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In the previous lesson I emphasized the free particle, for which V (x) = 0, because
its energy eigenfunctions are so simple: they’re the same as the momentum eigen-
functions, eikx. The next-simplest example is a particle that’s free within a certain
limited region (say from x = 0 to x = a), but absolutely confined to that region by
powerful forces on each side. In the most idealized model, this system would have
zero potential energy inside the region and infinite potential energy outside:

V (x) =

{
0 for 0 < x < a,

∞ elsewhere.
(1)

This potential energy function is called an infinite square well or a one-dimensional
“box.” We can visualize V (x) like this:

Of course, any confining forces in the real world would be neither infinitely strong
nor infinitely abrupt. But this model is still useful for understanding a variety of
real-world potential wells (e.g., electrons in long organic molecules, or in fabricated
semiconductor layers), and provides a good starting point for understanding the
general properties of quantum particles that are trapped within a finite region.

The infinite potential energy outside the box means that there is zero probability
of ever finding the particle there, so all of the allowed wavefunctions for this system
are exactly zero at x < 0 and x > a. Inside the box the wavefunction can have any
shape at all, so long as it is normalized. The wavefunction could be localized in a
region much smaller than a, or spread over the full width of the box, and of course
it can have both real and imaginary parts.

Energy eigenfunctions

The most important wavefunctions, however, are the energy eigenfunctions, whose
shapes and formulas are not hard to guess. Inside the box there is no potential
energy, so definite momentum would imply definite energy, just as for a free particle.
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The difference here is that the wavefunction must go to zero at each end, and the
momentum eigenfunctions, eikx, don’t go to zero anywhere. The way out of this
difficulty is to realize that for a given kinetic energy there are actually two possible
momenta, one positive and one negative. If we superimpose the two corresponding
wavefunctions we get a standing wave, analogous to a standing wave on a string,
with the same wavelength (and hence the same |px| and the same kinetic energy)
as the traveling waves, but with nodes where the wavefunction goes to zero. In our
case the correct superposition is proportional to

eikx − e−ikx ∝ sin(kx), (2)

which is automatically zero at x = 0, at the left end of the box. To make the
wavefunction go to zero at the right end as well, we must restrict the values of k so
that some integer number of half-wavelength “bumps” fits in the box:

λ = 2a, a,
2a

3
,

2a

4
, . . . =

2a

n
, (3)

where n can be any positive integer (and is equal to the number of bumps). The
first three wavefunctions look like this:

The corresponding k values are just 2π/λ = nπ/a, so the corresponding momentum
magnitudes are

|px| = h̄k =
h

λ
=
hn

2a
. (4)

The formula for the wavefunctions themselves is therefore

ψn(x) =

{
A sin

(nπx
a

)
for 0 < x < a,

0 elsewhere,
(5)

where the normalization constant A equals
√

2/a (as you can easily show), times
an arbitrary unit-modulus phase factor eiφ, which we might as well take to be 1.
Again, these are eigenfunctions of energy but not momentum; they are mixtures of
positive-momentum and negative-momentum eigenstates, in equal parts.
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Quantized energies

To find the energy values that correspond to these eigenfunctions, we need to know
the formula for kinetic energy in terms of momentum. If the particle is nonrela-
tivistic, we have simply

E = K =
p2
x

2m
=

h2n2

8ma2
, (6)

where the first equals sign holds only inside the box, but the result must be valid
for the wavefunction as a whole. Thus, we have a series of discrete allowed energy
values, with intermediate values not allowed. We say that the energy is quantized ;
this is where the “quantum” in quantum mechanics comes from.

Here is an energy level diagram (that is, a plot of energy vs. nothing) showing
the four lowest states of this system:

Such a diagram is sometimes called a quantum ladder, and in this case the rungs
get farther and farther apart as you go up. The lowest energy level is called the
ground state, while the rest are called excited states.

The reason why the energy is quantized is easy enough to understand: In order
to fit within the box, a sinusoidal wavefunction must have an integer number of
bumps. Partial bumps are not allowed, because the wavefunction must go to zero
at both ends of the box (and a discontinuity at either end of the wavefunction would
be equivalent to an infinitely short wavelength at that point, and hence an infinitely
high energy—subverting our goal of finding wavefunctions for which the energy is
well defined and finite).

Notice also that the energy of the ground state is nonzero; in fact it is h2/8ma2.
This is the lowest possible energy for a (nonrelativistic) particle trapped inside an
infinite square well of width a. It is nonzero because the wavefunction must have
at least one full bump inside the box, and therefore the longest possible wavelength
is 2a. If you squeeze the particle into a smaller box (that is, reduce the value
of a), the maximum wavelength decreases and therefore the ground-state energy
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increases. This inverse relation between size and energy is quite general in quantum
mechanics, and is ultimately responsible for the stability of matter.

I wish I could now show you an experimental energy level diagram for a real par-
ticle trapped in a real potential that approximates an infinite square well. Perhaps
there’s a good example out there somewhere, but so far I’ve been unable to find it.
As I mentioned above, the one-dimensional infinite square well can be used to model
electrons in certain organic molecules, or in semiconductor layers. If you shine light
on these systems, the wavelengths absorbed will correspond to electron transitions
from one rung on the quantum ladder up to a higher rung. Typically, however, the
data show only a single transition—not enough to decode the full structure of the
energy level diagram or even to show that the levels get farther apart as you go up.
Many of the experiments verify the dependence on the well width a in equation 6,
but even extracting this information involves quite a few real-world complications
that I’d rather not spend time on now.

So please be patient. The real reason to study the one-dimensional infinite square
well is not because of its direct, real-world applications, but because it serves as a
foundation and starting point for understanding quantum systems in general.

Time dependence

If a particle in a box starts out in one of the energy eigenfunctions ψn(x), what hap-
pens as time passes? I told you the answer—for energy eigenfunctions in general—in
the previous lesson: Just multiply ψn by the usual time-dependent wiggle factor to
obtain

ψ(x, t) = ψn(x) e−iEnt/h̄. (7)

In other words, the magnitude of the wavefunction remains unchanged at every x,
but the phase oscillates clockwise in the complex plane, at a rate proportional to
the energy En.

Things get more interesting if we start out in a mixture of two or more stationary
states. Again, the general prescription was given in the previous lesson: If ψ(t = 0)
is a sum of stationary-state terms, then ψ(t) is given by the same formula with the
corresponding wiggle factor, e−iEnt/h̄, multiplying each term. That is, each term
oscillates sinusoidally at a frequency proportional to its energy. The Infinite Square
Well simulation, linked from our course web page, animates the time dependence of
an arbitrary mixture of the eight lowest-energy eigenfunctions. Please spend some
time playing with that simulation now.

But what if a system starts in a wavefunction that isn’t a mixture of energy
eigenstates? Well, it turns out that no such wavefunctions exist! To see how this
works (and why), we need to investigate some of the mathematical properties of the
energy eigenfunctions.
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Completeness and orthogonality

The claim that I just made can be stated as a mathematical theorem: Any function
ψ(x), within the interval from 0 through a, can be written as a linear combination
of the energy eigenfunctions, for some set of coefficients cn:

ψ(x) =
∞∑
n=1

cnψn(x) =

√
2

a

∞∑
n=1

cn sin
(nπx

a

)
. (8)

This theorem is sometimes called Dirichlet’s theorem, and you may recognize this
formula as the Fourier series for ψ(x). I won’t try to prove the theorem, but I hope
you’ve had at least a little bit of experience with it before. Notice that in general
the sum requires an infinite number of terms, although it’s common in physics to
stop after a finite number of terms as an approximation (since we never know the
wavefunction exactly anyway). If the function ψ(x) is complex, then so are at least
some of the constants cn. The formal name for this property of the ψn functions is
completeness: they form a complete set, from which any other wavefunction can be
built as a linear combination.

You might wonder, though, how to find all the cn values for a given ψ(x).
Before I tell you how, I need to mention another mathematical property of the
energy eigenfunctions: they are orthogonal, in the sense that∫ a

0
ψm(x)ψn(x) dx = 0 for m 6= n. (9)

I like to think of this integral as a kind of infinite-dimensional dot-product, where
we multiply the “components” of ψm and ψn together at each x, then add them all
up. In fact, we define the inner product of any two one-dimensional wavefunctions
as

〈ψa, ψb〉 =

∫ ∞
−∞

ψ∗a(x)ψb(x) dx, (10)

where the complex conjugation is needed to ensure that any normalized wavefunc-
tion’s inner product with itself equals 1. You can find a general proof of the orthog-
onality of the infinite-square-well energy eigenfunctions in Griffiths or almost any
other quantum mechanics textbook. I’ll let you work out a few special cases in the
homework.

We usually combine equation 9 with the normalization condition to write∫ a

0
ψm(x)ψn(x) dx = δmn, (11)

where δmn is an abbreviation called the Kronecker delta symbol, defined as

δmn =

{
1 if m = n,

0 if m 6= n.
(12)
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The verbal way of expressing equation 11 is then to say that the energy eigenfunc-
tions are orthonormal. This property is not unique to the infinite square well; it
actually applies to any quantum system whose energy levels are discrete.

I’m now ready to tell you how to find the coefficients cn in equation 8. Grif-
fiths calls the method by the apt name Fourier’s trick : Multiply equation 8 by an
arbitrary ψm(x), and integrate from 0 to a:∫ a

0
ψm(x)ψ(x) dx =

∞∑
n=1

cn

∫ a

0
ψm(x)ψn(x) dx =

∞∑
n=1

cnδmn = cm. (13)

In mathematical language, we’re taking the inner product of our function ψ(x) with
one of the “basis” functions ψm(x), to project out the “component” of ψ(x) along
this basis function. After moving the integral inside the sum, we obtain the same
integral as in equation 11, and then the Kronecker delta kills every term in the sum
except one, leaving us with a formula for cm. The formula involves an integral, and
you might feel daunted by the prospect of having to carry out an infinite number
of such integrals to find the whole list of cm values. But even if this process would
be tedious, at least it’s straightforward—and often we can get computers to do the
tedious work for us.

The term “inner product” is supposed to remind you of an ordinary dot product
of vectors. In fact, everything we’re doing here is analogous to the more familiar
example of expanding an arbitrary vector in terms of an orthonormal set of unit-
length “basis” vectors. Here’s the picture for ordinary vectors in two dimensions:

In the analysis above, the energy eigenfunctions ψn are our basis “vectors,” which
must be orthogonal to each other and normalized to unit length (equation 11).
Because these basis functions form a complete set, any other wavefunction ψ can
be expanded in terms of its components cn in this basis. And to find any partic-
ular component cn, you just “dot” the corresponding basis function ψn into the
function ψ.

Of course my little two-dimensional picture leaves out two important complica-
tions: (1) we’re actually working in an infinite-dimensional vector space, with an
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infinite number of mutually orthogonal basis functions ψn; and (2) our components
cn can be complex numbers. I can’t really visualize either of these complications,
but I still find my little two-dimensional picture to be far better than no picture at
all.

Probabilities for energy measurements

If a particle in an infinite square well starts out in an energy eigenfunction and
then you measure its position, you know how to calculate the probabilities of the
various possible outcomes: the method is the same as for any other wavefunction,
as described in Lesson 2. In general, the position probability density is spread over
the whole width of the well, and varies sinusoidally between 0 at the nodes and 2/a
at the antinodes.

But what if, on the other hand, the particle starts out in some arbitrary wave-
function and you try to measure its energy? If the wavefunction is an energy
eigenfunction ψn, then of course you will obtain the corresponding En value with
100% certainty. If the wavefunction is a mixture of two energy eigenfunctions, such
as

ψ(x) = c1ψ1(x) + c2ψ2(x), (14)

then presumably you could obtain either E1 or E2 as your result, with probabilities
that somehow depend on the sizes of the coefficients c1 and c2. But the probabilities
can’t be equal to c1 and c2, because these coefficients could be negative or even
complex; in fact the probabilities are equal to the square moduli of these coefficients,
|c1|2 and |c2|2, respectively. To see why, let’s check the normalization of ψ(x):

1 =

∫ a

0
|ψ(x)|2 dx =

∫ a

0

[
|c1|2ψ2

1 + |c2|2ψ2
2 + (c∗1c2 + c∗2c1)ψ1ψ2

]
dx. (15)

Integrating the three terms separately, we find that the first two give simply |c1|2 and
|c2|2, because ψ1 and ψ2 themselves are normalized, while the third term integrates
to zero, because ψ1 and ψ2 are orthogonal. Therefore the squared coefficients must
obey the relation |c1|2 + |c2|2 = 1, just as you would expect for probabilities.

The formulas in the previous paragraph generalize straightforwardly to super-
positions of three or more energy eigenfunctions. If you measure the energy for a
particle with any (normalized) wavefunction ψ(x), the probability of obtaining the
result En is the square modulus of the expansion coefficient cn, when the wave-
function is expanded in terms of energy eigenfunctions as in equation 8. Therefore,
according to the result of Fourier’s trick (equation 13), the probability is

(Probability of En) = |cn|2 =

∣∣∣∣∫ a

0
ψn(x)ψ(x) dx

∣∣∣∣2. (16)
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Moreover, normalization of ψ(x) implies that the sum of all these probabilities
equals 1:

∞∑
n=1

|cn|2 = 1. (17)

Finally, I should mention that after your measurement, now that you have a definite
energy En for the particle, the wavefunction will have “collapsed” to ψn(x).
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