*0.5*dt # y at middle of interval

vymid = vy + ay*0.5*dt # vy at middle of interval

aymid = -g # ay at middle of interval

y += vymid * dt

vy += aymid * dt

t += dt

7

The acceleration calculations in this example aren’t very interesting, because ay
doesn’t depend on y or vy. Still, the basic idea is to estimate y, vy, and ay in the
middle of the interval and then use these values to update y and vy. Although each
step of the Euler-Richardson algorithm requires roughly twice as much calculation
as the original Euler algorithm, it is usually many times more accurate and therefore
allows us to use a much larger time interval.

Exercise: Write down the correct modifications to the lines that calculate ay and
aymid, for a projectile falling with air resistance. (Be careful to use the correct
velocity value when calculating aymid!)

Question: One of the lines in the Euler-Richardson implementation above is not
needed, even when there’s air resistance. Which line is it, and why do you think I
included it if it isn’t needed?

Exercise: Modify your Projectile1 program to use the Euler-Richardson al-
gorithm. For a drag constant of 0.1 and the same initial conditions as before
(y = 10 m, vy = 0), how small must you now make dt to get answers accurate to
four significant figures? (You should find that dt can now be significantly larger
than before. If this isn’t what you find, there’s probably an error in your imple-
mentation of the Euler-Richardson algorithm.)

Your Projectile1 program is now finished. Please make sure that it contains
plenty of comments and is well-enough formatted to be easily legible to human
readers.

Two-dimensional projectile motion

Simulating projectile motion is only slightly more difficult in two dimensions than in
one. To do so you’ll need an x variable for every y variable, and about twice as many
lines of code to initialize these variables and update them within the simulation loop.

8

Figure 2: Assuming that the drag force is always opposite to the velocity vector,
the similar triangles in this diagram can be used to express the force components
in terms of the velocity components.

To calculate the x and y components of the drag force, it’s helpful to draw a picture
(see Figure 2).

Exercise: Finish labeling Figure 2, and use it to derive formulas for the x and y
components of the drag force, written in terms of vx and vy. The magnitude of the
drag force is again given by equation 5. (Hint: This is not an easy exercise if you’ve
never done this sort of thing before. Do not simply guess the answers! You should
find that the correct formula for Fx involves both vx and vy. Have your instructor
check your answers before you go on.)

Exercise: In the space below, write the code to implement the Euler-Richardson
algorithm for the motion of a projectile in two dimensions, with air resistance. The
Python function for taking a square root is sqrt(). To square a quantity you can
either just multiply it by itself, or use the Python exponentiation operator, **.
As mentioned above, for every line that calculates a y component, you’ll need a
corresponding line for the x component. Think carefully about the correct order
of these lines, remembering that to calculate the acceleration at the middle of the
interval, you need to know both vx and vy at the middle.

9

Exercise: Create a new VPython program called Projectile2 to simulate pro-
jectile motion in two dimensions, for the specific case of a ball launched from the
origin at a given initial speed and angle that are set near the top of the program.
Again use a sphere to represent the ball, leaving a trail as it moves, and use a very
shallow box to represent the ground. Allow for the ball to travel as far as about 150
meters in the x direction before it lands, sizing the box and setting scene.center

appropriately. Set the background to a light color for eventual printing. Use the
Euler-Richardson algorithm, with a time step of 0.01 s. Run your program and
check that everything seems to be working.

Exercise: Add code to your program to calculate and display the landing time,
the value of x at this time (that is, the range of the projectile), and the projec-
tile’s maximum height. Use interpolation for the first two quantities, as you did
in Projectile1. For the maximum height, you’ll need to test during each loop
iteration whether the current height is more than the previous maximum. To do
this you can use an if statement, whose syntax is similar to that of a while loop:

if y > ymax:

ymax = y

Use print functions to display all three of your calculated results, along with the
initial speed and angle, and the drag constant.

Exercise: Check that your Projectile2 program gives the expected results when
there is no air resistance, and briefly summarize this check.

Exercise: For the rest of this project there is no need to display the numerical
results to so many decimal places. To round these quantities appropriately, you can
use the following (admittedly arcane) syntax:

"Maximum height = {:.2f}".format(ymax)

Here we’re creating a string object (in quotes) and then calling its associated format

function with the parameter ymax. This function replaces the curly braces, and
what’s between them, with the value of ymax, rounded to two decimal places. (To
change this to three decimal places, you would just change .2f to .3f; the f stands
for floating-point format.) Make the needed changes to display all three of the
calculated results to just two decimal places.

10

A graphical user interface

Are you tired of having to edit your code and rerun your programs every time
you want to change one of the constants or initial conditions? A more convenient
approach—at least if you’ll be running a simulation more than a handful of times—
is to create a graphical user interface, or GUI, that lets you adjust these numbers
and repeat the simulation while the program is running.

Creating a graphical user interface for a computer program can be a lot of work.
You need to plan out exactly how broad a set of options to offer the user who
runs your program, then design a set of graphical controls (buttons, sliders, etc.) to
control those options, and finally write the code to display the controls and accept
input from them. Fortunately, VPython makes these tasks about as easy as possible.
The documentation refers to its GUI controls as widgets, and in this project we’ll
use three of them: the button, the slider, and the dynamic text widget.

Here’s some minimal code to create a button that merely displays a message:

def launch(b):

print("Launching the projectile!")

button(text="Launch!", bind=launch)

The first two lines define a new function called launch, and the last line creates a
button that is bound to this function, so the function is called whenever the button is
pressed. (Don’t worry about the parameter b of this function; although a parameter
name is required, there is no need to make use of it in this project.)

Exercise: Put this code into your Projectile2 program and try it.

You might wonder how to control where the button appears. VPython doesn’t
give you nearly as much control over the placement as would an environment for
developing commercial software. By default, new widgets are placed immediately
below the scene canvas, in what’s called its caption. There are a few other placement
options that you can read about on the Widgets documentation page if you like.

More importantly, your Launch! button doesn’t yet do what we want, namely
launch the projectile! In a local installation of VPython you could make it do so
by moving all your initialization and simulation code into the definition of the new
launch function. But the GlowScript environment doesn’t allow a rate function to
appear inside a bound function, so we have to do it a different way. Although it’s
more difficult in the present context, the following program structure will also be
more useful in future projects.

The basic idea is to turn your while loop into an infinite loop that runs forever,
but to execute most of the code inside the loop only if the simulation is supposed
to be “running”. The code on the following page provides a basic outline.

11

while True:

rate(100)

if running:

carry out an Euler-Richardson step

if y < 0:

running = False

print out results

The big new idea here is the introduction of a boolean variable (named after logician
George Boole) that I’ve chosen to call running, whose value is always one of the
two boolean constants True or False (note that these are capitalized in Python).
When running is False, we merely call the rate function to delay a bit before the
next loop iteration. When running is True, we carry out a time-integration step
(using the code you’ve already written, omitted here for brevity), then test whether
the ball has dropped below ground level, in which case we set running = False

and print out the results.

Exercise: Insert this new code into your Projectile2 program, replacing the
two comments with the code you’ve already written to carry out the time step
and print the results. Also add a line near the top of the program to initially set
running = True. Test the program to verify that it works exactly as before.

Exercise: You’re now ready to activate your Launch! button. To do so, insert the
following two lines into the indented body of the launch function definition:

global running

running = True

Also change your initialization line near the top of the program to set running =

False instead of True. Test your program again and verify that the projectile is
not launched until you press the button.

Exercise: To allow multiple launches, simply move all of the relevant code to
initialize the variables into your launch function. You’ll also need to add their
names, separated by commas, to the global statement. Leave the initializations
of dt and g outside the function definition, since those values never change. Check
that you can now launch the projectile repeatedly.

Before going on, let me pause to explain that global statement. In Python, any
variable that you change inside a function definition is local by default, meaning that
it exists only within the function definition and not outside it. In longer programs
this behavior is a very good thing, because it frees you, when you’re writing a
function definition, from having to worry about which variable names have already
been used elsewhere in the program. But this means that when you do want to
change a global variable (that is, one that belongs to the larger program), you need
to “declare” it as global inside your function. (JavaScript, by contrast, has the

12

opposite behavior, making all variables global by default and forcing you to declare
them with a var statement if you want them to be local to a particular function.)
Notice that you need to use global only if your function is changing the variable;
you don’t need it just to “read” the value of a variable. And for technical reasons,
this means that you don’t need to declare graphics objects as global variables just
to change their attributes.

Now let’s add some controls to let you vary the launch conditions. The best way
to adjust a numerical parameter is usually with a slider control. Here is how you
can add one to adjust the launch angle:

def adjustAngle(s):

pass # function does nothing for now

scene.append_to_caption("\n\n")

angleSlider = slider(left=10, min=0, max=90, step=1, value=45,

bind=adjustAngle)

The slider function creates the slider, and most of its parameters indicate which
numerical values to associate with the allowed slider positions. The value parameter
is set to an initial value (here intended to be 45 degrees), but will change when
you actually adjust the slider. The left parameter and the append_to_caption

function on the previous line merely insert some space around the slider in the
window layout (“\n” is the code for “new line”). The bind parameter, as before,
binds a function to this control; that function (adjustAngle) will be called whenever
you adjust the slider. (Again, don’t worry about the unused parameter that I’ve
called s.) For now I’ve used Python’s pass statement to make the function do
nothing.

Exercise: Put this code into your program, and check that the slider appears
underneath the Launch button. Then modify the code that sets the ball’s initial
launch velocity so it uses angleSlider.value instead of whatever angle you were
giving it before. You should now be able to launch multiple projectiles at varying
angles. Try it!

Exercise: The only problem now is that you can’t tell exactly what angle the slider
is set to—at least not until you actually click Launch! and see the output of your
print function. To give the slider a numerical display, add the following code right
after the line that creates the slider:

scene.append_to_caption(" Angle = ")

angleSliderReadout = wtext(text="45 degrees")

Then replace the pass statement in the adjustAngle function with:

angleSliderReadout.text = angleSlider.value + " degrees"

13

Verify that the slider’s numerical readout now works as it should.

Exercise: Add two more sliders, with numerical readouts, to control the ball’s
initial speed and the drag constant. Let the launch speed range from 0 to 50 m/s
in increments of 1 m/s, and let the drag constant range from 0 to 1.0 in increments
of 0.005 (in SI units). Test these sliders to make sure they work as they should.

Exercise: Add a second button (on the same caption line as the Launch! but-
ton) to clear away the trails from previous launches and start over. To do this,
the bound function should set the ball’s position back to the origin and then call
the ball’s clear_trail function (with no parameters). This button finishes your
Projectile2 program, so look over everything and make any final tweaks to the
graphics, the GUI elements, the code, and the comments before turning it in.

Exercise: Run your Projectile2 program, experimenting with various values of
the drag coefficient, launch speed, and launch angle. For a drag coefficient of 0.1
and a launch speed of 25 m/s, what launch angle gives the maximum range? Record
your data below and explain why you would expect the optimum angle to be less
when there is air resistance. Also make a printout of your program window, showing
the trails and the numerical results from three (or more) launches with significantly
different settings.

Exercise: The maximum speed of a batted baseball is about 110 mph, or about
50 m/s. At this speed, the ball’s drag coefficient (as defined in your program)
is approximately 0.005 m−1. Using your program with these inputs, estimate the
maximum range of a batted baseball, and the angle at which the maximum range
is attained. Write down and justify your results below. Is your answer reasonable,
compared to the typical distance of an outfield fence from home plate (about 350–
400 feet)? For the same initial speed and angle, how far would the baseball go
without air resistance?

14

Question: Out of all the coding tasks and exercises you did in this project, which
was the most difficult and why?

Question: Briefly discuss how you and your lab partner worked together on this
project. Did one or the other of you find it easier to do the coding, or to under-
stand the physics? Did you find enough time to do all your work together, or did
you do some work separately? Please include an estimate of your own percentage
contribution to this project (ideally 50%, but unlikely to be exactly 50%; please be
as honest about this as you can).

Congratulations—you’re now finished with this project! Please turn in these
instruction pages, with answers written in the spaces provided, as your lab report.
Be sure to attach your two printouts of the Projectile1 and Projectile2 program
results. Turn in your code as before, either sending it by email or putting it into a
public GlowScript folder and writing the folder URL below.

