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As a final topic in one-dimensional wave mechanics, let us now consider what hap-
pens when a wavepacket, freely traveling at first, hits a localized potential energy
barrier of some sort. After the wavepacket hits the barrier, we would expect some
of it to reflect and some to be transmitted, in analogy to light hitting a pane of
glass. The “Barrier Scattering” web application (linked from our course web page)
simulates and animates this process.

That simulation uses the simplest (but most computationally intensive) possible
method: brute-force integration of the time-dependent Schrödinger equation. It
discretizes the x axis into 720 points, storing the real and imaginary parts of ψ
in separate arrays. It calculates d2ψ/dx2 at each point by comparing the value
there to the two neighboring values, and then incorporates the value of V (x) into
a calculation of the amount by which ψ(x) changes during each discrete time step.
You can see the details if you look at the code using your browser’s View Source or
Page Source command (usually hidden in a Developer section of the menus). Most
of the physics is in the doStep function.

Note that because the simulation starts with a wavepacket, the energy of the
incoming quantum particle is not precisely defined. Technically that’s always true
in the real world, but real-world wavepackets are often much wider in space, and
hence narrower in momentum space and energy resolution, than in the simulation.

The more common approach to analyzing barrier scattering is therefore to take
the limit where the wavepackets become perfect sinusoidal waves, eipx/h̄, where p
is positive for a right-moving wave and negative for a left-moving wave. These
waves fill all of space and their probability densities don’t change with time, so
the “scattering” becomes a steady-state process that’s harder to visualize. But the
approach is entirely analogous to the way we analyze reflection and transmission of
monochromatic light in optics.

In the sinusoidal-wave limit, the wavefunctions are simple sinusoidal functions
wherever V (x) = 0. But inside the barrier they can be quite different, depending
on the barrier’s potential energy function V (x). Because these wavefunctions now
have well-defined energy, however, we can find them by solving the time-independent
Schrödinger equation.

I’ll illustrate the approach for an incident wave of energy E that comes in from
the left. Then, to the left of the barrier, the total wavefunction should be a super-
position of the incident and reflected waves:

ψleft(x) = Aeikx +Be−ikx, (1)

where k =
√

2mE/h̄ and the amplitudes A and B are complex numbers (that is,
they can incorporate phase shifts of the form eiφ). Meanwhile, to the right of the
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barrier, we should have only a right-moving transmitted wave:

ψright(x) = Feikx, (2)

for the same k and some complex amplitude F . (My notation follows that of Grif-
fiths, 2nd edition, page 81.)

Inside the barrier, the wavefunction is still unknown. But because the entire
wavefunction has well-defined energy, it must be a solution of the TISE. Our job,
therefore, is to find a solution of the TISE that matches equations 1 and 2, and
thus to determine the relationships between the amplitudes A, B, and F . The
square moduli of these amplitudes are proportional to the corresponding probability
densities, so the probabilities of reflection and transmission are given, respectively,
by the ratios

R =
|B|2

|A|2
and T =

|F |2

|A|2
. (3)

Conservation of probability requires T +R = 1.
And how do we actually find the desired solution of the TISE? As usual, we

can either do it numerically (for essentially any barrier potential function V (x)), or
analytically (for idealized special cases).

The numerical approach is to start with boundary conditions on the right of
the barrier, using equation 2 with an arbitrary value of F (for example, F = 1).
Then it is straightforward for a computer to integrate the TISE leftward, through
the barrier and beyond. (Since E is specified from the start, and any positive E is
allowed, there is no hunting for eigenvalues as there is when you’re trying to find
bound states.) To the left of the barrier, the solution should match equation 1 for
some complex coefficients A and B. The logic for determining these coefficients
from the numerical data requires a bit of thought, but otherwise the process is ex-
tremely straightforward. Once A and B are known, the reflection and transmission
probabilities are given by equations 3.

The analytic approach is feasible only for reasonably simple barrier shapes, and
is simplest when the barrier potential is constant: V (x) = V0. Then, if V0 < E,
the wavefunction inside the barrier must also be sinusoidal; we could write it as a
superposition of complex exponentials, or alternatively (following Griffiths), we can
express it as a superposition of a sine and a cosine:

ψinside(x) = C sin(lx) +D cos(lx) for V0 < E, (4)

where l =
√

2m(E − V0)/h̄ is the wavenumber inside the barrier and the amplitudes
C and D can again be complex. We’ve now solved the TISE everywhere except at
the two boundaries, where V (x) is discontinuous. At those points, the TISE simply
requires that both the wavefunction ψ(x) and its derivative dψ/dx be continuous;
otherwise the second derivative, d2ψ/dx2, would be infinite. So, for example, we
can set equations 2 and 4 equal when we evaluate both of them at the right edge

2



of the barrier, and we can also set their derivatives equal at that point, and these
two equations allow us to solve for C and D in terms of F . Then we similarly set
equations 1 and 4 equal at the left edge of the barrier, to relate A and B to F
and to each other. The results are quite interesting, with certain special “resonant”
energies where the transmission probability is 100% (see Griffiths for details).

In the case of a constant barrier potential that is greater than E, the solution
inside the barrier is instead exponential:

ψinside(x) = Celx +De−lx for V0 > E, (5)

where now l =
√

2m(V0 − E)/h̄. The procedure and the logic, however, are other-
wise the same. As you might guess, the exponential behavior can make the trans-
mitted wave negligible, in comparison to the incident wave, when the barrier is
sufficiently wide or “high.” But for “low” and narrow barriers, the probability of
transmission (also called tunneling in this case) can be significant.
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