
Physics 2300 Name
Spring 2018

Lab partner

Project 1: Making Shapes

Saying hello

The first goal in learning any new computer programming environment is always the
same: Write and run a program to print (or display) a brief message, traditionally
“Hello, world!”

Why bother with such a boring program? Because the steps required to write
and run even the most trivial program can be quite intricate. For some programming
environments you may need to install software, configure the software to work with
your computer’s directory system, and then learn to use various software tools
for editing, compiling, linking, and launching your program. Then you need to
learn enough about the programming language, and about the associated software
libraries for producing the type of output you want, in order to type in the code
needed to produce that output. The number of things that can go wrong during
this whole process is enormous.

Fortunately, the GlowScript-VPython system is one of the easiest of all possible
programming environments for getting started. There are still some things that can
go wrong, but even if they do, I don’t think they’ll take long to resolve. Here are
the steps:

1. Launch a web browser (Google Chrome is recommended, but most others
should work), and go to the site glowscript.org.

2. Sign in with a Google account. Your WSU email credentials should work, or
you can use a personal Google account.

3. Follow the link where it says “your programs are here.”

4. Click on the “Create New Program” link.

5. In the dialog box that appears, type the title “MakingShapes”, then click the
“Create” button.

6. You will now see an editing space that is blank except for the line “GlowScript
2.6 VPython” (possibly with a different version number). Click in the white
space below that line and type the following, verbatim:

print("Hello, GlowScript-VPython!")

1

(Actually you can put almost any message you like between the quotes.)

7. Then click the “Run this program” link at the top of the page. Your editing
space should then vanish, replaced by a new text area with the words “Hello,
GlowScript-VPython!” (or whatever message you put in your code).

Well, did it work? If so, congratulations! You’re up and running. If not, don’t
worry; if you can’t resolve the problem yourself in a few minutes, your instructor, or
perhaps a classmate, can probably help. (The most likely stumbling block is with
the Google account sign-in. If that went smoothly but your program doesn’t work,
be sure to double-check your spelling, capitalization, and punctuation.)

GlowScript-VPython is a cloud-based system that stores your programs on
Google’s servers. The interface is bare-bones, and I hope you won’t have any trouble
seeing how to create new programs, copy, rename, and delete them, and organize
them into folders. If you have any questions about these procedures, be sure to ask
your instructor.

Now let’s look at your two-line program in a bit of detail. Click the “Edit this
program” link in order to see your code again. The first line, which you don’t even
need to type, tells the GlowScript system what language (VPython) and version
(2.6) you want to use. This line is required, and for this course you should always
leave it alone.

The next line, which you typed, “calls the print function and passes it a string
of text characters.” Sorry about the jargon words call, function, pass, and string. If
you’re an experienced programmer then these words are probably already in your
vocabulary; if this is your first time writing code, then you’ll need to pay attention
to these words and practice using them correctly. For now, please notice two aspects
of Python syntax:

• The string of text is enclosed in double-quote marks. Single-quote marks
would also have worked, as long as the beginning and ending quotes match.

• The information passed to the function (its parameter) is enclosed in paren-
theses. In this case there is a single parameter (a string), but we’ll soon see
examples of functions that take multiple parameters, separated by commas.

The idea of a function, by the way, is to hide the details of what’s happening
from your code (or at least from this portion of it), so all you need to know is the
function name, what parameter(s) to pass, and what the function does—but not
how it works. The print function has to do an awful lot to make those words
appear on your screen, but you needn’t know the details.

2

Your first shape

Next, on a new line below your print instruction, type the following simple instruc-
tion:

box()

Here you’re calling a function called box, and passing it no parameters at all (but
notice that the parentheses are still required). Run the program again, and you
should see a black rectangular area (called a canvas) containing a light gray square
(the box). Again, this function is doing a great deal of work, but you needn’t worry
about how.

The box that you see lives in an imaginary three-dimensional space, but you’re
viewing it from one side, at relatively close range. To change the perspective, you
can do two things:

• Rotate: Press the right mouse button and drag one way or another, or, if
you don’t have a right mouse button, press the control key and drag using
your mouse or trackpad.

• Zoom: Use the scroll wheel on your mouse, or, if there isn’t one, press the alt
or option key and drag using your mouse or trackpad. (On an Apple trackpad
you can also drag using two fingers.)

I hope you’re impressed by how hard that little box function is working!
You can change the attributes of your box by passing some parameters to the

box function. Try this:

box(pos=vector(1,0,0), size=vector(.5,.3,.2), color=color.red)

Here you’re providing three parameters, separated by commas, and you’re identify-
ing them by their names (a neat feature of Python), which means you can provide
them in any order. The pos parameter specifies the position of the center of the
box; the size parameter specifies its dimensions; and the color parameter is self-
explanatory. In the first two cases, the parameter values are three-dimensional
vectors, which you create using the vector function. This function in turn takes
three parameters, x, y, and z, which you needn’t name as long as you provide them
in that order. Initially (before you rotate the scene), the x direction points to the
right; the y direction points up; and the z direction points directly outward, toward
you (or toward the “camera”).

To learn more about colors, click the Help link at the upper-right corner of
the window. (I suggest opening the help page in a new browser window or tab.)
Then, from the second drop-down menu in the left sidebar, choose “Color/Opacity”.
There you’ll find a list of pre-defined colors, and also see how you can use the vector
function to create arbitrary colors.

3

Exercise: Through trial and error if necessary, figure out how to change the color
of your box to purple. Do this in your program code, and write down how you did
it here:

Exercise: Create at least two more boxes, so you’ll have a total of at least three,
each with different positions, sizes, and colors. Keep their positions within the range
−5 to 5 in each dimension, and keep their sizes small enough to leave plenty of room
for more shapes within that range.

More shapes

VPython provides functions for creating quite a variety of shapes, but in this course
you’ll need just two others: spheres and cylinders. Try this instruction to create a
sphere:

sphere(radius=0.25)

The sphere function can also accept the pos and color parameters, so use those
now to change the defaults according to your taste. Don’t forget to separate the
parameters by commas!

Exercise: What happens if you omit the radius parameter when you call the
sphere function?

Exercise: Create a second sphere, again within the range −5 to 5 in each dimen-
sion, with a (reasonably small) radius and color of your choosing.

Now try this instruction to create a cylinder:

cylinder(axis=vector(0,1.5,0))

Here the axis parameter is a displacement vector that takes you from one end of the
cylinder to the other. You can also provide the pos, radius, and color parameters,
so please put in all three at this time, to change the defaults to suit your taste.

If you check carefully, you’ll discover that the pos of a cylinder is located at one
of its ends, rather than in its center as for a sphere or a box.

Exercise: It would be helpful if your 3D space had some coordinate axes, right?
So create some now, in the form of very skinny cylinders running from −5 to 5 in
each of the three dimensions. Color them light gray.

4

Errors and debugging

You may have already had to deal with some error messages, alerting you to typo-
graphical errors (sometimes called bugs) in your program. Now let’s take a deliber-
ate look at one of these messages, and what you should do about it.

Exercise: Remove one of the commas that separate the parameters in one of your
box, sphere, or cylinder function calls. Then try to run your program, and write
down the error message that appears (or at least the beginning of it, including the
line number). Click the “Edit this program” link to go back to your code. Is the
line number in the message the same as the line in which you introduced the error?

In my own experience, the line number is usually the most useful part of an
error message. The rest of the message is often unhelpful, or at least unnecessary.
But even the line number can be off by a little, so when you’re looking for the error
in the code, be sure to look at the surrounding lines as well.

Besides missing commas, some other common types of Python errors are other
incorrect punctuation, incorrect spelling, and inconsistent capitalization (since all
words in Python are case-sensitive).

Variables and arithmetic

The various shape attributes that you’ve been setting—pos, radius, color, and so
on—are examples of what we call variables. A variable, in computer programming,
is a named location in the computer’s memory in which some information can be
stored. The equals sign tells the computer to store the information on its right in
the variable whose name is on its left.

Besides these pre-named variables, you can create your own. The next exercise
demonstrates this.

Exercise: To keep track of your shapes, you can give them variable names. Name
your x axis by inserting “xaxis = ” at the beginning of the line, like this:

xaxis = cylinder(. . .)

Similarly, name the other two axes yaxis and zaxis.

These variable names make your code easier to read, even if you never use them
in any other way. But here’s a way to make use of one of them:

5

Exercise: Your three axes probably all have the same radius and the same color.
So instead of writing out the same specifications three times, put them into only
the instruction that creates the x axis, and then in the other two, say this:

radius=xaxis.radius, color=xaxis.color

Now if you decide to change the radius or the color, you’ll need to make the change
in only one place (try it!).

Exercise: Create a dumbbell shape, by combining a cylinder with two spheres.
Make the cylinder first, with any suitable attributes, naming it bar. Then, when
you create the two spheres, simply set the position of one of them to bar.pos and
the position of the other to bar.pos + bar.axis. This is an example of how you
can use the + sign to do vector addition. Also set the radius of each sphere to
bar.radius*3, and set the color of each sphere to bar.color.

The previous exercise included your first examples of addition and multiplica-
tion. Python also provides the - operator for subtraction and the / operator for
division, as well as other operators that you’ll learn later. You’ll need to do some
subtraction in the next exercise.

Exercise: Create a small table (the furniture kind) in your simulated 3D space,
consisting of a box for the top plus four cylinders for the legs, oriented with the
y direction up. For convenience and flexibility, start by setting the values of some
variables:

tablex = 2.5

tabley = -2

tablez = -1

Don’t feel obligated to use the same numbers as these; I’m just suggesting some
variable names and showing how to assign values to them. Similarly, introduce
and set the variables tableLength, tableWidth, tableHeight, legRadius, and
tableColor. Instead of providing an explicit number for legRadius, use multipli-
cation or division to make it a small fraction of tableWidth. Then create the box
that will be the table’s top, centering it at vector(tablex, tabley, tablez) and
setting its length and width to the corresponding variables. The height of the ta-
ble’s top, however, should be only a small fraction of its total height. (If the line of
code to create the tabletop gets too long, you can break it into two; for readability
you should then indent the second line by a couple of tabs.) Finally, create the leg
cylinders, using arithmetic to position them near the table’s four corners no matter
what the values of all your variables are set to. Try changing some of these values
to make sure your table still looks like a table for any reasonable values.

Exercise: Here’s something easier. The “canvas” in which your shapes appear
has its own variable name: scene. This variable, like color and xaxis, is a so-
called object with its own attributes. (An attribute is essentially a sub-variable that

6

is associated with some larger, more inclusive variable.) One of the attributes of
scene is the background color, which is black by default. Change it to white by
inserting this line:

scene.background = color.white

Check that this works, then change the background color to a pale sky blue, or to
some other very light color that won’t use a lot of toner when you later print your
scene. Also set the variable scene.range to 5; this will set the initial zoom level to
put y = 5 at the top edge of the canvas and y = −5 at the bottom edge.

Comments

By now your program is getting long enough to require some organization—not for
the computer’s sake, but for your own as you look at the code.

Exercise: Divide your lines of code into logical groups, separated by blank lines.
Then, at the top of each group, insert an introductory comment such as

Create a table out of a box and four cylinders:

A comment in Python begins with the # character and continues until the end
of the line. To create a multi-line comment, you need to put the # character at the
beginning of each line. The computer completely ignores comments when it runs
your program.

Exercise: Put another comment at the top of your program, right after the line
“GlowScript 2.6 VPython”, to indicate the name of your program, your own name,
and the date when you created it, and to give a one-sentence description of what it
does. (You should include a similar comment at the top of every program that you
write.)

Animation

In this course you’ll need to depict not just static objects but also physical processes
that play out in time. That calls for animation, and one of the advantages of
VPython is that it makes animation extremely easy.

Exercise: Create a small box near x = −5 and call it movingBox. Then insert the
following code and see what it does:

Move a box across the scene in a straight line:

while movingBox.pos.x < 5:

rate(50)

movingBox.pos.x += 0.05

7

Be sure to indent the last two lines; you can use the tab key for this.

If this code works, you should see the box move smoothly across the scene,
stopping when it reaches x = 5. The code that accomplishes this magic is called a
loop, which in general means a block of code that the computer executes repeatedly.
Some languages use curly braces to denote which lines of code are part of the loop,
but in Python this is indicated by indentation. This particular type of loop begins
with the special word while, followed by the condition that must be true as long as
the loop continues, and then followed by a colon. The condition can involve any of
the comparison operators <, >, <=, >=, == (for “is equal to”), and != (“is not equal
to”), as well as the “boolean” operators and, or, and not.

The two indented lines themselves also require explanation. The first of them,
rate(50), tells the computer how fast to try to execute the loop—in this case, 50
times per second. The next line contains the two-character operator +=, which tells
the computer to add the quantity on the right onto the variable on the left. Saying
x += 42 is completely equivalent to saying x = x + 42. (When appropriate, you
can similarly say -=, *=, and /=.)

Exercise: Change the parameter 50 in the rate function to some other number,
and make sure this change has the expected effect.

Exercise: Add a line or two to your code to make the box move along a diagonal,
rather than directly from left to right. Make sure the box doesn’t move too far in
some other direction before the motion stops.

Exercise: Add code to your program to create a small sphere and then move that
sphere at a steady speed around a circle in the xy plane, centered at the origin. Use
a variable called theta for the angle around the circle, and set this variable equal
to zero before your while loop begins. Also use a variable called r for the circle’s
radius. Then you can calculate the x coordinate of your sphere using an instruction
like

movingSphere.pos.x = r * cos(theta)

and similarly use the sin() function to calculate the y coordinate. As in most
computer languages, the trigonometric functions assume that the parameter passed
to them is in radians. Keep this in mind when deciding how much to change theta
during each loop iteration, and in deciding what condition to use in the while

statement.

Exercise: Look in the VPython documentation (via the Help link, if you don’t
already have it open) for instructions on how to “attach a trail” to an object as it
moves. Attach a trail of points to your moving sphere, using the interval attribute
to space them a little farther apart than the default.

Exercise: Remember the print function? Insert a couple more calls to it in your
code, to print out suitable messages when each of your animation loops (one for the
box, one for the sphere) has finished.

8

Graphing

Often in science we want to visualize a phenomenon not in physical space but instead
in a “space” of other variables such as time, velocity, and so on. While we could

use a 3D VPython canvas to make such an abstract graph, VPython also provides
a graph object that’s usually more suitable.

As an example, let’s graph the x and y positions of your moving sphere as
functions of “time”. Here is the code to set up the graph, with two data sets that
will be plotted as dots in different colors:

graph(width=400, height=250)

xDots = gdots(color=color.green)

yDots = gdots(color=color.magenta)

(I’ve set the width and height attributes to make the graph a little smaller than
the default, so it will fit more easily on small screens and printed pages.) After this
initial setup, you add a dot to the graph by saying something like

xDots.plot(t,x)

and similarly for yDots.

Exercise: Insert the code to set up a graph just before your existing code to move
the sphere around in a circle. Also, in that existing code, insert code to create a
variable t to represent time, initially equal to zero and increasing by 1 during each
loop iteration. Then, also inside the while loop, insert the lines that plot each (t, x)
and (t, y) pair, in green and magenta, respectively. Run the program to make sure
it all works.

Exercise: Look up the other attributes of the graph object in the VPython docu-
mentation, then set the graph’s background color to white, label both axes appro-
priately, and give it a suitable title, centered above it. Notice in the documentation
that you can also specify the ranges of values for the graph to show—but for your
current graph, leave these unspecified to enable “auto-scaling”.

Finishing up

Congratulations! You now know how to use GlowScript VPython to do basic arith-
metic, draw and animate shapes, create graphs, and produce text output. You’ll
get plenty of practice with all of these tasks in later projects. For now, just answer
a few more questions and then you’ll be finished with this assignment.

Exercise: At the top of the next page, describe one specific bug (error) that you
had to fix while working on this project, or, if you prefer, one specific point at which
you became frustrated or confused. If you can’t think of an example of either, then
browse the VPython documentation and describe one interesting feature that you
haven’t used in this project.

9

Exercise: When you type your code in the GlowScript editing window, it auto-
matically tries to use colors to distinguish different categories of words and symbols.
List these colors below and describe what each seems to be for, keeping in mind
that the process is rather buggy so some of the coloring can be inconsistent.

Exercise: List the names of all the VPython functions you used in this project.
(Hint: Look in your code for parentheses.)

Before turning in this assignment, please look over your program and make sure
it is well organized and easy to read. The code should be divided up into logically
distinct groups, separated by blank lines, each introduced by a helpful comment.

Finally, run your program one last time and use your browser’s print command to
print the window contents, showing your 3D scene (with a light-colored background!)
with the graph and text output below it. Make sure that all of this fits on a single
printed page. Staple that page to the back of this instruction packet and turn it in
to your instructor.

To turn in your actual code, you have two choices. The easier choice is to copy
it into a public GlowScript folder and write that folder’s URL (web address) below,
so your instructor can view and run it. However, if for privacy reasons you do not
wish to put your program into a public folder, you may also carefully copy and paste
your code into an email message sent to your instructor, or copy and paste it into a
plain text file and then email that file as an attachment (use the file extension .txt
or .py). Please use “Physics 2300 Project 1” as the subject line of your email.

10

