
Physics 2300 Name
Spring 2018

Lab partner

Project 5: Molecular Dynamics

If a computer can model three mutually interacting objects, why not model more
than three? As you’ll soon see, there is little additional difficulty in coding a simu-
lation of arbitrarily many interacting particles. Furthermore, today’s personal com-
puters are fast enough to simulate the motion of hundreds of particles “while you
wait,” and to animate this motion at reasonable frame rates while the calculations
are being performed.

The main difficulty in designing a many-particle simulation is not in the simu-
lation itself but rather in deciding what we want to learn from it. Predicting the
individual trajectories of a hundred particles is usually impractical because these
trajectories are chaotic. Even if we could make such predictions, the sheer amount
of data would leave us bewildered. Instead, we’ll want to focus on higher-level
patterns and statistical data.

In this project we’ll also shift our attention from the very large to the very
small—from planets to molecules. The main goal will be to learn how the familiar
properties of matter arise from motions at the molecular scale.

Molecular forces

Under ordinary circumstances, molecules are electrically neutral. This implies that
the forces between them are negligible when they’re far apart. However, when
two molecules approach each other, the distortion of their electron clouds usually
produces a weak attractive force. When they get too close, the force becomes
strongly repulsive (see Figure 1). For all but the simplest molecules, these forces also
depend on the molecules’ shapes and orientations. In this project we’ll ignore such
complications and just simulate the behavior of spherically symmetric molecules
such as noble gas atoms.

Figure 1: When two molecules are near each other, there is a weak attractive force
between them. When they get too close, the force becomes strongly repulsive.

2

Even for the simplest molecules, there is no simple, exact formula for the in-
termolecular force. Fortunately, we don’t really need an exact formula; any ap-
proximate formula with the right general behavior will give us useful results. The
formula that is most commonly used to model the interaction between noble gas
atoms is the Lennard-Jones potential,

U(r) = 4ε

[(r0
r

)12
−

(r0
r

)6]
. (1)

This is a formula for the potential energy, U(r), in terms of the distance r between
the centers of the two interacting molecules. The constants r0 and ε represent the
approximate molecular diameter and the overall strength of the interaction. The
numerical values of these constants will depend on the specific type of molecule;
the table below gives some values obtained by fitting the Lennard-Jones model to
experimental data for noble gases at low densities.

r0 (Å) ε (eV)

helium 2.65 0.00057
neon 2.76 0.00315
argon 3.44 0.0105

Figure 2 shows a graph of the Lennard-Jones potential. When r � r0, the
energy is negative and approaches zero in proportion to 1/r6. This is the correct
behavior of the so-called van der Waals force, and can be derived from quantum

Figure 2: The Lennard-Jones potential energy function (equation 1).

3

theory. When r < r0 the energy becomes positive, rising very rapidly to give a
strong repulsive force as r decreases. John Lennard-Jones suggested using a power
law to model this repulsive behavior, and nowadays we normally take the power
to be −12 for computational convenience. We’ll stick with this choice because no
simple improvement to it would give significantly more accurate results.

Exercise: Find the value of r (in terms of r0) at which the Lennard-Jones function
reaches its minimum, and show that its value at that point is −ε.

Exercise: Consider two molecules, located at (x1, y1) and (x2, y2), interacting
via the Lennard-Jones force. Find formulas for the x and y components of the
force acting on each molecule, in terms of their coordinates and their separation
distance r. (Hint: First calculate the r component of the force, which is given by
the general formula Fr = −dU/dr. Then draw a picture, and be careful with minus
signs.)

4

Units

Once again we can make our lives easier by choosing units that are natural to the
system being modeled. For a collection of identical molecules interacting via the
Lennard-Jones force, a natural system of units would set r0, ε, and the molecular
mass (m) all equal to 1. These three constants then become our units of distance,
energy, and mass. Units for other mechanical quantities such as time and velocity
are implicitly defined in terms of these.

Exercise: What combination of the constants r0, ε, and m has units of time?

Exercise: If we are modeling argon atoms using natural units, what is the duration
of one natural unit of time, expressed in seconds? (Use the values of r0 and ε from
the table above. Note that the r0 values are given in Ångström units (Å), where
1 Å= 10−10 m, while the ε values are given in electron-volts (eV), where 1 eV =
1.60 × 10−19 J.)

Exercise: Suppose that an argon atom has a speed of 1, expressed in natural units.
What is its speed in meters per second?

Another quantity that we’ll eventually want to determine for our collection of
molecules is temperature. To define a natural unit of temperature we can set Boltz-
mann’s constant kB (which is essentially a conversion factor between molecular
energy and temperature) equal to 1. In conventional units,

kB = 1.38 × 10−23 J/K = 8.62 × 10−5 eV/K. (2)

I’ll explain later how to actually determine the temperature of a system from the
speeds of the particles.

5

Exercise: Suppose that a collection of argon atoms has a temperature of 1 in
natural units. What is its temperature in kelvin? (For comparison, the boiling
point of argon at atmospheric pressure is 87 K.)

Exercise: Repeat the previous exercise for helium, and discuss the result briefly.

Lists

To simulate the motion of just two noble gas atoms, you could simply modify your
Orbit2 program to use the Lennard-Jones force law instead of Newton’s law of
gravity. Recall that in that program you used the variables x1, y1, vx1, and so
on for the first planet, and x2, y2, vx2, and so on for the second planet. As you
can imagine, this approach becomes awkward if you add more planets (or atoms).
Fortunately, Python (like nearly all programming languages) provides a convenient
mechanism for working with a collection of related variables: a list (also sometimes
called an array), which you refer to by a single variable name such as x or vx.

The elements of a Python list are numbered from 0 up to some maximum value.
To access a particular element, you put that element’s number in square brackets
after the name of the list:

x[14] = 4.2

fib[2] = fib[0] + fib[1]

The number in brackets is called an index. Because the index of a list’s first element
is zero, the index of the last element is always one less than the size of the list. For
example, if x is a list of 100 numbers, then you access those numbers by typing
x[0], x[1], and so on up to x[99]. (This convention is common to Python and
all the C-derived languages, including Java and JavaScript. But there are other
languages, such as Fortran and Mathematica, in which list indices start at 1 rather
than 0.)

This bracket-index notation would be no improvement at all if the quantity in
brackets always had to be a literal number. But it doesn’t: You’re allowed to put

6

any integer-valued variable, or any integer-valued expression, inside the brackets.
So, for instance, if x is a list of 100 elements, you could add up all the elements
with this while loop:

sum = 0

i = 0

while i < 100:

sum += x[i]

i += 1

Notice that the condition on the loop is a strict <, not <=, because x[100] doesn’t
exist.

Although there’s nothing wrong with the preceding while loop, Python (like
most programming languages) provides a more compact way of executing a block
of code a fixed number of times: a for loop. To add up the elements of the x list
with a for loop, you would type the following:

sum = 0

for i in range(100):

sum += x[i]

This code also uses Python’s range function, which in this case effectively produces
a list of the integers 0 through 99 (not including 100!). Both the range function
and the for loop can be used in other ways, and are a bit difficult to explain in
general, but for looping over the elements of a list, this example is all you need to
know. (If you’ve used for loops in other languages, you may need to revise some of
your expectations about how you can and cannot use a for loop in Python. I prefer
to use for to loop over list elements, and in other situations where the number
of iterations is explicitly known in advance; for any other looping situation I use
while.)

And how do you create a Python list in the first place? If the list is sufficiently
short, you can create it by providing literal values, in brackets, separated by commas:

daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

Often, though, we want to initialize a list in a more automated way, and awkwardly,
the best method in that case depends on what Python environment you’re using.
The most robust method, I think, is to first create an empty list and then write a
loop to add elements to it using the list’s append function:

x = []

for i in range(100):

x.append(0)

In this example I’ve given every list element an initial value of 0, but you could pass
any other initial value (possibly depending on i) to the append function.

7

The program design

You’re nearly ready to start writing a molecular dynamics simulation program. But
there are several decisions to make before you can actually start coding, and to save
time I’ve made some of these decisions for you.

First decision: You’ll simulate a collection of noble gas atoms in two dimensions,
not three. A 3D simulation would be only a tiny bit harder to code in GlowScript-
VPython, and you can certainly try it later if you like, but in 3D it’s hard to see
what’s happening, because the atoms in front tend to block your view of the ones
behind. Fortunately, there’s plenty to be learned from a 2D molecular dynamics
simulation.

Second decision: The atoms will live in a square “box” whose walls are located at
the edges of the graphics scene. So you should set scene.width and scene.height

to be the same; you can decide exactly how many pixels they should be, depending
on your screen size. The x and y coordinates inside the box will each run from 0
up to a maximum value that we’ll call w (for width), measured in natural units as
defined above (multiples of r0). You’ll set w = 20 initially, but plan on changing
the value later. Then you should set scene.center to be at the middle of the box,
and set scene.range to put the edges at 0 and w. Set scene.fov to a small value
like 0.01, to eliminate distortion as in the previous project. Disable auto-scaling,
zooming, and rotation.

Third decision: Use the variable name N for the total number of atoms; use x,
y, vx, vy, ax, and ay for the lists that will hold the atoms’ positions, velocities, and
accelerations; and use a list called ball for the sphere objects that will represent
the atoms in the graphics scene. Set N = 100 for now, but write your code to work
for any reasonable value of N.

Exercise: Create a new GlowScript program called MD, and put code in it to
implement the design decisions described above. Use a for loop to initialize all the
velocities and accelerations to zero, to initialize the positions to a common location
near the middle of the box, and to initialize each element of the ball list to a sphere

at the corresponding position, with diameter 1.0, in your favorite color. Run the
program and check that you see a single sphere at the correct position, with the
correct size. (You’ll see only one sphere, because they’re all at the same position.)

Exercise: Modify your initialization code to place all the atoms at different po-
sitions inside the box, so none of the spheres that represent them overlap. The
easiest way to do this is to arrange them in regular rows, but this is still a bit tricky
because you need to start a new row whenever the old row is full. You’ll need a
couple of variables to keep track of the x and y locations where the next atom goes
(or where the last one went). Spend some time on this task, trying out your ideas
to see if they work, but if you and your lab partner can’t come up with a working
algorithm within 15 minutes or so, be sure to ask someone else for a hint. Once you
get your code working for N = 100 and w = 20, change these values and make sure

8

it still works—but don’t worry about what happens when the box is too small to
comfortably hold all the atoms.

Coding the simulation

Now you can start adding code to put the atoms into motion.

Exercise: Create an infinite while loop for your main simulation loop. Include
a rate function with a parameter of 1000 or more, so the loop will run as fast as
possible. During each iteration this loop should call a function called singleStep

about 10 times; this is the number of calculation steps per animation frame (and
you can fine-tune it later). After all 10 calls to singleStep, update the positions of
all the ball objects using the current values of x and y. In the singleStep function
itself, put in some temporary code that merely changes x[0] and y[0] by a tiny
amount. Test your program to verify that the first atom-sphere moves as expected.

Exercise: Now remove the temporary code from singleStep and replace it with
code to implement the Verlet algorithm: First update all the positions and update
the velocities half-way, then call a separate function (call it computeAccelerations)
to compute all the new accelerations, and finally update the velocities the re-
maining half-way. Use a fixed time step of 0.02 in natural units. Create the
computeAccelerations function, but for now, just put some temporary code in
it that sets ax[0] and ay[0] to some tiny nonzero values. Again, test your pro-
gram to make sure it behaves as expected.

The computeAccelerations function must have two parts: one to calculate
the accelerations from collisions with the walls of the box, and one to calculate the
accelerations from collisions between atoms. The collisions with the walls are poten-
tially trickier, especially if we want infinitely stiff walls that produce instantaneous
changes in velocity. Instead, it’s easier to make the walls “soft,” so the force they
apply increases gradually as the edge of an atom moves farther into the wall. A
linear “spring” force works well; here is a code fragment that implements such a
force for the vertical walls:

for i in range(N):

if x[i] < 0.5:

ax[i] = wallStiffness * (0.5 - x[i])

elif x[i] > (w - 0.5):

ax[i] = wallStiffness * (w - 0.5 - x[i])

else:

ax[i] = 0.0

The Python word elif is short for “else if”; I hope this example of its use is self-
explanatory. Here wallStiffness is the “spring constant,” for which a value of 50
in natural units works pretty well. Notice that since m = 1, the force on a molecule
is the same as its acceleration.

9

Question: Why does the if statement in this code test whether x[i] is less than
0.5, rather than testing whether x[i] is less than 0?

Exercise: Insert this code, and similar code to handle collisions with the horizontal
walls, into your computeAccelerations function. To test your code, give atom 0
a nonzero velocity along some diagonal direction. You should then see this atom
bounce around inside the box.

Exercise: Now add the code to handle collisions between atoms. You’ll need a
double loop over all pairs of atoms:

for i in range(N):

for j in range(i):

compute forces between atoms i and j

and add on to the accelerations of both

To compute the force components, use the formulas you worked out at the beginning
of this project. Be careful with minus signs. Then run your code and enjoy the
show!

Question: Why does the inner loop (over j) run only from 0 up to i-1, instead of
all the way up to N-1?

Optimizing performance

Ninety percent of the time, you shouldn’t worry about writing code that will run as
fast as possible. It’s much more important to make your code simple and easy for
a human to read and understand. Your time is more valuable than the computer’s!

However, your singleStep and computeAccelerations functions fall in the
other ten percent. These functions contain loops that execute the same code thou-
sands upon thousands of times. Any effort that you spend speeding up the code
inside these loops will be rewarded in proportion.

Exercise: A typical atom in this simulation might have a speed of 1 in natural
units. How many units of time will it take this atom to cross from one side of
the box to the other (assuming no collisions along the way)? How many calls to
singleStep are required for such a one-way trip? During this same time, how
many times will the code within each of the loops in singleStep be executed? How
many times will the code within the double loop in computeAccelerations be

10

executed? How many times will your code change the position of a sphere graphics
object? (Please assume that N = 100, w = 20, and there are 10 calculation steps
per animation frame—even if you’ve changed these variables in your program. Show
your calculations and answers clearly in the space below.)

Here, then, are some tips for optimizing the performance of your MD simulation:

• Don’t spend time trying to optimize performance until after you’re sure that
your program is working correctly.

• Never worry about optimizing code that isn’t executed at least thousands of
times per second.

• Addition, subtraction, multiplication, and division are fast, but exponenti-
ation (**) and function calls (such as sqrt) are slow. Therefore, when you
compute the Lennard-Jones force, avoid all uses of exponentiation and of func-
tion calls. Since only even powers of r appear in the force, you can work with
r2 (or better, 1/r2) instead of r. To square or cube a number, just multi-
ply it by itself. Cube 1/r2 to get 1/r6, then square that to get 1/r12. Use
intermediate variables where necessary to avoid repeating calculations.

• To speed up the force calculations even more, don’t bother to compute the
force between two atoms when they’re farther than (say) 3 units apart. (Be
sure to test whether they’re too far apart in a way that avoids calculating a
square root.)

• The singleStep function makes repeated use of the combinations dt/2 and
dt2/2, where dt is the time step. So compute these quantities once and for all
in your program’s initialization section, storing them in global variables.

• A brute-force way to speed up the simulation is to increase dt. Naturally, this
will also increase the truncation error. Don’t try this until later, when you’ll
have a way of checking whether energy is approximately conserved.

11

• Graphics can often be a performance bottleneck. In GlowScript, there is
overhead associated with changing any of the attributes of a sphere (or any
other graphics object). That’s why I’ve told you to use the separate variables
x and y for the physics calculations, updating the ball.pos values only once
per animation frame. On the other hand, you still want the animation to be
reasonably smooth if possible, and typically this requires at least 20 or 30
animation frames per second. Try adjusting the number of calculation steps
per animation frame, and see what value seems to give the best results.

• If you want to monitor performance quantitatively, VPython provides a clock

function that returns the current time in seconds. Call it twice and subtract
the values to determine how much time passed in between calls. (Measuring
the performance in this way is optional for this project.)

Exercise: Spend some time optimizing the performance of your program, and
describe the effects in the space below. Which changes seem to make the most
difference? After optimizing, how large can you make N and still get reasonably
smooth animation?

GUI controls

Your program still lacks two important features: It doesn’t let you control the
simulation in any way while it is running, and it doesn’t give you any quantitative
data to describe what’s going on. You could add all sorts of features of both types.
Feel free to go beyond what the following instructions require!

Exercise: Add a button to pause and resume the simulation, as in some of your
earlier projects. Test it to make sure it works.

Exercise: Add a pair of buttons to add and remove energy to/from the system.
A good way to do this is to multiply or divide all the velocities by 1.1. Again, test
these buttons to make sure they work.

Question: Describe what happens when you continually remove energy from the
system. How do the atoms arrange themselves? (Sketch a typical arrangement.)

12

Question: Describe what happens when you continually add energy to the system.

Exercise: Play with your program some more, perhaps trying different numbers
of atoms, changing the width of the box, and using the buttons to add and remove
energy. Describe at least one other interesting phenomenon that the simulated
atoms exhibit.

Data output

What kind of data should you collect from this simulation? Energy is always a good
place to start.

Exercise: Add wtext objects to your program to display the kinetic energy, po-
tential energy, and total energy. Update these displayed values from your main
simulation loop, once for each animation frame. To compute the kinetic energy,
write a separate function that adds up the kinetic energies of all the atoms and
returns the sum. To compute the potential energy, it’s easiest to add a few lines
of code to your computeAccelerations function, using a global variable to store
the result so you can access it from your main loop. Be sure to include both the
Lennard-Jones intermolecular potential energy and the “spring” potential energy
associated with interactions with the walls (12kx

2, where k is the spring constant
and x is the amount of compression). To be absolutely precise, you should add a
small constant to the Lennard-Jones energy to compensate for the fact that you’re
setting the force to zero beyond a certain cutoff distance. After you insert all this
code, check that the energy values are reasonable. About how much does the total
energy fluctuate? (Because the energy can be positive or negative, please describe
the fluctuation as an absolute amount, not as a percentage.) What about the kinetic
and potential energies? What happens if you increase the value of dt to 0.025?

13

Another variable of interest is the temperature of the system. For a collection
of N classical particles, the equipartition theorem tells us that each energy term
that is quadratic in a coordinate or velocity (that is, each “degree of freedom”)
has an average energy of 1

2kBT , where kB is Boltzmann’s constant and T is the
temperature. In two dimensions each molecule has only two translational degrees of
freedom (vx and vy), so the average kinetic energy per molecule should be 2 · 12kBT .
Thus, in natural units where kB = 1, the temperature is precisely equal to the
average kinetic energy per molecule.

In a macroscopic system with something like 1023 particles, the average kinetic
energy per molecule wouldn’t fluctuate measurably over time. In your much smaller
system, the kinetic energy fluctuates quite a bit. To get a good value of the temper-
ature, therefore, you need to average not only over all the molecules but also over
a fairly long time period. This requires just a little more computation.

Exercise: Add code to your program to compute and display the average tempera-
ture of the system. You’ll need a variable to accumulate the sum of the temperatures
computed at many different times, and another variable to count how many values
have been added into this sum so far. Increment these variables in your main loop
(once per animation frame), then divide to get the average, and display this value
using another wtext object. You’ll need to reset both of these variables whenever
energy is added to or removed from the system. Also add a button that manually
resets the variables. Test your code and check that the results are reasonable.

In a similar way, you can also compute and display the average pressure of the
system. In two dimensions, pressure is defined as force per unit length.

Exercise: Add code to your computeAccelerations function to compute the total
outward force exerted on the walls of the box, and hence the instantaneous pressure
of the system. Store the result in a global variable, and use that variable in your
main simulation loop to compute and display the average pressure over time, just as
you did for the temperature. To check that your results are reasonable, recall that
in the limit of low density (where the distance between molecules is large compared
to their sizes), the pressure is given by the ideal gas law: P = NkBT/V . (In two
dimensions, V is actually an area.) Set N and w so the density of your system is
reasonably low, add energy until the molecules are behaving like a gas, and compare
the pressure of your system to the prediction of the ideal gas law. Show your data
and calculations below.

14

Exercise: Add one more button to your program, to print the temperature, pres-
sure, and total energy values (to the screen, separated by tabs) when it is pressed.
This will allow you to record data for later analysis. Check that it works.

Congratulations! Your molecular dynamics simulation program is finished. Now
would be a good time to clean up the code and add more comments if necessary.
Then get ready to use your program for a systematic numerical “experiment.” You’ll
be studying a system of a fixed number of atoms, in a fixed volume, over a wide
range of temperatures. The number of atoms should be at least 200, but feel free
to use more if your computer is fast enough. The volume should be large enough
to give the atoms plenty of space: at least 10 units of volume per atom. Before
you start to take data, fine-tune your program and check that everything is working
correctly.

Exercise: Setting N to at least 200 and the volume to at least 10 units per atom,
use your simulation to determine the energy and pressure as functions of temper-
ature over a wide range of temperatures, from about 0.0001 to 1.0, with enough
intermediate points to produce smooth graphs. Before recording each data point,
be sure to let the system equilibrate long enough to give reasonably stable values of
the temperature and pressure. Also please make some notes to describe the system’s
appearance at various temperatures. Copy your program’s output into a spread-
sheet and use the spreadsheet to plot graphs of E vs. T and P vs. T . Print the data
and graphs and attach them to your lab report. Discuss these graphs in as much
detail as you can, correlating them to your written notes. How does the pressure
compare to the prediction of the ideal gas law? How does the system’s heat capac-
ity behave in the various temperature regions, and how does this behavior relate to
what you learned about heat capacities in introductory physics?

