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To create a precise theory of the wave properties of particles and of measurement
probabilities, we introduce the concept of a wavefunction: a function of space that
encodes the current state of a system.

For now, we’ll assume that the “system” consists of a single particle living in a
one-dimensional universe. (We’ll generalize to more complicated systems in a few
weeks.) Then, if this were a classical particle, the “state” of the system would
consist of just two numbers: its position x and its momentum px (or velocity vx,
which you can easily calculate from the momentum). For a quantum particle, the
state instead consists of the wavefunction ψ(x), a whole infinity of numbers (one
for each x). Quantum states are vastly more complicated, and interesting, than
classical states.

An example wavefunction

For example, if we draw the x axis across the two-slit interference pattern illustrated
in the previous lesson (and ignore the other two dimensions of space), then the
wavefunction of each particle, just before it hits the detection screen, might look
something like this:

This wavefunction has five “bumps,” corresponding to the five bright lines in the
interference pattern. The dark lines in the pattern are at the locations where the
wavefunction is zero. More precisely, the brightness of the interference pattern is
proportional to the square of the wavefunction, in analogy to the way the energy in
a mechanical wave or an electromagnetic wave is proportional to the square of the
wave amplitude. Here is a plot of the square of our five-bump wavefunction:
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The height of this graph at any x is then proportional to the probability of find-
ing the particle at x, when the subsequent interaction with the detection screen
“measures” the particle’s position. After many such measurements are made on
identically prepared particles, the five-line interference pattern emerges.

Computing probabilities

Because x is a continuous variable, the actual probability of finding a particle at any
exact value of x is infinitesimal. To get around this awkwardness, we can instead
ask for the probability of finding a particle between two values of x. We obtain this
probability by calculating the corresponding area under the graph of |ψ|2. For a
generic wavefunction, you can visualize the calculation like this:

Written as an equation, the rule for calculating probabilities is to integrate:(
Probability of finding

particle between x1 and x2

)
=

∫ x2

x1

|ψ(x)|2 dx. (1)

The function |ψ(x)|2 is called the probability density, and I like to think of it as
a function whose purpose in life is to be integrated. In order for the rule to work,
however, we must impose the condition that the total probability of finding the
particle somewhere equals exactly 100%:∫ ∞

−∞
|ψ(x)|2 dx = 1. (2)

Any function ψ that satisfies this condition is said to be normalized.
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Computing averages

Sometimes, instead of calculating the probability of finding a particle at (or near)
a particular location, we want to know its average position. For example, the
average x for the five-bump wavefunction drawn above would be in the middle of
the central bump, while the average x for the function drawn above equation 1
would be somewhere to the right of the highest peak but to the left of x1. I’ll use
the symbol 〈x〉 to denote the average value of x.

To figure out the general formula for 〈x〉, it’s helpful to first imagine that the
values of x are discrete, separated by intervals of dx, so that the probability of any
particular xi is |ψ(xi)|2dx. Then the average x is just the sum of all the possible
values xi, weighted by their probabilities:

〈x〉 =
∑
i

xi |ψ(xi)|2 dx −→
∫ ∞
−∞

x |ψ(x)|2 dx, (3)

where in the last expression I’ve taken the continuum limit.
You can use a similar formula to calculate the average value of any function

of x:

〈f(x)〉 =

∫ ∞
−∞

f(x) |ψ(x)|2 dx. (4)

A common example would be to compute the average value of x2, which lets you
then calculate the standard deviation of x, denoted σx:

σx =
√
〈x2〉 − 〈x〉2. (5)

This is a rough measure of the “width” or “spread” of a wavefunction. (If you need
a review of the concept of a standard deviation, or don’t know how to derive the
preceding formula, see any statistics textbook or Griffiths, Section 1.3.)

Although we commonly say that these average values apply to a single particle
whose wavefunction is ψ, it’s important to remember that if you actually measure
the value of x, you’ll get some random value that may or may not be near the
average, 〈x〉. It’s therefore impossible to determine 〈x〉 (or 〈x2〉 or σx) with a
single measurement. To determine these quantities in the laboratory you must first
prepare many identical particles in the same wavefunction ψ, then measure all their
positions and average the results.

Localized wavefunctions

Any normalized function of x is an allowed wavefunction, which you could use to
describe a quantum particle under suitable conditions. By a function, I mean any
single-valued graph that you can draw on a set of axes—regardless of whether you
can write down a formula for it.
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Sometimes a quantum particle is localized within a very small region of space. To
describe such a particle we would use a “spiky” wavefunction that’s zero everywhere
except in that narrow region:

You could use a variety of formulas for such a function, but often the exact shape
doesn’t matter, and it’s convenient to take the limit where the spike becomes in-
finitely narrow and infinitely tall to become a Dirac delta function, denoted δ(x−x0).
Borrowing a word from German, we say that a delta function is an eigenfunction
(which could be translated “characteristic” or “particular” function) of position,
meaning that it’s a function for which the particle’s position is precisely defined. A
delta function is not a properly normalized wavefunction, however.

A wavefunction with a single narrow spike is in some ways like a classical particle.
But an equally valid wavefunction could have two narrow spikes, separated by a gap:

This wavefunction has no classical counterpart, because it describes a particle that
is (apparently) half in one location and half in another—and unambiguously not
half way in-between the two locations!

However, just because a wavefunction is mathematically allowed doesn’t mean
it’s easy to physically prepare a particle to have that wavefunction. Putting a
particle into a two-peak wavefunction is pretty easy if the particle is a photon (just
aim it at a semi-reflective mirror), and becomes progressively more difficult for
heavier particles. Here is a recent state-of-the-art image showing the probability
density of a collection of about 10,000 identically prepared rubidium atoms, each of
which was split between two distinct locations separated by about half a millimeter
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(J. H. Burke, “Improvements and Applications of a Guided-Wave Bose-Einstein
Condensate Interferometer,” PhD thesis, University of Virginia, 2010):

0.47 mm

Definite-momentum wavefunctions

Completely different from a spiky, localized wavefunction would be one that de-
scribes a particle with well-defined momentum. For this purpose, according to the
de Broglie relation, we should use a periodic function with wavelength λ = h/p.
The simplest periodic function would be a sine or a cosine, which would look like
this:

A long wavelength would correspond to a small momentum, and a short wavelength
would correspond to a large momentum. A true sinusoidal function would repeat
forever in both directions, and therefore wouldn’t be normalizable, so we should
remember in the back of our minds that the oscillations must eventually die out in
both directions. As we’ll see later, this means that no normalized wavefunction has a
perfectly well-defined momentum; a perfectly well-defined momentum is an idealized
but unphysical limiting case, just as perfectly well-defined position, described by a
delta function, is an idealized limiting case.
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But besides the issue of normalization, our sinusoidal wavefunction has two
other awkward features. First, the square of this wavefunction alternates back
and forth between some maximum value and zero, so it describes a particle whose
probability density varies periodically with location. There’s no reason a particle
can’t have such a wavefunction, but surely there must be a way to describe a particle
with well-defined momentum whose probability density is more uniform. Second,
our sinusoidal wavefunction doesn’t seem to encode the direction of the particle’s
momentum; it would apparently look the same whether px is positive or negative
(since λ can only be positive).

The way to fix both of these defects is to give the wavefunction a second compo-
nent at each location in space—that is, to make it a pair of functions instead of just
one. Then, to describe a particle with well-defined px and a uniform probability
density, we use sinusoidal functions that are out of phase by a quarter cycle (π/2,
or 90◦), so that one component is large in magnitude where the other is zero and
vice-versa. And to distinguish left-moving from right-moving particles, we associate
a quarter-cycle phase difference in one direction with positive px, and a quarter-
cycle phase difference in the other direction with negative px. Here is a plot of both
components, where I’ve used a solid line for the first component and a dashed line
for second component:

By convention, we associate this particular phase relationship (second component a
quarter-cycle to the right of the first component) with a right-moving wavefunction,
that is, with positive px. To draw the analogous left-moving wavefunction, you
would shift either component left or right by a half cycle, or, equivalently, flip
either component upside-down.

Complex notation

One way to write a formula for this two-component wavefunction would be to just
list the two components in order:

ψ(x) =
{
A cos(kx− φ), A sin(kx− φ)

}
, (6)

where A is the wave amplitude, φ is a phase constant that determines where the
cycles start, and k = 2π/λ. Notice that the two components share the same A, φ,
and k. But we can write this formula much more concisely using complex numbers.

6



By convention, we associate the two components of ψ with the so-called “real” and
“imaginary” parts of a single complex-valued function:

ψ(x) = A cos(kx− φ) + iA sin(kx− φ). (7)

You may now recognize that cos θ+i sin θ is the definition of the complex exponential
function, eiθ, so we can write simply

ψ(x) = Aei(kx−φ). (8)

Moreover, if we factor out e−iφ from the exponential, we recognize that this factor
is just a complex constant, and so without loss of generality we can absorb it into
the amplitude A:

ψ(x) = Aeikx, (9)

where A is now complex.
Again, this is the formula for a wavefunction with definite momentum, also

called a momentum eigenfunction. Specifically, the momentum value corresponding
to this function is

px =
h

λ
=
hk

2π
= h̄k. (10)

Moreover, as I said above, equation 9, with positive k, describes a particle with
positive px. But if we allow k to be negative, then equations 9 and 10 actually
work for negative px as well: the “imaginary” component of ψ is then a quarter
cycle to the left of the “real” part, as desired. In essence, we have now implemented
the de Broglie relation in the precise language of wavefunctions, by identifying
the periodic function Aeipxx/h̄ as the momentum eigenfunction corresponding to
momentum value px.

Momentum eigenfunctions aren’t the only wavefunctions that are complex. Vir-
tually all wavefunctions are complex, with two separate components that (in gen-
eral) needn’t be related to each other in any particular way:

ψ(x) = Reψ(x) + i Imψ(x), (11)

where Re and Im denote the “real” and “imaginary” parts, respectively. I started
with examples of real-valued functions (for which Imψ = 0) only for simplicity.
But I need to go back and explain more carefully how to square a complex-valued
wavefunction, so you’ll know how to compute probabilities. The probability density,
|ψ|2, is actually the square modulus of ψ, defined as

|ψ|2 = ψ∗ψ = (Reψ − i Imψ)(Reψ + i Imψ) = (Reψ)2 + (Imψ)2. (12)

Here ∗ indicates the complex conjugate, in which the “real” part is the same and
the “imaginary” part has opposite sign. If you think of ψ (at a given x) as a two-
component vector, then |ψ|2 is just the squared magnitude of that vector (which is
always a real, nonnegative number).
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Incidentally, I’ve been putting scare quotes around the words “real” and “imag-
inary” because neither part of the wavefunction is any more real or imaginary than
the other, in the everyday meanings of these words. Both contribute equally to the
probability density. Whether wavefunctions are actually real physical entities or
merely imaginary human constructs is another question entirely, which I’ll mostly
leave to the philosophers.

In any case, given an arbitrary complex-valued wavefunction ψ(x), you can
compute |ψ(x)|2 and then check whether it’s normalized according to equation 2.
If it is, then you can integrate it over any desired interval (according to equation 1)
to obtain the probability of finding the particle within that interval.

There is a similar formula, which I’ll give you later, for finding the probabilities
of various outcomes of momentum measurements.

The effect of a measurement

And now we come to the most important fact about wavefunctions and measure-
ments. Immediately after you perform a measurement, the measured quantity (for
example, position or momentum) will be well defined, and so the particle’s wave-
function must be the corresponding eigenfunction. If you measured the particle’s
position and found it at x = x0, then the particle’s wavefunction is now the eigen-
function δ(x− x0) (at least approximately, and never mind the normalization). Or,
if you measured the particle’s momentum and found it to have p = p0, then the
particle’s wavefunction is now the eigenfunction eip0x/h̄ (at least approximately, and
never mind the normalization). Either way, we say that the measurement process
causes the wavefunction to collapse, in a random way, into whatever eigenfunction
corresponds to the measurement outcome.

But if a measurement causes the wavefunction to “collapse,” then what exactly
constitutes a measurement? Amazingly, quantum mechanics provides no clean an-
swer to this question. Fortunately, though, we won’t need a clean answer in order to
apply quantum mechanics to laboratory experiments. The messy answer is that a
measurement always involves some sort of interaction between the quantum system
you’re studying and the apparatus you’re using to study it. Usually this appara-
tus is much larger than the system, so you can think of it as a classical (that is,
non-quantum) object. Fundamentally, of course, quantum mechanics should apply
to everything in your laboratory, including your measurement apparatus. For that
matter, quantum mechanics should also apply to you and to everything else in the
universe. How, then, should we think about quantum measurements fundamen-
tally? Does the universe have a wavefunction and if so, does it ever “collapse”?
These questions are fun to contemplate, but again I will leave them mostly to the
philosophers.
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Visualizing complex functions

It’s often useful to visualize a complex number as a vector or point in a plane. We
usually plot the real part along the horizontal axis and the imaginary part along
the vertical axis. Here I’ve plotted a few examples:

Sometimes, though, it’s easier to describe a point (x, y) using polar coordinates,
(r, φ). For a complex number c, the radial coordinate is just the modulus |c|, while
the angular coordinate φ is tan−1[(Im c)/(Re c)]:

From the diagram you can now see that

c = |c|(cosφ+ i sinφ) = |c| eiφ, (13)

a handy expression that’s explicitly in terms of the polar coordinates.
One way to visualize a complex-valued function ψ(x) is to simply plot separate

graphs of the real and imaginary parts, as I did above for a momentum eigenfun-
tion Aeikx. But another method, which is becoming common in this age of color
computer graphics, is to plot a single graph of either |ψ| or |ψ|2, and then fill in
the area under the graph with a color that depends on the phase φ(x). We assign
colors (or more technically, hues) to the phases starting with red for φ = 0 (pure
real), then blending to yellow, green, cyan, blue, magenta, and back to red, as we
go counter-clockwise around the complex plane:
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Here is an example of an arbitrary wavefunction plotted with |ψ|2 on the vertical
axis and phase as color, with a plot of the real and imaginary parts underneath for
comparison:
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