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The energy eigenfunctions for the infinite square well are simple and easy to guess—
but they’re the exception, not the rule. For a more general (and more realistic)
potential energy function V (x) the energy eigenfunctions will be more complicated,
and simply guessing them isn’t an option. We need a more systematic method.
Unfortunately, there’s no general formula for the energy eigenfunctions themselves.
But there is a general way of writing down the differential equation of which these
functions are the solutions.

The time-independent Schrödinger equation

To see where this differential equation comes from, consider again the sinusoidal
waves that are energy eigenfunctions for a free particle, or inside an infinite square
well, or (it turns out) in any region where V (x) = 0. Whether the sinusoidal function
is eikx or sin(kx) or cos(kx), its second derivative equals −k2 times itself:

d2

dx2
ψ(x) = −k2ψ(x) for energy eigenfunctions where V (x) = 0. (1)

Here the wavenumber k is, as usual, p/h̄, and we don’t have to worry about whether
p is positive or negative because it’s squared.

From here on, unless I say otherwise, I will assume that the particle in question
is nonrelativistic. Then p2 = 2mK, where K is the kinetic energy, so

d2

dx2
ψ(x) = −2mK

h̄2 ψ(x) for energy eigenfunctions where V (x) = 0. (2)

Of course, for a free particle, we could just as well write E (total energy) instead of
K (kinetic energy). But now think about what should happen where V (x) 6= 0. The
second derivative of the wavefunction, or its curvature, is what determines its wave-
length: the distance that it takes the wave to loop around and back to make a full
cycle. The wavelength is directly related to the momentum, which determines the
kinetic energy, so adding in some potential energy, while keeping K fixed, shouldn’t
affect the second derivative or the relationship expressed in equation 2. Therefore,
even where V (x) is nonzero, we can substitute E − V (x) for K in equation 2 to
obtain

d2

dx2
ψ(x) = −2m

h̄2

(
E − V (x)

)
ψ(x) for any energy eigenfunction. (3)

This is the famous time-independent Schrödinger equation, or TISE for short. It is
the differential equation that is satisfied by the energy eigenfunctions for a quantum
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particle in one dimension, and it is the equation that we must solve in order to find
those eigenfunctions for an arbitrary potential energy V (x). It’s really a different
differential equation for every new V (x), and its solutions are different as well, so
solving the TISE for the myriad possible V (x) functions can be a never-ending
task. We’ll solve it repeatedly, in particular cases, during the next few weeks. First,
though, I’d like to digress into a more abstract interpretation of the TISE.

Operators and eigenvalues

With a simple algebraic rearrangement, we can instead write the TISE as

− h̄2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x). (4)

I’ll now “factor” out the ψ(x) on the left-hand side to obtain[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (5)

where the quantity in brackets is what we call an operator, which acts on the function
ψ(x). In general, an operator is basically a “machine” that converts a function
into some other function. Examples of operators would include d/dx (“take the
derivative”), x (“multiply the function by x”), and −h̄2/2m (“multiply the function
by the constant −h̄2/2m”). The operator in the brackets of equation 5 says, “Take
the function’s second derivative, multiply the result by the constant −h̄2/2m, then
add that onto what you get when you multiply the function by V (x).” This rather
intricate operator is called the Hamiltonian operator and is often abbreviated H:

H = − h̄2

2m

d2

dx2
+ V (x). (6)

Using this handy abbreviation, we can write the TISE as simply

Hψ = Eψ, (7)

where here it is understood that ψ is a function of x.
Equation 7 has the form of an eigenvalue equation: It says that the solutions to

the TISE are precisely those functions that, when acted upon by the Hamiltonian
operator, are left unchanged except for multiplication by a constant E (the so-called
eigenvalue). This is why those solutions are called energy eigenfunctions.

You’ve probably heard of eigenvalues before, in the context of matrices and
eigenvectors. Later I’ll show you how to rewrite equation 7 in vector-matrix form—
although the matrix H and vectors ψ turn out to be infinite-dimensional. For now,
just rest assured that the “eigen” terminology is entirely consistent with what you
learned in linear algebra.
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To provide more context for these ideas, let me digress even further to discuss
some other operators and their eigenfunctions. The momentum operator is−ih̄d/dx,
because the momentum eigenfunctions, eipxx/h̄, are eigenfunctions of this operator
with eigenvalues px:[

−ih̄ d
dx

]
ψ(x) = pxψ(x), for ψ(x) = eipxx/h̄. (8)

From the momentum operator we can construct the kinetic energy operator using
the formula p2

x/2m; that is, apply the momentum operator twice, then divide by
the constant 2m. The result is just the first term in the Hamiltonian operator,
equation 6.

The position operator, meanwhile, is simply x, that is, “multiply by a factor
of x.” The eigenfunctions of this operator are Dirac delta functions, because the
eigenvalue equation

xψ(x) = x0ψ(x) (9)

(where x0 is a constant) is satisfied by the delta function δ(x− x0). (The equation
must be satisfied for all x, but it is: check it separately for x = x0 and x 6= x0.) The
operator for any function of x is simply (to multiply by) that function; in particular,
the potential energy operator is simply (to multiply by) V (x).

Equation 6, therefore, simply says that the Hamiltonian operator is the sum of
the kinetic energy and potential energy operators: it is the total energy operator,
and that’s why its eigenvalues are the energy values E that correspond to its eigen-
functions. (The reason it’s called the Hamiltonian and not just the energy operator
has to do with the Hamiltonian formulation of classical mechanics, which you may
or may not have studied in another course.)

In the linear algebra of finite vector spaces, a matrix has only a finite number of
eigenvalues and eigenvectors. Here we’re working in an infinite-dimensional vector
space (the space of all normalizable functions ψ(x)), and most operators have an
infinite number of eigenvalues and eigenvectors. In fact, every real number x0 is
an eigenvalue of the position operator, and every real number px is an eigenvalue
of the momentum operator. But not every real number E need be an eigenvalue
of the Hamiltonian operator, at least when we restrict the eigenfunctions ψ(x) to
those that are normalizable (that is, those for which

∫
|ψ(x)|2dx is finite). In fact,

the eigenvalues are often limited to a discrete (but still infinite) set of real numbers,
as we saw in the previous lesson for the infinite square well. In general, “solving
the time-independent Schrödinger equation” means finding both the eigenfunctions
ψ(x) and the corresponding eigenvalues E.

At the end of Lesson 3 I asserted that the energy eigenfunctions for any V (x)
always form a complete basis: any other function can be written as a linear combina-
tion of them. Actually, this statement is also true for the momentum eigenfunctions,
and for the position eigenfunctions, and for the eigenfunctions of any other operator
that corresponds to an observable quantity in quantum mechanics. To make the
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statement precise, I would need to digress into some assumptions about the conver-
gence of infinite sums, and explain how to handle continuous eigenvalues in terms
of integrals instead of sums. But intuitively, the statement just says that you can
think of any wavefunction as a mixture of wavefunctions for which O is well defined,
where O can be position, momentum, energy, or any other observable quantity.

The time-dependent Schrödinger equation

Among all the observable quantities, however, energy is special because it is closely
tied to time evolution. Recall from Lesson 3 that an energy eigenstate evolves in
time with a simple wiggle factor,

ψ(t) = ψ(0)e−iEt/h̄, (10)

implementing the Einstein relation E = h̄ω. If we act on this function with the
Hamiltonian operator H, the wiggle factor simply factors out and we obtain the
same factor of E as in equation 7:

Hψ(t) = Hψ(0)e−iEt/h̄ =
(
Hψ(0)

)
e−iEt/h̄ = Eψ(0)e−iEt/h̄ = Eψ(t). (11)

But now notice that we can obtain almost the same expression by instead taking
the time derivative:

∂

∂t
ψ(t) =

∂

∂t

(
ψ(0)e−iEt/h̄

)
= (−iE/h̄)ψ(0)e−iEt/h̄ = (−iE/h̄)ψ(t). (12)

(It’s a partial derivative because ψ(t) is also a function of x.) Multiplying both
sides by +ih̄ and comparing to the previous equation, we have

Hψ(t) = ih̄
∂ψ

∂t
. (13)

This result would be of little use if it applied only to energy eigenfunctions, for
which we already have the more explicit formula 10. But amazingly, equation 13
applies to any wavefunction, because any wavefunction can be written as a sum of
energy eigenfunctions, each of which oscillates in time according to its own wiggle
factor. The explicit formula is

ψ(t) =
∑
n

cnψne
−iEnt/h̄, (14)

for some collection of complex coefficients cn, where the sum runs over all energy
eigenfunctions ψn (and the sum should be replaced by an integral when the eigenval-
ues En are continuous instead of discrete). The calculations of equations 11 and 12
work the same as before, for each term in this sum. Each term has its own En,
but everything still matches up, with the same extra factor of −i/h̄, resulting in
equation 13.
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Equation 13 is a first-order differential equation that tells us how any wavefunc-
tion evolves in time. Although we’ve already written out its explicit solution in
equation 14, that solution can be extremely cumbersome because it entails an infi-
nite sum and requires that we first find all the energy eigenfunctions and eigenvalues.
Sometimes it’s simpler just to work with the differential equation directly—not that
that’s always easy either.

If we write out the Hamiltonian operator explicitly, then equation 13 takes the
form [

− h̄2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) = ih̄

∂ψ

∂t
. (15)

As you can see, this is actually a partial differential equation. Given any initial
wavefunction ψ(x, 0), we can in principle use this equation to predict the wavefunc-
tion at all future times. Thus, this equation plays the same logical role in quantum
mechanics that Newton’s second law, F = m(d2x/dt2), plays in classical mechanics.

Equation 15 (or 13) is called the time-dependent Schrödinger equation, or the
TDSE for short. As you can see, it looks an awful lot like the time-independent
Schrödinger equation (equation 3 or 7), because both involve the same Hamilto-
nian operator. But the logical roles of the two Schrödinger equations are completely
different : The TISE is the equation that we must solve to find the energy eigen-
functions and their corresponding eigenvalues, while the TDSE is the equation that
governs the time evolution of any wavefunction whatsoever.

5


