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So far I’ve been discussing wavefunctions only as functions of space, at a single
instant in time. What happens to a wavefunction as time passes?

The Einstein relation, E = hf , gives us a clue: If the wavefunction represents a
state in which the particle has energy E, then it will oscillate in time at frequency
f = E/h (or angular frequency ω = E/h̄).

Most wavefunctions do not represent particles with well-defined energy, so this
clue doesn’t tell us directly how they change over time. But for a free particle, with
no potential energy (and therefore acted upon by no forces), the energy is entirely
kinetic. In this case, the momentum eigenfunctions Aeikx, described in the previous
lesson, must also be energy eigenfunctions, because knowing the momentum means
you can calculate the energy.

And how exactly do we take the wavefunction Aeikx and make it oscillate in
time at a given frequency? The answer is simple and elegant: we multiply it by
e−iωt, to obtain

ψ(x, t) = Aeikxe−iωt = Aei(kx−ωt). (1)

This is the general formula for the full time-dependent wavefunction of a free particle
with well-defined momentum, and it takes the familiar form of a traveling wave: a
function only of the combination kx − ωt. The individual “ripples” in the wave
move at the so-called phase velocity,

vphase =
ω

k
=
E/h̄

px/h̄
=
E

px
. (2)

The time-dependent factor e−iωt will come up repeatedly in this course, so let me
give it a name: the wiggle factor. The wiggle factor must be a complex exponential
(and not merely a sine or a cosine) in order to get the simple traveling-wave form in
equation 1 (that is, a function only of the combination kx−ωt). The minus sign in
the exponent of the wiggle factor is required in order for a positive-k traveling wave
to travel to the right. (However, the plus sign in e+ikx was a mere convention, so we
could have instead chosen a minus sign there and a plus sign in the wiggle factor.
Nobody actually does it that way, so please stick to the standard sign convention.)

Equations 1 and 2 work for both nonrelativistic and relativistic particles—the
only difference being the formula that relates the momentum px to the (kinetic)
energy E. The simplest case is actually for an ultrarelativistic (massless) particle
such as the photon, for which E = |px|c and therefore vphase = ±c, as you probably
would have guessed. For a nonrelativistic particle, on the other hand, the result
may surprise you. In this case, if the particle’s mass is m, then E = p2

x/2m and we
obtain

vphase =
p2
x/2m
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=
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=
vx
2
, (3)
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where vx is the particle’s velocity. The phase velocity of the wavefunction is only
half the velocity of the particle! This may seem like nonsense, but it’s not, because
you don’t measure a particle’s velocity by measuring the phase velocity of the ripples
within its wavefunction.

Now would be a good time to explore the Sinusoidal Wave animation that is
linked from our course web page. Notice how the wavelength, frequency, and phase
velocity all change as you adjust the momentum slider. Also, as a review of the pre-
vious lesson, notice the difference in the phase relationships between wavefunctions
with positive and negative momentum. If you want some help visualizing how the
phase velocity can be only half the particle velocity, take a look next at the Bar-
rier Scattering simulation, setting the barrier width to zero so there’s no potential
energy (until the wavefunction hits the edge of the region).

We have now implemented both the Einstein and de Broglie relations, more
precisely, in terms of the sinusoidal behavior of wavefunctions:

• When px is well defined, ψ ∝ eikx with k = p/h̄ (de Broglie).

• When E is well defined, ψ ∝ e−iωt with ω = E/h̄ (Einstein).

Although I’ve motivated the second statement by applying it to a free particle,
it turns out to be completely general, even for systems with potential as well as
kinetic energy.

For a single particle in one dimension, we will write the total energy as

E = K + V (x), (4)

where the kinetic energy K is a function of momentum and the potential energy
V (x) can be practically any function of position. When V = 0, the energy eigen-
functions are the same as the momentum eigenfunctions (that is, eikx), as described
above. But those functions describe particles whose positions are not well defined at
all; conversely, the spiky position eigenfunctions describe particles whose momenta
are not well defined. You might therefore think that when V 6= 0 there would be no
functions for which E = K+V is well defined, but in fact there always is a collection
of such energy eigenfunctions—they’re just different from both the position eigen-
functions and the momentum eigenfunctions. Finding the energy eigenfunctions for
a given V (x) is not always easy, and in any case it must be done separately for
each new function V (x). We’ll devote a lot of effort toward finding various energy
eigenfunctions in this course, because they’re so important.

For now, though, my main point about the energy eigenfunctions is that they
always evolve in time according to the wiggle factor e−iωt. So, for example, if the
wavefunction at t = 0 is ψ(x, 0) and if ψ(x, 0) is an energy eigenfunction with
energy E, then

ψ(x, t) = ψ(x, 0) e−iEt/h̄ (for an energy eigenfunction). (5)
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This is just the general version of equation 1, which was specific to the case of a
free particle.

What if ψ(x, 0) is not an energy eigenfunction? The next simplest case is when
it is a mixture of just two energy eigenfunctions:

ψ(x, 0) = c1ψ1(x) + c2ψ2(x), (6)

where ψ1 and ψ2 are energy eigenfunctions and c1 and c2 are constants. Then, as
you might guess, the principle of superposition applies: Each contribution to the
total wavefunction simply oscillates at its own frequency, so

ψ(x, t) = c1ψ1(x) e−iE1t/h̄ + c2ψ2(x) e−iE2t/h̄, (7)

where E1 and E2 are the energies corresponding to the eigenfunctions ψ1 and ψ2.
Equation 7 generalizes in the natural way to mixtures of three or more energy

eigenfunctions. Moreover, we’ll see later that any wavefunction can be expressed
as a linear combination of some number of energy eigenfunctions—although that
number is sometimes infinite, so we might need to deal with an infinite sum. In
the language of linear algebra, we say that the collection of energy eigenfunctions
(for any potential energy V (x)) always forms a complete basis, from which all other
wavefunctions can be built.

We’re now ready to turn to our first example of finding the energy eigenfunctions
for a “trapped” particle, subject to a nonzero V (x).
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