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Preface

There are two reasons to study quantum mechanics: it’s cool, and it’s useful.
Quantum mechanics is cool because it’s far more bizarre than any idea ever

dreamed up by science fiction writers. Particles behave like waves! Measurement
outcomes are random! Energies can have only certain discrete values! Events in
separated places have spooky correlations! There’s a sense in which nobody truly
“understands” quantum mechanics—and yet there’s a definite logic to it, encoded
in some of the most beautiful mathematics ever devised.

Meanwhile, quantum mechanics is useful because it governs the structure of all
matter and interactions. It tells us why atoms are stable, why radioactive nuclei
decay, and why carbon dioxide is a greenhouse gas. Quantum mechanics underlies
all of chemistry, all of materials science, and all of subatomic physics. We can
use quantum theory to design microscopes, lasers, solar cells, nuclear reactors, and
secure methods of sending encrypted information. Scientists around the world are
constantly discovering new applications of quantum mechanics.

My goal in this book is to introduce you to quantum mechanics in a way that
honors both its coolness and its usefulness. Even if your initial interest is in only
one or the other of these aspects, I hope you will find that each enhances the other.
That has certainly been the case historically, as practical laboratory investigations
gradually forced researchers to accept radical revisions to their world views—and
then curiosity about quantum weirdness led to commercially promising applications
of quantum information technology.

At the same time, I fear that this book might end up conveying neither the
coolness nor the usefulness of quantum mechanics. That’s because quantum me-
chanics is not an easy subject to learn, or to write about. How could it be easy,
when it encompasses so much, while totally defying our common sense? I will need
to ask you to work hard, and I have tried to do my part, working hard to prepare
the pages that follow.

The best metaphor I know for the difficulty of learning quantum mechanics is
the ancient Indian parable of the blind men trying to apprehend an elephant.1 One
of them feels a tusk and decides the elephant is like a spear. Another feels a leg and

1This parable is apparently very old, and there are many versions. Probably the most fa-
mous English-language version is the delightful 1872 poem by John Godfrey Saxe, which you
can find at https://en.wikisource.org/wiki/The_poems_of_John_Godfrey_Saxe/The_Blind_

Men_and_the_Elephant.

v
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An illustration of the parable of the blind men and the elephant, from C. M.

Stebbins and M. H. Coolidge, Golden Treasury Readers: Primer (American

Book Co., New York, 1909).

decides it is like a tree. Still others feel the trunk, the side, an ear, and the tail,
deciding in turn that the elephant is like a snake, a wall, a fan, or a rope. They’re
all partially correct, but none of them can picture the whole elephant.

Similarly, quantum mechanics can appear to be many different things, depend-
ing on how we approach it—and because none of us experiences the quantum world
directly through our senses we are all initially blind. But we have to start some-
where, and so I am faced with a choice: Which part of the quantum “elephant”
should I take you to first?

My choice is the traditional one: We will begin by studying the quantum me-
chanics of a single, structureless particle moving in one dimension. This approach
will bring us to some real-world applications fairly soon, and it lets you use your
intuition for classical wave behavior to understand interference patterns and energy
quantization. Mathematically, this part of quantum mechanics looks like a lot of
ordinary and partial differential equations and their solutions. But as you go along,
you’ll also get some glimpses of matrix methods, linear algebra, and even two-state
“qubit” systems. All of these aspects of quantum mechanics will reappear later in
the book, and all can seem rather disconnected from wave mechanics. Part of my
job is to help you see the connections.

Starting in Chapter 4, you’ll see how to generalize the principles of quantum
mechanics to multiple dimensions, multiple particles, and particles with internal
structure such as spin. A big idea in all three cases is that we can’t always describe
these multiple degrees of freedom independently of each other, one at a time. In
the case of multiple particles, we say that most of the allowed quantum states are
“entangled.”

The later chapters of the book cover (or will cover) further applications (espe-
cially to atoms) and further exploration of quantum mysteries (especially entangled
states). Unfortunately, in this introductory book I have had to leave out many
advanced topics, both cool and useful, including path integrals, most aspects of
relativistic systems, and the more intricate applications to chemistry, materials sci-
ence, and quantum computing. I have also left out nearly all of the history of the
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subject. If you want to see the elephant from all angles you will need to continue
your studies.

One feature that sets this book apart is a rather heavy emphasis on computer-
based numerical methods. These methods are more broadly useful, are usually easier
to learn, and often provide deeper insight than some of the traditional pencil-and-
paper tricks. Computer graphics can also help us visualize much of the mathematics—
and I hope you’ll like the pretty color representations of complex-valued functions.
Awkwardly, though, using the computer as a tool means that I have had to choose
a particular software platform. My choice is Wolfram Mathematica, which I find
especially convenient for plotting formulas and doing short, interactive calculations.
Although you could easily translate some of this book’s computational exercises to
other computing environments, in other cases the translation is rather difficult and
not something that most students should attempt at the same time as learning quan-
tum mechanics. For readers who are not already proficient in using Mathematica,
I have provided an introductory tutorial in Appendix B.

You will also need some physics and math background. It will be helpful, though
not absolutely necessary, if you are already somewhat familiar with the ideas of
quantum physics, at the level of a standard “modern physics” textbook (or the
modern physics chapters in an introductory physics textbook). You should also
be comfortable with the rest of what’s covered in a year-long introductory physics
course, and with calculus, differential equations, and linear algebra.

As of this writing, this book is still unfinished and quite unsuitable for formal
publication. It needs more problems, more applications, more advanced topics, and
an index. Still, I am posting this draft for others to use in the hope that it is better
than nothing, offering a somewhat fresh approach to one of the most profound and
important subjects in all of human knowledge. I would welcome feedback sent to
dschroeder@weber.edu.
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Chapter 1

Wave mechanics

1.1 Einstein and de Broglie

Quantum mechanics began with two deceptively simple formulas:

E = hf and p =
h

λ
. (1.1)

I’ll refer to these as the Einstein and de Broglie relations, respectively, after the two
physicists most responsible for introducing them, in the early 20th century. You
may already be familiar with both of these equations, but let me summarize where
they came from and what they tell us.

The Einstein relation, E = hf , says that a particle’s energy E is proportional to
its frequency f . In 1905 Albert Einstein proposed this relation for light, introducing
the radical idea that light comes in discrete lumps, now called photons, each with an
energy determined by the light’s frequency. So a blue photon (high frequency) has
more energy than a red photon (low frequency), while a gamma-ray photon has far
more energy than either, and a radio-wave photon has much less. The first direct
experimental evidence for the Einstein relation came from the photoelectric effect,
in which high-frequency light, aimed at a metal surface, ejects electrons with more
energy than low-frequency light. (Each electron, it turns out, absorbs the energy
of just one photon from the light.) If you plot the energy vs. the frequency (see
Problem 1.4) you get a straight line, whose slope is the constant of proportionality,

h = 6.63× 10−34 J s = 4.14× 10−15 eV s, (1.2)

called Planck’s constant.
But the Einstein relation doesn’t just apply to particles of light; it applies equally

well to electrons, protons, quarks, neutrinos, and (as far as we know) baseballs.
Defining what we mean by the “frequency” of one of these particles is trickier than
for light, so in introductory courses we usually stick to photons—and warn you not
to apply E = hf to anything else unless you know what you’re doing. In Section 1.3
I’ll show you how to apply the Einstein relation to any particle at all.

1



2 Chapter 1. Wave mechanics

The de Broglie relation, p = h/λ, says that a particle’s momentum p is inversely
proportional to its wavelength λ. For photons, this relation is a straightforward
consequence of E = hf (since a light wave has p = E/c and f = c/λ, where c is
the speed of light). But in 1924 Louis de Broglie proposed that every particle has a
wavelength that’s inversely proportional to its momentum, with the same universal
constant of proportionality, h. The wavelength of a pitched baseball (large p) is far
too tiny to measure, but for low-mass particles such as electrons (small p), it’s not
hard to measure the wavelength in a diffraction experiment—as Clinton Davisson
and Lester Germer did, by accident, soon after de Broglie’s proposal. More recent
experiments have measured the wavelengths of all sorts of subatomic particles, as
well as entire atoms and molecules.

Diffraction experiments with particles, however, are extremely odd, because each
particle can land on the detector in only one place. Figure 1.1 shows a sequence of
actual photographs from a “two-slit” interference experiment performed with elec-
trons, with the beam current increasing from left to right. At low beam currents, you
can see the distinct blips (dots) left by individual electrons on the detection screen,
in apparently random locations. At higher currents, the familiar maxima and min-
ima of the interference pattern emerge, allowing us to determine the wavelength λ
from the size of the pattern. Thus, it appears that λ (together with the experimen-
tal geometry) determines the probability of an electron arriving in any particular
location. Randomness and probabilities seem to be inherent in the de Broglie rela-
tion. Interference experiments with photons yield similar results: random blips at
low intensity, with the wavelength-dependent pattern emerging at higher intensity.1

Explaining how a particle can be localized under some conditions but spread-out
and wavelike under other conditions is quite a challenge, which I’ll begin to address
in the next section.

Figure 1.1: A sequence of photographs of an electron interference pattern, with the beam
current increasing from left to right. Instead of a pair of slits, this experiment actually used
a positively charged wire, perpendicular to the electron beam, allowing the electrons to pass
the wire on either side and then interfere before hitting the detection screen. P. G. Merli, G.
F. Missiroli, and G. Pozzi, “On the statistical aspect of electron interference phenomena,”
Am. J. Phys. 44(3), 306–307 (1976), http://dx.doi.org/10.1119/1.10184.

1See, for example, R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true
single-photon double-slit interference,” Am. J. Phys. 84(9), 671–677 (2016), http://dx.doi.org/
10.1119/1.4955173.

http://dx.doi.org/10.1119/1.10184
http://dx.doi.org/10.1119/1.4955173
http://dx.doi.org/10.1119/1.4955173


1.1. Einstein and de Broglie 3

The similarity of the Einstein and de Broglie relations becomes more apparent
if we express the former in terms of the period of the wave, T = 1/f :

E =
h

T
and p =

h

λ
. (1.3)

In other words, energy is to time (period) as momentum is to space (wavelength).
Alternatively, we can write these relations in terms of the angular frequency, ω =
2πf = 2π/T , and the angular wavenumber, k = 2π/λ. For convenience, we usually
absorb the factors of 2π into Planck’s reduced constant,

~ =
h

2π
= 1.05× 10−34 J s = 6.58× 10−16 eV s (1.4)

(pronounced “h bar”), so we have simply

E = ~ω and p = ~k. (1.5)

Versions 1.1, 1.3, and 1.5 express exactly the same physics, so feel free to use
whichever seems most convenient in any given situation.

Problem 1.1. In problems involving photons the combination hc appears frequently.
Calculate the value of this combination in units of eV-nm, and make a note of the
result so you can use it to simplify the arithmetic in future calculations.

Problem 1.2. Estimate (to within a factor of 2) the number of photons given off by
a 10-watt LED light bulb in one second. How would your answer change for a 60-watt
incandescent bulb, whose light looks the same to the eye?

Problem 1.3. Use the Einstein relation to explain why it is unlikely that the radiation
from mobile phones could cause cancer.

Problem 1.4. In the introductory physics labs at Weber State University, students
study the photoelectric effect by measuring (with a high-impedance voltmeter) the
voltage that builds up across a phototube when the cathode is illuminated by five
different spectral lines from a mercury light source. Here is some actual data that I
obtained using this equipment:

Color Wavelength (nm) Voltage (V)

Yellow 578 0.707
Green 546 0.812
Violet 436 1.424
Violet 405 1.638
Near UV 365 1.913

Use this data (or your own, if you’ve done the experiment yourself) to plot a graph of
voltage vs. frequency. From this graph, make your best estimate of Planck’s constant.
Make your reasoning clear, and express your answer both in J s and eV s.



4 Chapter 1. Wave mechanics

Figure 1.2: A double slit (a), interference pattern (b), and intensity plot (c), from S.
Frabboni, G. C. Gazzadi, and G. Pozzi, “Young’s double-slit interference experiment with
electrons,” Am. J. Phys. 75(11), 1053–1055 (2007), http://dx.doi.org/10.1119/1.

2757621.

Problem 1.5. Calculate the approximate de Broglie wavelength of each of the follow-
ing: (a) a microwave photon, with an energy of 10−5 eV; (b) an electron inside the
magnetron that creates the microwaves, which has been accelerated through a voltage
difference of 5 kV; (c) a rubidium-87 atom in a magneto-optical trap, with a kinetic
energy of 10−11 eV; (d) a proton at the Large Hadron Collider with a kinetic energy of
6.5 TeV; (e) a gnat with a mass of 0.2 mg, flying at a speed of 0.5 m/s. (Hint: Some of
these particles are nonrelativistic, with speed v much less than c and kinetic energy K
much less than mc2, so that K ≈ 1

2mv
2 = p2/(2m). Others are ultra-relativistic, mov-

ing at or near the speed of light, with energy much greater than mc2 so that E ≈ pc.
Be sure to choose the correct energy-momentum relation in each case, and to justify
your choice.)

Problem 1.6. Figure 1.2 shows a recent electron two-slit interference experiment.
At left (a) is an image of the two slits, fabricated in a 500-nm thick silicon nitride
membrane using a focused ion beam. The beam of a transmission electron microscope
was then aimed at the slits, and the resulting interference pattern imaged (b) with a
CCD camera. Panel (c) shows the intensity of the pattern in the CCD image. Please
ignore the central bright spot, which was due to the beam traveling directly through
the partially transparent membrane.

(a) Measure the slit spacing and the angle between interference fringes directly from
the images (using the scales shown), and use these numbers, together with what you
remember about two-slit interference, to determine the wavelength of the electrons.

(b) Each electron in this beam had a kinetic energy of 200 keV. Is your measured
wavelength consistent with the de Broglie relation? (Hint: 200 keV is barely small
enough compared to the electron’s rest energy of 511 keV that it’s reasonable to use
the nonrelativisitic energy-momentum relation. To be more accurate, though, you
could use the exact energy-momentum relation E2 = (mc2)2 + (pc)2, where E is the
sum of the electron’s kinetic energy and rest energy.)

http://dx.doi.org/10.1119/1.2757621
http://dx.doi.org/10.1119/1.2757621


1.2. Wavefunctions 5

1.2 Wavefunctions

To create a mathematical theory of the wave properties of particles, we introduce
the concept of a wavefunction: a function of space that encodes the current state
of a system.

For now, let’s assume that the “system” consists of a single particle living in
a one-dimensional universe. (I’ll generalize to more complicated systems in Chap-
ter 4.) Then, if this were a classical particle, the “state” of the system would consist
of just two numbers: its position x and its momentum px (or velocity vx, which you
can easily calculate from the momentum). (You can think of these two numbers
as the initial conditions that you would need in order to predict the particle’s full
trajectory using Newton’s second law.) For a quantum particle, the “state” instead
consists of the wavefunction ψ(x), a whole infinity of numbers (one for each x).
Quantum states are vastly more complicated, and interesting, than classical states.

An example wavefunction

For example, if we draw the x axis across the two-slit interference pattern in Fig-
ure 1.1 (and ignore the other two dimensions of space), then the wavefunction of
each particle, just before it hits the detection screen, might look something like what
I’ve drawn in Figure 1.3(a). This wavefunction has five “bumps,” corresponding to
the five bright lines in the interference pattern. The dark lines in the pattern are at
the locations where the wavefunction is zero. More precisely, the brightness of the
interference pattern is proportional to the square of the wavefunction, in analogy
to the way the energy in a mechanical or electromagnetic wave is proportional to
the square of the wave amplitude. Figure 1.3(b) shows the square of our five-bump
wavefunction. The height of this graph at any x is then proportional to the proba-
bility of finding the particle at x, when the subsequent interaction with the detection
screen “measures” the particle’s position. After many such measurements are made
on identically prepared particles, the five-line interference pattern emerges.

Computing probabilities

Because x is a continuous variable, the actual probability of finding a particle at any
exact value of x is infinitesimal. To get around this awkwardness, we can instead
ask for the probability of finding a particle between two values of x. We obtain
this probability by calculating the corresponding area under the graph of |ψ|2. For
a generic wavefunction, you can visualize the calculation as shown in Figure 1.4.
Written as an equation, the rule for calculating probabilities is to integrate:(

Probability of finding

particle between a and b

)
=

∫ b

a
|ψ(x)|2 dx. (1.6)

This formula is called the Born rule, after German physicist Max Born (1882–
1970), one of the founders of quantum mechanics. The function |ψ(x)|2 is called the
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Figure 1.3: An example wavefunction (a) and the corresponding probability density (b).

Figure 1.4: The area under any interval of the graph of |ψ(x)|2 is the probability of finding
the particle within that interval.

probability density, and I like to think of it as a function whose purpose in life is to
be integrated. In order for the rule to work, however, we must impose the condition
that the total probability of finding the particle somewhere equals exactly 100%:∫ ∞

−∞
|ψ(x)|2 dx = 1. (1.7)

Any function ψ that satisfies this condition is said to be normalized.

Problem 1.7. For the probability density plotted in Figure 1.4, make a rough graph-
ical estimate of the probability of finding the particle between a and b.

Problem 1.8. What are the units (dimensions) of ψ? Explain your answer.
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Problem 1.9. Suppose that the wavefunction of a particle in one dimension has the
form

ψ(x) =

{
Ax(1− x)e−x for x > 0,

0 for x < 0,

where A is a normalization constant and x is measured in some suitable distance unit.
(A wavefunction similar to this one will come up in Chapter 6, but don’t worry for now
about how we might prepare a particle in this wavefunction.)

(a) Find the normalization constant A. (I suggest doing the integral with Mathematica;
see Appendix B.5 for guidance if necessary.)

(b) Plot graphs of ψ(x) and |ψ(x)|2, showing the full range of x values where ψ isn’t
negligibly small. (Again I suggest using Mathematica; see Appendix B.1 for guidance
if necessary.)

(c) Suppose now that you measure this particle’s position. Make a rough graphical
estimate of the probability of finding it at x < 1. Explain your reasoning.

(d) Now do a careful calculation to check your estimate in part (c).

(e) At (or near) what value of x are you most likely to find this particle? Justify your
answer.

Computing averages

Sometimes, instead of calculating the probability of finding a particle at (or near)
a particular location, we want to know its average position. For example, the
average x for the five-bump wavefunction drawn above would be in the middle of
the central bump, while the average x for the function drawn in Figure 1.4 would
be somewhere to the right of the highest peak but to the left of x = a. I’ll use the
symbol 〈x〉 to denote the average value of x.

To figure out the general formula for 〈x〉, it’s helpful to first imagine that the
values of x are discrete, separated by intervals of dx, so that the probability of any
particular xi is |ψ(xi)|2dx. Then the average x is just the sum of all the possible
values xi, weighted by their probabilities:

〈x〉 =
∑
i

xi |ψ(xi)|2 dx −→
∫ ∞
−∞

x |ψ(x)|2 dx, (1.8)

where in the last expression I’ve taken the continuum limit.

You can use a similar formula to calculate the average value of any function
of x:

〈f(x)〉 =

∫ ∞
−∞

f(x) |ψ(x)|2 dx. (1.9)

A common example would be to compute the average value of x2, which lets you
then calculate the standard deviation of x, denoted σx:

σx =
√
〈x2〉 − 〈x〉2. (1.10)



8 Chapter 1. Wave mechanics

This is a rough measure of the “width” or “spread” of a wavefunction.2

Although we commonly say that these average values apply to a single particle
whose wavefunction is ψ, it’s important to remember that if you actually measure
the value of x, you’ll get some random value that may or may not be near the
average, 〈x〉. It’s therefore impossible to determine 〈x〉 (or 〈x2〉 or σx) with a
single measurement. To determine these quantities in the laboratory you must first
prepare many identical particles in the same wavefunction ψ, then measure all their
positions and calculate the averages.

Problem 1.10. Find the average value of x for the wavefunction of Problem 1.9. Show
graphically that your answer is reasonable, with a brief explanation.

Localized wavefunctions

Any normalized function of x is an allowed wavefunction, which you could use to
describe a quantum particle under suitable conditions. By a function, I mean any
single-valued graph that you can draw on a set of axes—regardless of whether you
know how to write down a formula for it.

Sometimes a quantum particle is localized within a very small region of space. To
describe such a particle we would use a “spiky” wavefunction that’s zero everywhere
except in that narrow region, as shown in Figure 1.5. You could use a variety of
formulas for such a function, but often the exact shape doesn’t matter, and it’s
convenient to take the limit where the spike becomes infinitely narrow and infinitely
tall to become a Dirac delta function,3 denoted δ(x − a). Borrowing a word from
German, we say that a delta function is an eigenfunction (which could be translated
“characteristic” or “particular” function) of position, meaning that it’s a function
for which the particle’s position is precisely defined. A delta function is not a
properly normalized wavefunction, however.

Figure 1.5: A sharp, narrow wavefunction, representing a particle whose position is approx-
imately well defined.

2For a review of probability and statistics, including the concept of a standard deviation, see
Appendix A.1.

3If you’re not already familiar with the Dirac delta function, please see Appendix A.2.
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Figure 1.6: A wavefunction with two narrow spikes and a gap in between. If you measure
the position of such a particle you are equally likely to find it near a or b.

0.47 mm

Figure 1.7: Distribution of measured positions for a collection of about 10,000 identi-
cally prepared rubidium atoms, each with a wavefunction consisting of two narrow peaks,
separated by about half a millimeter. From J. H. Burke, “Improvements and Applica-
tions of a Guided-Wave Bose-Einstein Condensate Interferometer,” PhD thesis, Univer-
sity of Virginia, 2010, http://galileo.phys.virginia.edu/research/groups/sackett/
publications/Burke_PhD.pdf.

A wavefunction with a single narrow spike is in some ways like a classical particle.
But an equally valid wavefunction could have two narrow spikes, separated by a gap,
as shown in Figure 1.6. This wavefunction has no classical counterpart, because it
describes a particle that is (apparently) half in one location and half in another—
and unambiguously not half way in-between the two locations! We sometimes refer
to such a wavefunction as a cat state, in honor of Schrödinger’s cat, a hypothetical
creature that is (supposedly) in a state in which it is half alive and half dead.

However, just because a wavefunction is mathematically allowed doesn’t mean
it’s easy to physically prepare a particle to have that wavefunction—at least in
such a way that you can then verify it in the laboratory. Putting a particle into

http://galileo.phys.virginia.edu/research/groups/sackett/publications/Burke_PhD.pdf
http://galileo.phys.virginia.edu/research/groups/sackett/publications/Burke_PhD.pdf
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a two-peak “cat state” is pretty easy if the particle is a photon (just aim it at a
screen with a double slit, or at a semi-reflective mirror that causes half to reflect
and half to pass through), and becomes progressively more difficult for heavier
particles. Figure 1.7 shows the result of a recent state-of-the-art experiment in
which a collection of about 10,000 identically prepared rubidium atoms were each
split between two distinct locations separated by about half a millimeter. Scaling
up such an experiment from rubidium atoms to cats is, as far as anyone knows,
science fiction.

Momentum eigenfunctions

Completely different from a spiky, localized wavefunction would be one that de-
scribes a particle with well-defined momentum. For this purpose, according to the
de Broglie relation, we should use a periodic function with wavelength λ = h/p.
The simplest periodic function would be a sine or a cosine, as shown in Figure 1.8.
A long wavelength would correspond to a small momentum, and a short wavelength
would correspond to a large momentum. A true sinusoidal function would repeat
forever in both directions, and therefore wouldn’t be normalizable, so we should
remember in the back of our minds that the oscillations must eventually die out in
both directions. As we’ll see later, this means that no normalized wavefunction has
a perfectly well-defined momentum; a perfectly well-defined momentum is an ideal-
ized but unphysical limiting case, just as perfectly well-defined position, described
by a delta function, is an idealized limiting case.

But besides the issue of normalization, our sinusoidal wavefunction has two
other awkward features. First, the square of this wavefunction alternates back
and forth between some maximum value and zero, so it describes a particle whose
probability density varies periodically with location. There’s no reason a particle
can’t have such a wavefunction, but surely there must be a way to describe a particle
with well-defined momentum whose probability density is more uniform. Second,
our sinusoidal wavefunction doesn’t seem to encode the direction of the particle’s
momentum; it would apparently look the same whether px is positive or negative

Figure 1.8: A sinusoidal function with well-defined wavelength and therefore a well-defined
momentum magnitude, |p| = h/λ. However, the direction of the momentum is not well
defined.
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Figure 1.9: A wavefunction with a definite value of the momentum px, which in this case is
positive. (a) Here the two components are plotted as solid and dashed lines, respectively,
with the correct quarter-cycle phase offset to represent a positive-momentum eigenfunction.
(b) Another visual representation of the same function, with the squared magnitude (which
is constant) plotted vertically and the space below the plot filled in with colors to indicate
the signs and relative sizes of the two components. More precisely, the color hue indicates
the phase angle in the complex plane, as explained in the following subsection.

(since λ can only be positive).

The way to fix both of these defects is to give the wavefunction a second com-
ponent at each location in space—that is, to make it a pair of functions instead of
just one. Then, to describe a particle with well-defined px and a uniform proba-
bility density, we use two sinusoidal functions that are out of phase by a quarter
cycle (π/2, or 90◦), so that one component is large in magnitude where the other is
zero and vice-versa. And to distinguish left-moving from right-moving particles, we
associate a quarter-cycle phase difference in one direction with positive px, and a
quarter-cycle phase difference in the other direction with negative px. Figure 1.9(a)
shows a plot of both components, where I’ve used a solid line for the first compo-
nent and a dashed line for the second component. By convention, we associate this
particular phase relationship (second component a quarter-cycle to the right of the
first component) with a right-moving wavefunction, that is, with positive px. To
draw the analogous left-moving wavefunction, you would shift either component left
or right by a half cycle, or, equivalently, flip either component upside-down.
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Complex notation

One way to write a formula for this two-component wavefunction would be to just
list the two components in order:

ψ(x) =
{
A cos(kx+ φ), A sin(kx+ φ)

}
, (1.11)

where A is the wave amplitude, φ is a phase constant that determines where the
cycles start, and k = 2π/λ. Notice that the two components share the same A,
φ, and k, and that the sum of the squares of the components is a constant, A2.
But we can write this formula much more concisely using complex numbers.4 By
convention, we associate the two components of ψ with the so-called “real” and
“imaginary” parts of a single complex-valued function:

ψ(x) = A cos(kx+ φ) + iA sin(kx+ φ). (1.12)

You may now recognize that cos θ+i sin θ is the definition of the complex exponential
function, eiθ, so we can write simply

ψ(x) = Aei(kx+φ). (1.13)

Moreover, if we factor out eiφ from the exponential, we recognize that this factor is
just a complex constant, and so without loss of generality we can absorb it into the
amplitude A:

ψ(x) = Aeikx, (1.14)

where A is now complex.
Again, this is the formula for a wavefunction with definite momentum, also

called a momentum eigenfunction. Specifically, the momentum value corresponding
to this function is

px =
h

λ
=
hk

2π
= ~k. (1.15)

Moreover, as I said above, equation 1.14, with positive k, describes a particle with
positive px. But if we allow k to be negative, then equations 1.14 and 1.15 actually
work for negative px as well: the “imaginary” component of ψ is then a quarter
cycle to the left of the “real” part, as desired. In essence, we have now implemented
the de Broglie relation in the precise language of wavefunctions, by identifying
the periodic function Aeipxx/~ as the momentum eigenfunction corresponding to
momentum value px.

Momentum eigenfunctions aren’t the only wavefunctions that are complex. Vir-
tually all wavefunctions are complex, with two separate components that (in gen-
eral) needn’t be related to each other in any particular way:

ψ(x) = Reψ(x) + i Imψ(x), (1.16)

4For a review of the properties of complex numbers, see Appendix A.3.
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where Re and Im denote the “real” and “imaginary” parts, respectively. I started
with examples of real-valued functions (for which Imψ = 0) only for simplicity.
But I need to go back and explain more carefully how to “square” a complex-valued
wavefunction, so you’ll know how to compute probabilities. The probability density,
|ψ|2, is actually the square modulus of ψ, defined as

|ψ|2 = ψ∗ψ = (Reψ − i Imψ)(Reψ + i Imψ) = (Reψ)2 + (Imψ)2. (1.17)

Here ∗ indicates the complex conjugate, in which the “real” part is the same and
the “imaginary” part has opposite sign. If you think of ψ (at a given x) as a two-
component vector, then |ψ|2 is just the squared magnitude of that vector (which
is always a real, nonnegative number). Notice again that |ψ|2 is constant for the
momentum eigenstate of equation 1.14.

To visualize a complex-valued wavefunction you can always just plot its “real”
and “imaginary” parts separately, as I did in Figure 1.9(a). A useful (and pretty)
alternative, though, is to plot |ψ|2 (or sometimes just |ψ|) on the vertical axis and
then fill in the area under the plot with color hues to indicate the relative sizes
and signs of the “real” and “imaginary” parts. The scheme that I’ll use in this
book assigns red to a number that’s “real” and positive, light green to “imaginary”
and positive, cyan to “real” and negative, purple to “imaginary” and negative,
and intermediate hues to numbers that have both “real” and “imaginary” parts.
More precisely, if you imagine plotting each function value in the complex plane
and then describing its location in polar coordinates, then I’m mapping the angular
coordinate, which mathematicians call the argument of the number but physicists
simply call the phase, to the hue as normally defined in modern computer graphics
systems.5 Figure 1.9(b) shows a phase-as-color plot of the same momentum eigen-
function as in Figure 1.9(a). Figure 1.10 shows a more generic function plotted in
both ways.

Incidentally, I’ve been putting scare quotes around the words “real” and “imag-
inary” because neither part of the wavefunction is any more real or imaginary than
the other, in the everyday meanings of these words. Both contribute equally to the
probability density. Whether wavefunctions are actually real physical entities or
merely imaginary human constructs is another question entirely, which physicists
and philosophers have debated since 1926.

In any case, given an arbitrary complex-valued wavefunction ψ(x), you can
compute |ψ(x)|2 and then check whether it’s normalized according to equation 1.7.
If it is, then you can integrate it over any desired interval (according to equation 1.6)
to obtain the probability of finding the particle within that interval.

There is a similar formula, which I’ll give you in Chapter 3, for finding the
probabilities of various outcomes of momentum measurements.

Problem 1.11. Sketch a portion (a few cycles) of the wavefunction of a particle in
one dimension with a well-defined momentum that is negative. Sketch the real and

5Appendix B.3 shows how to produce plots of this type using Mathematica.
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Figure 1.10: An arbitrary complex wavefunction can be plotted either as separate real
and imaginary parts (top) or as a probability density, filled underneath with color hues to
indicate the complex phase (bottom).

imaginary parts of the wavefunction on the same graph, using different colors or dashing
patterns. Then, underneath this graph, use colored pencils to make a density-phase plot
of the same wavefunction, representing the phases by colors as in Figures 1.9 and 1.10.
Be sure that the various colors line up correctly with the places where the wavefunction
is pure real and positive, pure imaginary and positive, pure real and negative, and so
on.

Problem 1.12. Prove that you can multiply a wavefunction by eiφ, for any real num-
ber φ, without affecting the probabilities of any position measurement outcomes. We
often call such a multiplicative factor a “pure constant phase.” What are some inter-
esting special cases of pure constant phase factors? (As we’ll see later, the same is true
for measurements of other quantities. Therefore a wavefunction’s overall phase factor
is completely unphysical and you can choose it to suit your convenience.)

The effect of a measurement

And now we come to the most important fact about wavefunctions and measure-
ments. Immediately after you perform a measurement, the measured quantity (for
example, position or momentum) will be well defined, and so the particle’s wave-
function must be the corresponding eigenfunction. If you measured the particle’s
position and found it at x = a, then the particle’s wavefunction is now the eigen-
function δ(x− a) (at least approximately, and never mind the normalization). Or,
if you measured the particle’s momentum and found it to have p = pa, then the
particle’s wavefunction is now the eigenfunction eipax/~ (at least approximately, and
never mind the normalization). Either way, we say that the measurement process
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causes the wavefunction to collapse, in a random way, into whatever eigenfunction
corresponds to the measurement outcome.

But if a measurement causes the wavefunction to “collapse,” then what exactly
constitutes a measurement? Amazingly, quantum mechanics provides no clean an-
swer to this question. Fortunately, though, we won’t need a clean answer in order to
apply quantum mechanics to laboratory experiments. The messy answer is that a
measurement always involves some sort of interaction between the quantum system
you’re studying and the apparatus you’re using to study it. Usually this appara-
tus is much larger than the system, so you can think of it as a classical (that is,
non-quantum) object. Fundamentally, of course, quantum mechanics should apply
to everything in your laboratory, including your measurement apparatus. For that
matter, quantum mechanics should also apply to you and to everything else in the
universe. How, then, should we think about quantum measurements fundamen-
tally? Does the universe have a wavefunction and if so, does it ever “collapse”?
These questions are fun to contemplate, and there is still no consensus on the an-
swers.

Problem 1.13. A particle in a one-dimensional universe has the wavefunction ψ(x) =

Ae−αx
2

, where α = 1.2× 1018 in SI units.

(a) What are the units of α? (Explain briefly.)

(b) What is the value of the normalization constant A, both exactly in terms of α and
π, and as an actual number, with units? (Hint: To carry out the integral, change to a
dimensionless variable y so the exponent in the integrand is simply −y2. If the integral
isn’t familiar to you, do it with Mathematica. If this hint seems unnecessary, please
set aside your skepticism and follow it anyway, because it will make the next part of
the problem easier.)

(c) Suppose that you now measure the position of this particle. What is the probability
of finding it between x = 0 and x = +0.5 nm? (Hint: Make the same change of
variables as in part (b), simplifying the expression algebraically as much as you can
before attempting to carry out the integral. Then do the integral numerically with
Mathematica. As a reality check, make a graphical estimate of the answer.)

(d) Suppose that when you measure the position, you find the particle at x = −0.4 nm.
Describe the wavefunction of the particle immediately after this measurement.

1.3 Time evolution

So far I’ve been discussing wavefunctions only as functions of space, at a single
instant in time. What happens to a wavefunction as time passes?

The Einstein relation, E = hf , gives us a clue: If the wavefunction represents a
state in which the particle has energy E, then it will oscillate in time at frequency
f = E/h (or angular frequency ω = E/~).

Most wavefunctions do not represent particles with well-defined energy, so this
clue doesn’t tell us directly how they change over time. But for a free particle, with
no potential energy (and therefore acted upon by no forces), the energy is entirely
kinetic. In this case, the momentum eigenfunctions Aeikx, described in the previous
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section, must also be energy eigenfunctions, because knowing the momentum means
you can calculate the energy.

And how exactly do we take the wavefunction Aeikx and make it oscillate in
time at a given frequency? The answer is simple and elegant: we multiply it by
e−iωt, to obtain

ψ(x, t) = Aeikxe−iωt = Aei(kx−ωt). (1.18)

This is the general formula for the full time-dependent wavefunction of a free particle
with well-defined momentum, and it takes the familiar form of a traveling wave: a
function only of the combination kx − ωt. The individual “ripples” in the wave
move at the so-called phase velocity,

vphase =
ω

k
=
E/~
px/~

=
E

px
. (1.19)

The time-dependent factor e−iωt will come up repeatedly in this book, so let me
give it a name: the wiggle factor.6 The wiggle factor must be a complex exponential
(and not merely a sine or a cosine) in order to get the simple traveling-wave form
in equation 1.18 (that is, a function only of the combination kx − ωt), and also
because a sine or cosine would change the wavefunction’s normalization as time
passes, violating probability conservation. The minus sign in the exponent of the
wiggle factor is required in order for a positive-k traveling wave to travel to the
right.7 You can visualize the wiggle factor as a unit-length “phasor” in the complex
plane, rotating clockwise8 with angular velocity ω = E/~, as shown in Figure 1.11.
The higher the energy, the faster the rotation.

Equations 1.18 and 1.19 work for both nonrelativistic and relativistic particles—
the only difference being the formula that relates the momentum px to the (kinetic)
energy E. The simplest case is actually for an ultrarelativistic (massless) particle
such as the photon, for which E = |px|c and therefore vphase = ±c, as you probably
would have guessed. For a nonrelativistic particle, on the other hand, the result
may surprise you. In this case, if the particle’s mass is m, then E = p2

x/2m and we
obtain

vphase =
p2
x/2m

px
=

px
2m

=
vx
2
, (1.20)

where vx is the particle’s velocity. The phase velocity of the wavefunction is only
half the velocity of the particle! This may seem like nonsense, but it’s not, because
you don’t measure a particle’s velocity by measuring the phase velocity of the ripples
within its wavefunction.

To better visualize the time dependence of the momentum eigenfunctions, please
take some time now to run the Sinusoidal Wave animation at http://physics.

6I learned this name from one of my college professors, Mike Casper.
7However, the plus sign in e+ikx was a mere convention, so we could have instead chosen a

minus sign there and a plus sign in the wiggle factor. Nobody actually does it that way, so please
stick to the standard sign convention.

8When E includes potential energy, as we will consider soon, it can sometimes be negative.
Then ω is also negative and the phasor rotation is counter-clockwise.

http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
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Figure 1.11: The wiggle factor e−iωt is a complex number of unit magnitude that rotates
clockwise at angular velocity ω in the complex plane. (If ω is negative then the rotation is
counter-clockwise.)

weber.edu/schroeder/software/SinusoidalWave.html. Notice how the wave-
length, frequency, and phase velocity all change as you adjust the momentum slider.
Also, as a review of the previous section, notice the difference in the phase rela-
tionships between wavefunctions with positive and negative momentum. To see
how the phase velocity can be only half the particle velocity, take a look next at
the Wavepackets simulation, http://physics.weber.edu/schroeder/software/

Wavepackets.html.
We have now implemented both the Einstein and de Broglie relations, more

precisely, in terms of the sinusoidal behavior of wavefunctions:

• When px is well defined, ψ ∝ eikx with k = px/~ (de Broglie).

• When E is well defined, ψ ∝ e−iωt with ω = E/~ (Einstein).

Although I’ve motivated the second statement by applying it to a free particle, it
turns out to be completely general, even for systems with potential as well as kinetic
energy.

For a single particle in one dimension, we will write the total energy as

E = K + V (x), (1.21)

where the kinetic energy K is a function of momentum, and the potential energy
V (x) can be practically any function of position. When V = 0, the energy eigen-
functions are the same as the momentum eigenfunctions (that is, eikx), as described
above. But those functions describe particles whose positions—and hence their
potential energies—are not well defined at all. Conversely, the spiky position eigen-
functions describe particles with well-defined potential energy but undefined mo-
mentum, and hence undefined kinetic energy. You might therefore think that when

http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/SinusoidalWave.html
http://physics.weber.edu/schroeder/software/Wavepackets.html
http://physics.weber.edu/schroeder/software/Wavepackets.html
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V 6= 0 there would be no functions for which E = K + V is well defined, but in
fact there always is a collection of such energy eigenfunctions—they’re just different
from both the position eigenfunctions and the momentum eigenfunctions. Finding
the energy eigenfunctions for a given V (x) is not always easy, and in any case it
must be done separately for each new function V (x). But energy eigenfunctions
are important, so a good deal of this book will be devoted to the process of finding
them.

For now, though, my main point about the energy eigenfunctions is that they
always evolve in time according to the wiggle factor e−iωt. So, for example, if the
wavefunction at t = 0 is ψ(x, 0) and if ψ(x, 0) is an energy eigenfunction with
energy E, then

ψ(x, t) = ψ(x, 0) e−iEt/~ (for an energy eigenfunction). (1.22)

This is just the general version of equation 1.18, which was specific to the case of a
free particle.

What if ψ(x, 0) is not an energy eigenfunction? The next simplest case is when
it is a mixture of just two energy eigenfunctions:

ψ(x, 0) = c1ψ1(x) + c2ψ2(x), (1.23)

where ψ1 and ψ2 are energy eigenfunctions and c1 and c2 are constants. Then, as
you might guess, the principle of superposition applies: Each contribution to the
total wavefunction simply oscillates at its own frequency, so

ψ(x, t) = c1ψ1(x) e−iE1t/~ + c2ψ2(x) e−iE2t/~, (1.24)

where E1 and E2 are the energies corresponding to the eigenfunctions ψ1 and ψ2.

Equation 1.24 generalizes in the natural way to mixtures of three or more energy
eigenfunctions. Moreover, we’ll see later that any wavefunction can be expressed
as a linear combination of some number of energy eigenfunctions—although that
number is sometimes infinite, so we might need to deal with an infinite sum. In
the language of linear algebra, we say that the collection of energy eigenfunctions
(for any potential energy V (x)) always forms a complete basis, from which all other
wavefunctions can be built.

Problem 1.14. Prove in general that if the state of a quantum system is an energy
eigenfunction, then the probability density, |ψ|2, is independent of time. For this reason,
energy eigenfunctions are also called stationary states.

Problem 1.15. For the mixture of two energy eigenfunctions expressed in equa-
tion 1.24, calculate |ψ(t)|2, multiplying out the binomial and writing each term in
a way that explicitly shows that it is real. For simplicity you may assume that ψ1(x)
and ψ2(x) are pure real. (Hint: In the cross-terms you will find it helpful to write
the constants in magnitude-phase form, e.g., c1 = |c1|eiφ1 , where φ1 is a real number.)
Discuss the result in some detail. How would you describe the time dependence of |ψ|2?
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Problem 1.16. Without writing out any lengthy formulas, discuss the time depen-
dence of a mixture of three energy eigenstates: ψ(t = 0) = c1ψ1 + c2ψ2 + c3ψ3. At
what frequencies will the time-dependent parts of |ψ(t)| oscillate? (Be sure to work the
previous problem before working this one.)

Problem 1.17. In many situations the energy E of a system is ambiguous, with an
arbitrary additive constant. For instance, we measure potential energies with respect
to an arbitrary reference location, and we usually neglect a particle’s rest energy mc2

in nonrelativistic situations. Discuss how an additive constant affects the wiggle factor
and, therefore, the time dependence of definite-energy wavefunctions in quantum me-
chanics. Use the result of Problem 1.15 to explain why changing the additive constant
will not affect the probability density.

1.4 The infinite square well

In the previous section I emphasized the free particle, for which V (x) = 0, because
its energy eigenfunctions are so simple: they’re the same as the momentum eigen-
functions, eikx. The next-simplest example is a particle that’s free within a certain
limited region (say from x = 0 to x = a), but absolutely confined to that region by
powerful forces on each side. In the most idealized model, this system would have
zero potential energy inside the region and infinite potential energy outside:

V (x) =

{
0 for 0 < x < a,

∞ elsewhere.
(1.25)

This potential energy function is called an infinite square well or a one-dimensional
“box.” Figure 1.12 shows one way to visualize V (x). Of course, any confining forces
in the real world would be neither infinitely strong nor infinitely abrupt. But this
model is still useful for understanding a variety of real-world potential wells (e.g.,
electrons in long organic molecules, or in fabricated semiconductor layers), and
provides a good starting point for understanding the general properties of quantum
particles that are trapped within a finite region.

Figure 1.12: The infinite-square-well potential energy function, zero within a finite interval
and infinite elsewhere.
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The infinite potential energy outside the box means that there is zero probability
of ever finding the particle there, so all of the allowed wavefunctions for this system
are exactly zero at x < 0 and x > a. Inside the box the wavefunction can have any
shape at all, so long as it is normalized. The wavefunction could be localized in a
region much smaller than a, or spread over the full width of the box, and as always
it can have both real and imaginary parts.

Energy eigenfunctions

The most important wavefunctions, however, are the energy eigenfunctions, whose
shapes and formulas are not hard to guess. Inside the box there is no potential
energy, so definite momentum would imply definite energy, just as for a free particle.
The difference here is that the wavefunction must go to zero at each end, and the
momentum eigenfunctions, eikx, don’t go to zero anywhere. The way out of this
difficulty is to realize that for a given kinetic energy there are actually two possible
momenta, one positive and one negative. If we superimpose the two corresponding
wavefunctions we get a standing wave, analogous to a standing wave on a string,
with the same wavelength (and hence the same |px| and the same kinetic energy)
as the traveling waves, but with nodes, where the wavefunction goes to zero. In our
case the correct superposition is proportional to

eikx − e−ikx ∝ sin(kx), (1.26)

which is automatically zero at x = 0, at the left end of the box. To make the
wavefunction go to zero at the right end as well, we must restrict the values of k so
that some integer number of half-wavelength “bumps” fits in the box:

λ = 2a, a,
2a

3
,

2a

4
, . . . =

2a

n
, (1.27)

where n can be any positive integer (and is equal to the number of bumps). Fig-
ure 1.13 shows the first three wavefunctions. The corresponding k values are just
2π/λ = nπ/a, so the corresponding momentum magnitudes are

|px| = ~k =
h

λ
=
hn

2a
. (1.28)

The formula for the wavefunctions themselves is therefore

ψn(x) =

{
A sin

(nπx
a

)
for 0 < x < a,

0 elsewhere,
(1.29)

where the normalization constant A equals
√

2/a (as you can easily show), times
an arbitrary unit-modulus phase factor eiφ, which we might as well take to be 1.
Again, these are eigenfunctions of energy but not momentum; inside the box they
are mixtures of positive-momentum and negative-momentum eigenstates, in equal
parts.
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Figure 1.13: The first three definite-energy wavefunctions for a particle in an infinite square
well.

Problem 1.18. Prove that the normalization constant A in equation 1.29 is
√

2/a.

Problem 1.19. Suppose that a particle is in the n = 2 energy eigenstate of an infinite
square well of width a. (a) Sketch the probability density |ψ(x)|2, labeling the axes in
terms of a. (b) Suppose you now measure the position of this particle. Estimate the
probability (to the nearest half percent or less) of finding it within each of the following
three intervals: 0.25a to 0.26a; 0.50a to 0.51a; and 0.62a to 0.63a.

Quantized energies

To find the energy values that correspond to these eigenfunctions, we need to know
the formula for kinetic energy in terms of momentum. If the particle is nonrela-
tivistic, we have simply

E = K =
p2
x

2m
=

h2n2

8ma2
, (1.30)

where the first equals sign holds only inside the box, but the result must be valid
for the wavefunction as a whole. Thus, we have a series of discrete allowed energy
values, with intermediate values not allowed. We say that the energy is quantized ;
this is where the “quantum” in quantum mechanics comes from.

Figure 1.14 shows an energy level diagram (that is, a plot of energy vs. nothing)
for this system. Such a diagram is sometimes called a quantum ladder, and in this
case the rungs get farther and farther apart as you go up. The lowest energy level is
called the ground state, while the rest are called excited states. Figure 1.15 combines
the energy level diagram with plots of the potential energy and the definite-energy
wavefunctions.

Let’s pause briefly to think about the reason why the energy is quantized: In
order to fit within the box, a sinusoidal wavefunction must have an integer number
of bumps. Partial bumps are not allowed, because the wavefunction must go to
zero at both ends of the box (and a discontinuity at either end of the wavefunction
would be equivalent to an infinitely short wavelength at that point, and hence an
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Figure 1.14: Energy level diagram or “quantum ladder” for the one-dimensional infinite
square well. The energies are in units of E1 = h2/8ma2.

infinitely high energy—subverting our goal of finding wavefunctions for which the
energy is well defined and finite).

Notice also that the energy of the ground state is nonzero; in fact it is h2/8ma2.
This is the lowest possible energy for a (nonrelativistic) particle trapped inside an
infinite square well of width a. It is nonzero because the wavefunction must have
at least one full bump inside the box, and therefore the longest possible wavelength
is 2a. If you squeeze the particle into a smaller box (that is, reduce the value
of a), the maximum wavelength decreases and therefore the ground-state energy
increases. This inverse relation between size and energy is quite general in quantum
mechanics, and is ultimately responsible for the stability of matter: If there were
no energy cost to squeezing electrons into smaller and smaller spaces, atoms would
collapse under the attractive electrostatic forces between electrons and nuclei.

I wish I could now show you an experimental energy level diagram for a real par-
ticle trapped in a real potential that approximates an infinite square well. Perhaps
there’s a good example out there somewhere, but so far I’ve been unable to find it.
As I mentioned above, the one-dimensional infinite square well can be used to model
electrons in certain organic molecules, or in semiconductor layers. If you shine light
on these systems, the wavelengths absorbed will correspond to electron transitions
from one rung on the quantum ladder up to a higher rung. Typically, however, the
data show only a single transition—not enough to decode the full structure of the
energy level diagram or even to show that the levels get farther apart as you go up.
Many of the experiments verify the dependence on the well width a in equation 1.30,
but even extracting this information involves quite a few real-world complications
that I’d rather not spend time on now.

So please be patient. The real reason to study the one-dimensional infinite square
well is not because of its direct, real-world applications, but because it serves as a
foundation and starting point for understanding other quantum systems.
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Figure 1.15: Combined plot of the lowest five energy levels and definite-energy wavefunctions
for the infinite square well. The energies are in units of the ground-state energy E1. This
picture is confusing because each wavefunction is plotted on a separate horizontal axis,
using a vertical scale that is unrelated to the energy scale (since wavefunction values are
not measured in energy units!). Nevertheless, plots of this type concisely show a lot of
information at once, so I will use them from time to time.

Problem 1.20. Calculate the ground-state energy for an electron trapped in a one-
dimensional box of width (a) 1 cm; (b) 0.1 nm; (c) 1 fm. Express your answers in
electron-volts, and compare them to other energies that might be relevant to systems
of these sizes. (Hint: When is the electron nonrelativistic? When is it relativistic?
In the relativistic case you’ll need to use the relativistic energy-momentum relation
instead of equation 1.30.)

Time dependence

If a particle in a box starts out in one of the energy eigenfunctions ψn(x), what hap-
pens as time passes? I told you the answer—for energy eigenfunctions in general—in
Section 1.3: Just multiply ψn by the usual time-dependent wiggle factor to obtain

ψ(x, t) = ψn(x) e−iEnt/~. (1.31)

In other words, the magnitude of the wavefunction remains unchanged at every x,
but the phase oscillates clockwise in the complex plane, at a rate proportional to
the energy En. Because the probability density does not change with time, we often
refer to energy eigenfunctions as stationary states (as mentioned in Problem 1.14).

Things get more interesting if we start out in a mixture of two or more station-
ary states. Again, the general prescription was given in Section 1.3: If ψ(t = 0) is
a sum of stationary-state terms, then ψ(t) is given by the same formula with the
corresponding wiggle factor, e−iEnt/~, multiplying each term (see equation 1.24).
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That is, each term oscillates sinusoidally at a frequency proportional to its en-
ergy. The Quantum Square Well simulation, posted at http://physics.weber.

edu/schroeder/software/SquareWell.html, animates the time dependence of an
arbitrary mixture of the eight lowest-energy eigenfunctions. Please spend some time
playing with that simulation now.

But what if a system starts in a wavefunction that isn’t a mixture of energy
eigenstates? Well, it turns out that no such wavefunctions exist! To see how this
works (and why), we need to investigate some of the mathematical properties of the
energy eigenfunctions.

Problem 1.21. A nonrelativistic particle in an infinite square well that starts out in
the mixture

ψ(t = 0) =
1√
2

(
ψ1(x) + ψ2(x)

)
, (1.32)

where ψ1 and ψ2 are the usual energy eigenfunctions for this system. Write down an
expression for the wavefunction ψ(t) at future times, and use Mathematica to plot ψ(t)
at several different times—enough to show the pattern. As in Figures 1.9 and 1.10,
plot |ψ|2 vertically and color the space underneath according to the phase of ψ.9 Be
careful to use the same vertical scale in every plot. Use units in which a = 1, and
choose a similarly convenient unit of time (perhaps so that E1/~ = 1). Describe the
time evolution of the probability density in words, with reference to the more general
behavior that you found in Problem 1.15. Also comment on how the sequence of phases
(color hues) relates to what the wavefunction is doing.

Completeness and orthogonality

The claim that I just made can be stated as a mathematical theorem: Any function
ψ(x), within the interval from 0 through a, can be written as a linear combination
of the energy eigenfunctions, for some set of coefficients cn:

ψ(x) =

∞∑
n=1

cnψn(x) =

√
2

a

∞∑
n=1

cn sin
(nπx

a

)
. (1.33)

This theorem is sometimes called Dirichlet’s theorem, and you may recognize this
formula as the Fourier series for ψ(x). I won’t try to prove the theorem, but you’ll
probably be convinced of it if you spend twenty minutes playing with the Wave
Builder web app at http://physics.weber.edu/schroeder/software/WaveBuilder.
html. Notice that in general the sum requires an infinite number of terms, although
it’s common in physics to stop after a finite number of terms as an approximation
(since we never know the wavefunction exactly anyway). If the function ψ(x) is
complex, then so are at least some of the constants cn. The formal name for this
property of the ψn functions is completeness: they form a complete set, also called
a basis, from which any other wavefunction can be built as a linear combination.

9See Appendix B.3 for how to make these kinds of plots in Mathematica.

http://physics.weber.edu/schroeder/software/SquareWell.html
http://physics.weber.edu/schroeder/software/SquareWell.html
http://physics.weber.edu/schroeder/software/WaveBuilder.html
http://physics.weber.edu/schroeder/software/WaveBuilder.html
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You might wonder, though, how to find all the cn values for a given ψ(x).
Before I tell you how, I need to mention another mathematical property of the
energy eigenfunctions: they are orthogonal, in the sense that∫ a

0
ψm(x)ψn(x) dx = 0 for m 6= n. (1.34)

I like to think of this integral as a kind of infinite-dimensional dot-product, where
we multiply the “components” of ψm and ψn together at each x, then add them all
up. In fact, we define the inner product of any two one-dimensional functions α(x)
and β(x) as

〈α|β〉 =

∫ ∞
−∞

α∗(x)β(x) dx, (1.35)

where the complex conjugation is needed to ensure that any normalized function’s
inner product with itself equals 1 (but is unnecessary in the present context where
all of the our ψn functions are real). Problems 1.25 through 1.27 demonstrate that
this inner product is zero for any two distinct sine-wave energy eigenfunctions of
the infinite square well.

We usually combine equation 1.34 with the normalization condition to write∫ a

0
ψm(x)ψn(x) dx = δmn, (1.36)

where δmn is an abbreviation called the Kronecker delta symbol, defined as

δmn =

{
1 if m = n,

0 if m 6= n.
(1.37)

The verbal way of expressing equation 1.36 is then to say that the energy eigen-
functions are orthonormal. This property is not unique to the infinite square well;
it actually applies to any quantum system whose energy levels are discrete.

I’m now ready to tell you how to find the coefficients cn in equation 1.33. Text-
book author David Griffiths10 calls the method by the apt name Fourier’s trick :
Multiply equation 1.33 by an arbitrary ψm(x), and integrate from 0 to a:∫ a

0
ψm(x)ψ(x) dx =

∞∑
n=1

cn

∫ a

0
ψm(x)ψn(x) dx =

∞∑
n=1

cnδmn = cm. (1.38)

In mathematical language, we’re taking the inner product of our function ψ(x) with
one of the “basis” functions ψm(x), to project out the “component” of ψ(x) along
this basis function. After moving the integral inside the sum, we obtain the same
integral as in equation 1.36, and then the Kronecker delta kills every term in the
sum except one, leaving us with a formula for cm. The formula for cm involves

10David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, third edition
(Cambridge University Press, 2018).
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Figure 1.16: In an abstract two-dimensional space, an arbitrary vector ψ can be expanded
in terms of two orthonormal basis vectors ψ1 and ψ2. The components of ψ in this basis
are 〈ψ1|ψ〉 and 〈ψ2|ψ〉, respectively.

an integral, and you might feel daunted by the prospect of having to carry out an
infinite number of such integrals to find the whole list of cm values. But even if
this process would be tedious, at least it’s straightforward—and often we can get
computers to do the tedious work for us.

The term “inner product” is supposed to remind you of an ordinary dot product
of vectors. In fact, everything we’re doing here is analogous to the more familiar
example of expanding an arbitrary vector in terms of an orthonormal set of unit-
length basis vectors. Figure 1.16 shows how to visualize the process for ordinary
vectors in two dimensions. In the analysis above, the energy eigenfunctions ψn are
our basis “vectors,” which must be orthogonal to each other and normalized to unit
length (equation 1.36). Because these basis functions form a complete set, any other
wavefunction ψ can be expanded in terms of its components cn in this basis. And to
find any particular component cn, you just “dot” the corresponding basis function
ψn into the function ψ.

Of course my little two-dimensional picture leaves out two important complica-
tions: (1) we’re actually working in an infinite-dimensional vector space,11 with an
infinite number of mutually orthogonal basis functions ψn; and (2) our components
cn can be complex numbers. I can’t really visualize either of these complications,
but I still find my little two-dimensional picture to be far better than no picture at
all.

Problem 1.22. After playing with the Wave Builder web app (http://physics.
weber.edu/schroeder/software/WaveBuilder.html) for a while, set it on “Challenge
round 1” and match all four of the target functions. Try not to use too many hints. To
keep a record of your success, make a screen capture when you see the message “Target
4 of 4 matched!”

Problem 1.23. Repeat the previous problem for “Challenge round 2.”

Problem 1.24. Repeat Problem 1.22 for “Challenge round 3” (which is much harder
than rounds 1 and 2).

11For a systematic overview of the properties of vector spaces, see Appendix A.4.

http://physics.weber.edu/schroeder/software/WaveBuilder.html
http://physics.weber.edu/schroeder/software/WaveBuilder.html


1.4. The infinite square well 27

Problem 1.25. Sketch the first two energy eigenfunctions for the infinite square well,
then use your sketch to explain (without any calculation) why these functions must be
orthogonal to each other. Can you generalize your argument to other pairs of energy
eigenfunctions? Explain.

Problem 1.26. Carry out the integral to prove that the infinite square well energy
eigenfunctions ψ1(x) and ψ3(x) are orthogonal. Do the integral “by hand,” rewriting
the integrand using a product-to-sum trig identity. Also use a computer to plot the
integrand. Does it look like the total area under the graph is zero? Explain.

Problem 1.27. Prove in general that the infinite square well eigenfunctions ψm(x) and
ψn(x) are orthogonal for m 6= n. Do the integral “by hand,” using a product-to-sum
trig identity. Why does the proof break down when m = n?

Problem 1.28. Prove the following properties of the inner product (defined in equa-
tion 1.35), where the αs and βs are functions and c is any complex number:

(a) 〈β|α〉 = 〈α|β〉∗,
(b) 〈α|β1 + β2〉 = 〈α|β1〉+ 〈α|β2〉,
(c) 〈α1 + α2|β〉 = 〈α1|β〉+ 〈α2|β〉,
(d) 〈α|cβ〉 = c〈α|β〉,
(e) 〈cα|β〉 = c∗〈α|β〉.

Aside from the notation and the complex conjugations in identities (a) and (e), these
properties should be familiar to you from ordinary dot products of real vectors in
three-dimensional space..

An example initial state

Now let’s work through an example that applies the ideas of the previous two
subsections.

Suppose that a nonrelativistic particle, trapped in an infinite square well, ini-
tially has the rather localized wavefunction shown in Figure 1.17. I’ve arbitrarily
centered this wavefunction at a/4, and arbitrarily made it several times narrower
than the well. For simplicity I’ve made it purely real. Question: How will this
wavefunction change as time passes?

The formula I used to plot Figure 1.17 is

ψ(x) = A exp

[
−
(x− 0.25

0.05

)2
]
, (1.39)

where all distances are measured as multiples of the well width a (so in these units,
a = 1). This function is what we call a Gaussian bell curve: basically e−x

2
, shifted

so the center is at x = 0.25 and squeezed so the half-width, from the center to where
the value is smaller by a factor of e, is 0.05. I chose the Gaussian shape because
it’s smooth and cuts off rapidly enough to be essentially zero at either edge of the
box. You can check (Problem 1.29) that the normalization constant A is slightly
less than 4.0.
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Figure 1.17: A Gaussian initial state for a particle in an infinite square well.

By the completeness property, this wavefunction must be some mixture of the
energy eigenfunctions:

ψ(x) =
∞∑
n=1

cnψn(x), (1.40)

for some set of coefficients cn, where ψn(x) is the n-bump sine wave (equation 1.29).
To find the nth coefficient, we “dot” our wavefunction into the nth basis function,
as written in equation 1.38. Here is some Mathematica code that defines the initial
ψ(x) function, defines the ψn(x) basis functions, and then computes the first 30
expansion coefficients:

initialPsi[x_] := 3.99471*Exp[-((x-0.25)/0.05)^2];

basis[n_, x_] := Sqrt[2]*Sin[n*Pi*x];

c = Table[

NIntegrate[initialPsi[x]*basis[n, x], {x, 0, 1}],

{n, 1, 30}]

Please, if at all possible, fire up your Mathematica system and run this code now.
You should find that it produces12 the following list:

{ 0.351845, 0.48846, 0.334903, 2.3348× 10−14, −0.303429, −0.400962,
−0.261675, 4.5866× 10−14, 0.214801, 0.270178, 0.167833, 6.7859× 10−14,
−0.124821, −0.149442, −0.088362, 8.8199× 10−14, 0.059541, 0.067853,
0.038188, 1.0712× 10−13, −0.023314, −0.025289, −0.013548, 1.2419× 10−13,
0.007494, 0.007737, 0.003945, 1.3905× 10−13, −0.001977, −0.001943 }

These coefficients are the components of ψ(x) in the “directions” of the first 30
sine-wave basis functions. To get a better feel for them, we can plot them with the
instruction ListPlot[c, Filling->Axis], as shown in Figure 1.18. The values
oscillate as a function of n, but the more important pattern is that they generally

12For brevity I’ve rounded the numbers off a little more than Mathematica does by default.
Mathematica also displays some warning messages about the near-zero results possibly being inac-
curate. You can just ignore these messages, or eliminate them with an option like AccuracyGoal->8
in the NIntegrate function.
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Figure 1.18: Plot of the first 30 expansion coefficients of the wavefunction shown in Fig-
ure 1.17, in the infinite square well energy eigenfunction basis.

Figure 1.19: Plots of the reassembled ψ(x), computed from equation 1.40, keeping the first
10, 20, and 30 terms.

decrease as n increases, and are pretty negligible once n reaches 30. (I chose to stop
at 30 after some trial and error with other upper limits.) As a further check that
the expansion has converged, we can reassemble ψ(x) from its components (using
equation 1.40 and plot the result:

Plot[Sum[c[[n]]*basis[n, x], {n, 1, nMax}], {x, 0, 1}]

Figure 1.19 shows the output of this instruction for nMax values of 10, 20, and 30.
Now that we have our expansion coefficients, we can obtain the wavefunction

at any future time by inserting the appropriate wiggle factor into each term of the
expansion (see equation 1.24):

ψ(x, t) =
∑
n

cnψn(x)e−iEnt/~. (1.41)

In this case En = h2n2/(8ma2), so the wiggle factor frequencies are proportional
to n2. To simplify this formula we can just absorb all the constants into our unit of
time, so the wiggle factor becomes e−in

2t (see Problem 1.29 for details). Then the
Mathematica code to define a function for ψ(x, t) is:

psi[x_, t_] := Sum[c[[n]]*basis[n, x]*Exp[-I n^2 t], {n, 1, 30}]
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Figure 1.20: Time evolution of the initial wavefunction shown in Figure 1.17, with times
measured in units of ~/E1.

What does this function look like? For t > 0 it’s complex, so let’s plot |ψ|2 on the
vertical axis and use color hues to represent the phases (as in Figures 1.9 and 1.10,
using Mathematica as described in Appendix B.3):

Plot[Abs[psi[x, t]]^2, {x, 0, 1}, PlotRange -> {0, 16},

PlotPoints -> 300, Filling -> Axis,

ColorFunction -> Function[x, Hue[Arg[psi[x, t]]/(2Pi)]],

ColorFunctionScaling -> False]

Figure 1.20 shows a sequence of plots produced in this way for t values up to 0.05.
The initially narrow Gaussian spreads horizontally, as its tails acquire a positive
imaginary part (orange to yellow to green) and its center acquires a negative imag-
inary part (magenta). Soon the left tail hits the edge of the box, and the reflections
produce interference fringes in the probability distribution. Problem 1.29 further
explores the time evolution of this wavefunction. The general point, though, is that
once we know the initial wavefunction ψ(x) and the energy eigenfunctions ψn(x), we
can use wiggle factors and superposition to predict the wavefunction at any future
time.

Problem 1.29. As you use Mathematica to work through the calculations and repro-
duce the plots in this subsection, fill in the following details:

(a) Find the normalization constant A in equation 1.39.

(b) Explain why cn ≈ 0 whenever n is a multiple of 4.

(d) Suppose that the quantum particle is an electron and a = 1.0 nm. Calculate E1

in electron-volts, then use this value to find the unit of time used in Figure 1.20 (and
in the corresponding code). Express this time unit in femtoseconds. About how long
does the wavefunction take to spread out enough to fill the “box”?

(e) Explore the time evolution of this wavefunction over longer time scales. What
patterns to you notice? Can you explain them?
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Problem 1.30. A nonrelativistic particle in an infinite square well has the initial
(t = 0) wavefunction

ψ(x) = A(x− 0.5) exp

[
−
(x− 0.5

0.1

)2
]
,

in units where the well width a equals 1.

(a) Plot this function.

(b) Find the normalization constant A.

(c) Find the expansion coefficients cn in the basis of energy eigenfunctions, and plot
these coefficients as in Figure 1.18. Explain why some of the cn are zero (although
NIntegrate returns very small nonzero values).

(d) Plot the approximate reassembled wavefunction as in Figure 1.19, keeping a few
different numbers of terms in the sum and showing how many are needed for the plot
to visually match the original ψ(x). How many terms are needed to visually match the
original ψ(x)?

(c) Calculate and plot the wavefunction at several future times (using color hues to
represent the phases as in Figure 1.20), to illustrate how it evolves. Discuss the ap-
pearance of these plots in some detail, explaining as many features as you can. How
much time passes before the behavior repeats?

Problem 1.31. The method used in this subsection is similar to the way we predict
the motion of a taut string with fixed ends. Consider, for instance, a guitar string
stretched between x = 0 and x = 1 (in suitable units), whose transverse displacement
is y. At t = 0 you pluck the string so it has the initial triangular shape

y(t = 0) =

{
x for 0 < x < 0.2,

0.25(1− x) for 0.2 < x < 1,

where I’m assuming that y is measured in much smaller units than x.

(a) Use Mathematica to plot this function. Then calculate its first 50 expansion coeffi-
cients in the basis of normalized sine waves, analogous to the expansion in equation 1.40.
Make plots analogous to Figures 1.18 and 1.19, and discuss them briefly.

(b) Instead of oscillating with a complex “wiggle factor” e−iωnt, a sinusoidal normal
mode of a taut string that is initially at rest oscillates according to a cosine function:
cos(ωnt). The other difference from the nonrelativistic quantum system is that instead
of ωn being a quadratic function of n, for the string it is a linear function (with a
constant of proportionality that depends on the string’s mass and tension). Otherwise,
the procedure for predicting y(x, t) is the same as for a quantum particle in a box: Just
insert the oscillating time-dependent factor into each term in the expansion. So define
a Mathematica function to calculate y(x, t), and plot this function for enough different
times to show the pattern in the behavior.

Probabilities for energy measurements

If a particle in an infinite square well starts out in an energy eigenfunction and
then you measure its position, you know how to calculate the probabilities of the
various possible outcomes: according to the Born rule (equation 1.6), you square the
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Figure 1.21: When we measure the energy of a system that’s not in an energy eigenstate, the
probability of obtaining any particular outcome En is the squared modulus of the component
cn of the system’s state ψ in the direction of the eigenvector ψn that corresponds to En.
The normalization condition on ψ and the Pythagorean theorem guarantee that the sum of
all the energy outcome probabilities equals 1.

wavefunction to get the position probability density. For an energy eigenfunction
this probability density is spread over the width of the well, and varies sinusoidally
between 0 at the nodes and 2/a at the antinodes.

But what if, on the other hand, the particle starts out in some arbitrary wave-
function and you try to measure its energy? If the wavefunction is an energy
eigenfunction ψn, then of course you will obtain the corresponding En value with
100% certainty. If the wavefunction is a mixture of two energy eigenfunctions, such
as

ψ(x) = c1ψ1(x) + c2ψ2(x), (1.42)

then presumably you could obtain either E1 or E2 as your result, with probabilities
that somehow depend on the sizes of the coefficients c1 and c2. But the proba-
bilities can’t be equal to c1 and c2, because these coefficients could be negative or
even complex; in fact the probabilities are equal to the square moduli of these co-
efficients, |c1|2 and |c2|2, respectively. To see why this rule makes sense, let’s check
the normalization of ψ(x):

1 =

∫ a

0
|ψ(x)|2 dx =

∫ a

0

[
|c1|2ψ2

1 + |c2|2ψ2
2 + (c∗1c2 + c∗2c1)ψ1ψ2

]
dx. (1.43)

Integrating the three terms separately, we find that the first two give simply |c1|2 and
|c2|2, because ψ1 and ψ2 themselves are normalized, while the third term integrates
to zero, because ψ1 and ψ2 are orthogonal. Therefore the squared coefficients must
obey the relation |c1|2 + |c2|2 = 1, just as you would expect for probabilities (see
Figure 1.21).

The formulas in the previous paragraph generalize straightforwardly to super-
positions of three or more energy eigenfunctions. If you measure the energy for a
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particle with any (normalized) wavefunction ψ(x), the probability of obtaining the
result En is the square modulus of the expansion coefficient cn, when the wavefunc-
tion is expanded in terms of energy eigenfunctions as in equation 1.33. Therefore,
according to the result of Fourier’s trick (equation 1.38), the probability is(

Probability of finding

particle with energy En

)
= |cn|2 =

∣∣∣∣∫ a

0
ψn(x)ψ(x) dx

∣∣∣∣2. (1.44)

Moreover, normalization of ψ(x) implies that the sum of all these probabilities
equals 1:

∞∑
n=1

|cn|2 = 1. (1.45)

Equation 1.44 is another version of the Born rule; to distinguish it from equation 1.6,
I’ll call it the Born rule for energy. (Unlike the Born rule for position, equation 1.6,
there’s no need here to integrate over a range of outcomes because the allowed
energy values are discrete.)

Finally, I should mention that after your measurement, now that you have a
definite energy En for the particle, the wavefunction will have “collapsed” to ψn(x).

Problem 1.32. Suppose that at t = 0 you were to measure the energy of the particle
described in the previous subsection, whose wavefunction is written in equation 1.39
and plotted in Figure 1.17.

(a) What is the probability of finding this particle to have energy E1?

(b) What is the most likely outcome of this measurement, as a multiple of E1? What
is its probability?

(c) Check that the total probability for all outcomes up to E30 is approximately equal
to 1.

(d) Suppose now that you wait for some time to pass before making the energy mea-
surement. How do the energy measurement probabilities change with the passage of
time? Explain carefully.

Problem 1.33. For the initial wavefunction described in Problem 1.30, list all the
energies that you might obtain with probability 1% or greater, if you were to measure
this particle’s energy. Express these energies as multiples of E1, the ground-state
energy of a particle in this infinite well. Also list their respective probabilities. Finally,
calculate the (approximate) average expected outcome of this energy measurement,
being sure to make your reasoning clear.

1.5 The Schrödinger equations

The energy eigenfunctions for the infinite square well are simple and easy to guess—
but they’re the exception, not the rule. For a more general (and more realistic)
potential energy function V (x) the energy eigenfunctions will be more complicated,
and simply guessing them isn’t an option. We need a more systematic method.
Unfortunately, there’s no general formula for the energy eigenfunctions themselves.
But there is a general way of writing down the differential equation of which these
functions are the solutions.
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The time-independent Schrödinger equation

To see where this differential equation comes from, consider again the sinusoidal
waves that are energy eigenfunctions for a free particle, or inside an infinite square
well, or (it turns out) in any region where V (x) = 0. Whether the sinusoidal function
is eikx or sin(kx) or cos(kx), its second derivative equals −k2 times itself:

d2

dx2
ψ(x) = −k2ψ(x) for energy eigenfunctions where V (x) = 0. (1.46)

Here the wavenumber k is, as usual, p/~, and we don’t have to worry about whether
p is positive or negative because it’s squared.

From here on, unless I say otherwise, I will assume that the particle in question
is nonrelativistic. Then p2 = 2mK, where K is the kinetic energy, so

d2

dx2
ψ(x) = −2mK

~2
ψ(x). (1.47)

Of course, for a free particle, we could just as well write E (total energy) instead
of K (kinetic energy). But now think about what should happen where V (x) 6= 0.
The second derivative of the wavefunction, or its curvature, is what determines its
wavelength: the distance that it takes the wave to swing up and down to make a
full cycle. The wavelength determines the momentum, which determines the kinetic
energy, so adding in some potential energy, while keeping K fixed, shouldn’t affect
the second derivative or the relationship expressed in equation 1.47. Therefore, even
where V (x) is nonzero, we can substitute E−V (x) for K in equation 1.47 to obtain

d2

dx2
ψ(x) = −2m

~2

(
E − V (x)

)
ψ(x) for any energy eigenfunction. (1.48)

Comparing to equation 1.46, we see that the quantity
√

2m(E − V (x))/~ in this
equation is playing the role of a position-dependent wavenumber, k(x). Dividing
this wavenumber into 2π gives us a corresponding local wavelength,

λ(x) =
2π

k(x)
=

h√
2m
(
E − V (x)

) . (1.49)

But the denominator of this expression is just the momentum that a classical particle
of energy E would have if it were at position x; we sometimes refer to this quantity
as the local momentum. Figure 1.22 shows an example of the concept of local
wavelength.

Equation 1.48 is the famous time-independent Schrödinger equation, or TISE for
short. It says that the local wavelength and local momentum of an energy eigen-
function must satisfy the de Broglie relation at every x. In practical terms, the
TISE is the differential equation that we must solve in order to find the energy
eigenfunctions for an arbitrary potential energy V (x). It’s really a different differ-
ential equation for every new V (x), and its solutions are different as well, so solving
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Figure 1.22: A wavefunction whose local wavelength decreases from left to right. Although
it’s easy in this case to estimate the local wavelength by measuring a full cycle of the wave,
the precise definition of λ(x) requires only a local comparison of ψ to its second derivative,
to determine the local value of k2 (see equation 1.46) and hence λ = 2π/k.

the TISE for the myriad possible V (x) functions can be a never-ending task. We’ll
solve it repeatedly, in particular cases, in the chapters that follow. First, though,
I’d like to digress into a more abstract interpretation of the TISE.

Problem 1.34. Assuming that the wavefunction shown in Figure 1.22 is an energy
eigenfunction for some potential energy V (x), does V (x) increase or decrease from left
to right? Explain carefully.

Problem 1.35. Consider a wavefunction ψ(x) whose behavior in a small region around
x = 0 is described by the function ψ = 1 − x2 (where x is in some suitable distance
unit). What is this function’s local wavelength λ(x) at x = 0? Illustrate your result
with a sketch or a computer-drawn plot showing both ψ(x) and the cosine function
whose actual wavelength is λ(0) so that it “fits” ψ(x) at the origin.

Problem 1.36. Suppose V (x) is a constant (independent of x) throughout some in-
terval. Find the general solution to the TISE in this interval, in terms of E, treating
the cases E > V and E < V separately. (In each case there will be a two-parameter
family of solutions, because the TISE is a second-order differential equation.)

Problem 1.37. Usually, when we work with the time-independent Schrödinger equa-
tion (TISE), we assume a given V (x) and try to solve for the eigenfunctions ψ(x). But
it’s much easier to work backwards. Suppose, for example, that the Gaussian function
e−αx

2

(where α is a constant) is a solution of the TISE for some energy E. What can
you conclude about the potential energy function V (x)? If we assume V = 0 at x = 0,
what are V (x) and E?

Operators and eigenvalues

With a simple algebraic rearrangement, we can instead write the TISE as

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x). (1.50)
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I’ll now “factor” out the ψ(x) on the left-hand side to obtain[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (1.51)

where the quantity in brackets is what we call an operator, which acts on the function
ψ(x). In general, an operator is basically a “machine” that converts a function
into some other function. Examples of operators would include d/dx (“take the
derivative”), x (“multiply the function by x”), and −~2/2m (“multiply the function
by the constant −~2/2m”). The operator in the brackets of equation 1.51 says,
“Take the function’s second derivative, multiply the result by the constant −~2/2m,
then add that onto what you get when you multiply the function by V (x).” This
multi-step operator is called the Hamiltonian operator and is abbreviated Ĥ:

Ĥ = − ~2

2m

d2

dx2
+ V (x). (1.52)

(The “hat” symbol ˆ is to emphasize that it’s an operator.) Using this handy
abbreviation, we can write the TISE as simply

Ĥψ = Eψ, (1.53)

where here it is understood that ψ is a function of x.
Equation 1.53 has the form of an eigenvalue equation: It says that the solutions

to the TISE are precisely those functions that, when acted upon by the Hamiltonian
operator, are left unchanged except for multiplication by a constant E (the so-called
eigenvalue). This is why those solutions are called energy eigenfunctions.

You’ve probably heard of eigenvalues before, in the context of matrices and
eigenvectors. In the next chapter I’ll show you how to rewrite equation 1.53 in
vector-matrix form—although the matrix that represents Ĥ and the vectors that
represent ψ turn out to be infinite-dimensional. For now, just rest assured that the
“eigen” terminology is entirely consistent with what you learned in linear algebra.

To provide more context for these ideas, let me digress even further to discuss
some other operators and their eigenfunctions. The momentum operator is p̂x =
−i~d/dx, because the momentum eigenfunctions, eipxx/~, are eigenfunctions of this
operator with eigenvalues px:[

−i~ d
dx

]
ψ(x) = pxψ(x), for ψ(x) = eipxx/~. (1.54)

From the momentum operator we can construct the kinetic energy operator using
the formula p̂2

x/2m; that is, apply the momentum operator twice, then divide by
the constant 2m. The result is just the first term in the Hamiltonian operator,
equation 1.52.

The position operator, meanwhile, is simply x̂ = x, that is, “multiply by a factor
of x.” The eigenfunctions of this operator are Dirac delta functions, because the
eigenvalue equation

x̂ψ(x) = x0ψ(x) (1.55)
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Physical Eigenvalue Corresponding
quantity Operator symbol eigenfunction

Position x̂ = x x0 δ(x− x0)

Momentum p̂x = −i~ d
dx

px eipxx/~

Energy Ĥ = − ~2

2m

d2

dx2
+ V (x) E Depends on V (x)

Table 1.1: The most important operators, and their corresponding eigenvalues and eigen-
functions, for a quantum system consisting of a single, structureless particle in one dimen-
sion.

(where x0 is a constant) is satisfied by the delta function δ(x− x0). (The equation
must be satisfied for all x, but it is: check it separately for x = x0 and x 6= x0.) The
operator for any function of x is simply (to multiply by) that function; in particular,
the potential energy operator is simply (to multiply by) V (x).

Equation 1.52, therefore, simply says that the Hamiltonian operator is the sum
of the kinetic energy and potential energy operators: it is the total energy operator,
and that’s why its eigenvalues are the energy values E that correspond to its eigen-
functions. (The reason it’s called the Hamiltonian and not just the energy operator
has to do with the Hamiltonian formulation of classical mechanics, which you may
or may not have studied in the past.13)

Table 1.1 summarizes the notation and formulas associated with the position,
momentum, and Hamiltonian operators, and their eigenvalues and eigenfunctions.

Problem 1.38. Prove that all three of the operators in Table 1.1 are linear, that is,
that Â(ψ1 + ψ2) = Âψ1 + Âψ2 and Â(kψ) = kÂψ, where Â can be x̂, p̂, or Ĥ, for any
wavefunctions ψ, ψ1, and ψ2, and any constant k. All of the operators that we use in
quantum mechanics are linear.

Properties of the energy eigenfunctions

In Section 1.4 I claimed that the energy eigenfunctions for the infinite square well
are mutually orthogonal, so that if they are also normalized we can write the inner
product of any two of them as

〈ψm|ψn〉 = δmn, (1.56)

where δmn is the Kronecker delta symbol (1 if m = n and 0 otherwise). I further
claimed that these functions form a complete set, so that any other wavefunction

13The Hamiltonian is named after Irish mathematician William Rowan Hamilton, whose story
is told in a brilliant video on the YouTube A Capella Science channel, https://www.youtube.com/
watch?v=SZXHoWwBcDc.

https://www.youtube.com/watch?v=SZXHoWwBcDc
https://www.youtube.com/watch?v=SZXHoWwBcDc
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ψ(x) can be written as a linear combination of them:

ψ(x) =
∑
n

cnψn(x), (1.57)

for some set of complex coefficients cn. Finally, I used “Fourier’s trick” to show how
to calculate these coefficients as inner products:

cn = 〈ψn|ψ〉. (1.58)

These results are not unique to the infinite square well: the energy eigenfunctions
for any potential energy function V (x) must be both orthogonal and complete.
There are some subtle complications when V (x) does not grow to infinity in both
directions, in which case the “unbound” eigenfunctions are not quite normalizable
and the corresponding eigenvalues vary continuously instead of being quantized. I’d
prefer to avoid these complications for now, so let’s assume that V (x) does grow
to infinity in both directions, causing all wavefunctions to be well behaved, dying
out to zero on both sides. Then the energy eigenfunctions will form a discrete (but
infinite) set, which we can number in order of increasing energy according to how
many nodes they have. In general they won’t be simple sine waves, but they will
still obey equations 1.56, 1.57, and 1.58, as long as we define the inner product of
two functions as an integral over all x,

〈ψα|ψβ〉 =

∫ ∞
−∞

ψ∗α(x)ψβ(x) dx, (1.59)

instead of cutting it off at 0 and a as I did in Section 1.4.

Furthermore, and also as in Section 1.4, the coefficients cn that appear in equa-
tions 1.57 and 1.58 have an important physical interpretation: According to the
Born rule for energy, the square modulus of cn is the probability of obtaining the
corresponding energy En if you measure the energy of a particle whose wavefunction
is ψ: (

Probability of finding

particle with energy En

)
= |cn|2 = |〈ψn|ψ〉|2. (1.60)

Again, I’ve written these formulas (1.56, 1.57, 1.58, and 1.60) for the case in
which the energy eigenvalues are discrete rather than continuous. When the eigen-
values are continuous the same concepts apply, but it’s trickier to express the con-
cepts with mathematical precision. For that matter, these concepts also apply to
other observable quantities besides energy—most notably position and momentum,
whose eigenvalues are always continuous. For position, though, I’ve already written
down the Born rule in equation 1.6. I’ll show how to express orthogonality and
completeness for the momentum eigenfunctions, and write down the Born rule for
momentum, in Section 3.1.
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Problem 1.39. Suppose that you prepare a million identical systems in the same
state ψ, and then measure all of their energies. The predicted average outcome would
be the sum of all possible outcomes, weighted by their probabilities:

〈E〉 =
∑
n

En|〈ψn|ψ〉|2, (1.61)

where ψn is the eigenfunction corresponding to En (and again I’m assuming that the
En values are discrete). Show that you can also, if you wish, compute the average
energy as the inner product

〈E〉 = 〈ψ|Ĥψ〉, (1.62)

where Ĥ is the Hamiltonian operator. (Hint: Work backwards, and use the complete-
ness property to write ψ in terms of energy eigenfunctions.) Can you write a similar
formula for the predicted average outcome of a position measurement?

Problem 1.40. In Problem 1.12 you showed that multiplying a wavefunction by a
constant phase factor has no effect on position measurement probabilities. Prove that
the same is true of energy measurement probabilities.

The time-dependent Schrödinger equation

Among all the observable quantities, energy is special because it is closely tied to
time evolution. Recall from Section 1.3 that an energy eigenstate evolves in time
with a simple wiggle factor,

ψ(t) = ψ(0)e−iEt/~ (for an energy eigenfunction), (1.63)

implementing the Einstein relation E = ~ω. If we act on this function with the
Hamiltonian operator Ĥ, the wiggle factor simply factors out (since it doesn’t de-
pend on x) and we obtain the same factor of E as in equation 1.53:

Ĥψ(t) = Ĥψ(0)e−iEt/~ =
(
Ĥψ(0)

)
e−iEt/~ = Eψ(0)e−iEt/~ = Eψ(t). (1.64)

But now notice that we can obtain almost the same expression by instead taking
the time derivative:

∂

∂t
ψ(t) =

∂

∂t

(
ψ(0)e−iEt/~

)
= (−iE/~)ψ(0)e−iEt/~ = (−iE/~)ψ(t). (1.65)

(It’s a partial derivative because ψ(t) is also a function of x.) Multiplying both
sides by +i~ and comparing to the previous equation, we have

Ĥψ(t) = i~
∂ψ

∂t
. (1.66)

This result would be of little use if it applied only to energy eigenfunctions, for
which we already have the more explicit formula 1.63. But amazingly, equation 1.66
applies to any wavefunction, because any wavefunction can be written as a sum of
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energy eigenfunctions, each of which oscillates in time according to its own wiggle
factor. The explicit expansion formula is

ψ(t) =
∑
n

cnψne
−iEnt/~, (1.67)

for some collection of complex coefficients cn, where the sum runs over all energy
eigenfunctions ψn (and the sum should be replaced by an integral when the eigen-
values En are continuous instead of discrete). The calculations of equations 1.64
and 1.65 work the same as before, for each term in this sum. Each term has its
own En, but everything still matches up, with the same extra factor of −i/~, re-
sulting in equation 1.66.

Equation 1.66 is a first-order differential equation that tells us how any wave-
function evolves in time. Although I’ve already written out its explicit solution
in equation 1.67, that solution can be cumbersome because it entails an infinite
sum and requires that we first find all the energy eigenfunctions and eigenvalues.
Sometimes it’s simpler just to work with the differential equation directly—not that
that’s always easy either.

If we write out the Hamiltonian operator explicitly, then equation 1.66 takes the
form [

− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) = i~

∂ψ

∂t
. (1.68)

Notice that this is a partial differential equation, in which ψ is a function of both x
and t. Given any initial wavefunction ψ(x, 0), we can in principle use this equation
to predict the wavefunction at all future times. Thus, this equation plays the same
logical role in quantum mechanics that Newton’s second law, F = m(d2x/dt2), plays
in classical mechanics.

Equation 1.68 (or 1.66) is called the time-dependent Schrödinger equation, or
the TDSE for short. As you can see, it looks an awful lot like the time-independent
Schrödinger equation (equation 1.48 or 1.53), because both involve the same Hamil-
tonian operator. But the logical roles of the two Schrödinger equations are com-
pletely different : The TISE is the equation that we must solve to find the energy
eigenfunctions and their corresponding eigenvalues, while the TDSE is the equation
that governs the time evolution of any wavefunction whatsoever.

Problem 1.41. True or false: Every wavefunction must satisfy the TISE. True or
false: Every wavefunction must satisfy the TDSE. Explain your answers carefully.

Problem 1.42. A normalized wavefunction had better stay normalized as time passes,
right? Therefore the time derivative of the normalization integral should be zero:

d

dt

∫ ∞
−∞

ψ∗ψ dx = 0. (1.69)

Prove this result. (Hints: Move the derivative inside the integral, where it becomes a
partial derivative, because ψ depends on both x and t. Then apply the product rule,
and use the TDSE to eliminate the time derivative in each term, being careful with
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complex conjugation and minus signs. The potential energy terms should then cancel.
In the remaining terms, integrate by parts so instead of a second derivative you have a
product of two first derivatives. Why are the boundary terms zero?)



Chapter 2

Bound states in one dimension

Our goal in this chapter will be to solve the time-independent Schrödinger equation
(TISE) for a variety of one-dimensional potential functions V (x), focusing on situ-
ations in which the particle is trapped or “bound” within a limited region of space.
In these situations the energy levels will be discrete, so we want to find these allowed
energies and the corresponding energy eigenfunctions. Some of these solutions will
have important real-world applications, for example, to molecular vibrations or to
electrons in semiconductors.

We’ve already worked out the energies and eigenfunctions for the infinite square
well, so a logical next step might be to pick a slightly more complicated V (x)—
perhaps a square well with a finite depth, or the smooth potential of a simple
harmonic oscillator—and work out its solutions. Instead, though, I’d like to take
a more general approach, focusing first on the qualitative features of the energy
eigenfunctions, and then showing you how to use numerical methods to solve the
TISE for any potential function whatsoever.

2.1 Qualitative solutions of the TISE

Consider a generic potential energy function V (x), such as that shown in Figure 2.1.
In the figure I’ve also drawn a horizontal line, at an arbitrary level, to indicate the
total energy E of a hypothetical particle that’s subject to this potential.

If this were a classical particle, we could immediately determine the qualitative
features of the motion from this diagram. We would first note that the particle’s
kinetic energy,

K = E − V (x), (2.1)

cannot be negative, so any x where E is less than V (x) is classically forbidden: the
particle simply cannot be there if its total energy is only E. The locations where
E is greater than V (x) are similarly called classically allowed. Within a classically
allowed region, the particle will be moving faster where V (x) is smaller (large K)
and slower where V (x) is larger (small K). The boundaries between the classically
allowed and forbidden regions are called classical turning points: a particle at one

42
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Figure 2.1: An arbitrary potential energy well and hypothetical energy level of a particle
trapped in the well.

of these locations must have just come to rest (K = 0), after moving in from the
allowed region and before moving back into the allowed region. Remember that the
force on the particle is minus the slope of the potential energy: Fx = −dV/dx.

The distinction between allowed and forbidden regions is also critical in quantum
mechanics, although we’ll see that the word “forbidden” is somewhat of a misnomer.
We’re interested in wavefunctions with definite energy, so let’s look at the TISE,
which these functions must obey:

d2ψ

dx2
= −2m

~2

(
E − V (x)

)
ψ(x). (2.2)

First note that there are no i’s in this equation, so we can always find solutions
that are purely real; I’ll take ψ to be real for the rest of this chapter. Now focus on
the factor (E − V (x)) in the TISE. This factor is positive in an allowed region but
negative in a forbidden region, and this sign change dramatically affects the shape
of the solution ψ(x). In an allowed region, ψ and its second derivative have opposite
signs, while in a forbidden region, ψ and its second derivative have the same sign.
The second derivative indicates the curvature of the graph of ψ(x): concave-up
or concave-down. Thus, ψ(x) curves toward the x axis in an allowed region and
away from the x axis in a forbidden region, as shown in Figure 2.2.

Now let’s imagine drawing a sketch of ψ(x), for some given energy. There’s no
obvious way to get started, so for now I’ll just arbitrarily say that we can start with
some positive ψ value and some positive slope (dψ/dx), at some particular x value
that lies in a classically allowed region (see the Figure 2.3). Then, by the TISE, the
graph must be concave-down at this point, so as we move the pencil to the right
we should curve downward through a local maximum and then continue downward
until the graph crosses the x axis, at which point its curvature will have decreased
to zero. Continuing to the right, the graph goes below the x axis but now begins
curving upwards, so it then reaches a local minimum and heads back up, crossing
the x axis again and finishing a complete “cycle.”



44 Chapter 2. Bound states in one dimension

Figure 2.2: Four different cases of the relationship between the sign of ψ and the sign of its
second derivative. Not shown are the borderline cases where d2ψ/dx2 = 0 (an “inflection
point”), either at a classical turning point (E = V (x)) or where ψ crosses the x axis.

Figure 2.3: A partial sketch of a qualitatively accurate wavefunction (see text for details).

If the potential energy V (x) were constant throughout this range of x values,
then this oscillation cycle would be a perfect sine wave (see Problem 1.36). In
general V (x) will not be constant, so the “wavelength” and “amplitude” of ψ(x)
will vary from place to place. You can use the TISE to figure out exactly how
they vary,1 but it’s easier to go back to more basic principles. The de Broglie
relation tells us that wavelength increases as the kinetic energy (p2/2m) decreases,
or as the potential energy increases. That is, the “waves” will be more spread-
out horizontally in locations where V (x) is larger. And the amplitude (that is, the
vertical size) of the oscillations will be larger in these locations as well, in agreement
with our classical intuition that a particle is more likely to be found in places where
it’s moving more slowly. Looking at Figure 2.3, you can see that I drew oscillations
that grow larger (both horizontally and vertically) from left to right, so I’ve assumed

1A. P. French and E. F. Taylor, “Qualitative Plots of Bound State Wave Functions,” Am. J.
Phys. 39(8), 961–962 (1971), http://dx.doi.org/10.1119/1.1986336.

http://dx.doi.org/10.1119/1.1986336
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that V (x) increases from left to right in the classically allowed region.
Eventually, however, as we move along in x we’ll usually come to a classical

turning point. There the curvature of the graph goes to zero and on the other side
the curvature changes sign. In Figure 2.3 this happens to occur where ψ is positive,
so the curvature changes from concave-down, in the classically allowed region on the
left, to concave-up, in the classically forbidden region on the right. Often (though
not always) the forbidden region extends indefinitely to the right, and in that case
the only consistent behavior for ψ(x) is to die out asymptotically to zero. (The
TISE would also allow ψ to grow to infinity, but such a wavefunction wouldn’t be
normalizable.) In the special case where V (x) is constant throughout a classically
forbidden region that extends indefinitely to the right, ψ(x) must be an exponential
function of the form e−κx, where κ depends on the difference between V and E
(again see Problem 1.36). More specifically, a large value of V −E implies a large κ,
which makes the wavefunction die out more abruptly. And if there is a classically
forbidden region on the left, the wavefunction will die out asymptotically over there
as well, taking the form e+κx in the special case where V (x) is constant.

While it is intuitively pleasing that wavefunctions tend to die out exponentially
in classically forbidden regions, you may be wondering how it’s possible for the
wavefunction in these regions to be nonzero at all. How can there be a nonzero
probability of finding a particle in a location where its potential energy is greater
than its total energy? This behavior is one of the many wonders of quantum me-
chanics, and is a consequence of the TISE. And there’s no actual paradox, because
the process of measuring a particle’s position will change its energy, or, more pre-
cisely, put the particle into a state for which its energy isn’t even well defined.

In summary, the solutions to the TISE have the following properties:

• In a classically allowed region, the solutions oscillate. Both the amplitude and
the wavelength of the oscillations will be smaller where E − V (x) is large.

• In a classically forbidden region, the solutions have exponential-like behavior,
dying out as the distance from a classically allowed region increases. The
wavefunction dies out more abruptly where V (x)− E is large.

Figure 2.4 shows an example to illustrate all of these properties, using a piecewise-
constant potential function with four different levels.

Now let’s think more generally about what an entire solution of the TISE should
look like, over the whole range of x. Often, as illustrated in Figures 2.1 and 2.4,
the classically allowed region is finite so the particle is trapped, with a classically
forbidden region to either side. Then, in the classically allowed region, the wave-
function must go through some integer number of half-oscillations or “bumps,”
separated by zero-crossings or “nodes.” The number of bumps (or nodes) must be
an integer, so only certain (average) wavelengths are possible, and this implies that
the allowed energies are quantized. The one-bump (zero-node) wavefunction will
have the longest (average) wavelength and therefore the lowest energy; the two-
bump (one-node) wavefunction will have the second-longest (average) wavelength
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Figure 2.4: An example to illustrate the qualitative properties of a bound-state wavefunction
in both classically allowed and classically forbidden zones, and in zones with larger and
smaller values of |E − V (x)|. (I should confess that I actually used a computer to draw
this wavefunction, just to make sure it’s accurate. The numerical method that I used is
described in the following section.)

and therefore the second-lowest energy; and so on. To determine the numerical
values of these energies, of course, requires doing some actual calculations. Given
an energy and the corresponding number of bumps or nodes, however, you should
now be able to sketch a qualitatively accurate graph of the wavefunction without
doing any calculations at all.

On the other hand, if the classically allowed region extends indefinitely to one
side or both, then the wavefunction will go through an infinite number of oscillations.
These oscillations can vary continuously in size, so the energies will not be quantized.
In general, the energies of a quantum particle are quantized when it is “trapped”
but not when it is “free.”

Problem 2.1. Notice that the wavefunction in Figure 2.4 is continuous and smooth
(that is, its first derivative is continuous), even though V (x) is discontinuous. Prove
that as long as V (x) is finite, every solution to the TISE must be continuous and
smooth. (On the other hand, notice that the infinite square well solutions in Section 1.4
have sharp corners at the ends of the well.)

Problem 2.2. For a given potential well and a given energy, a one-dimensional bound-
state wavefunction has a given local wavelength at every point and therefore a given
overall shape. In other words, the solution to the TISE (for a given E and V (x)) is
unique, aside from an uninteresting multiplicative constant. Prove this result more
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Figure 2.5: A V-shaped potential energy function and its five lowest energy levels (Prob-
lem 2.4).

formally, by imagining that there are two solutions, ψ1(x) and ψ2(x), with the same
energy, and showing that they must be proportional to each other. (Hint: Write out
the TISE separately for ψ1 and ψ2, then combine these two equations to show that
the quantity ψ1dψ2/dx − ψ2dψ1/dx (called the Wronskian) is a constant. Use the
asymptotic behavior of bound states to argue that this constant must be zero, then
use this fact to prove that ψ2 must be a multiple of ψ1.) Notice that this proof breaks
down if the solutions are unbound, oscillating endlessly in both directions. Can you
give a specific example of two distinct unbound solutions to the TISE that have the
same energy?

Problem 2.3. Prove that if V (x) is an even function of x, so that V (−x) = V (x),
then every bound-state energy eigenfunction must either be even (ψ(−x) = ψ(x)) or
odd (ψ(−x) = −ψ(x)). (Hint: First show that if ψ(x) is an energy eigenfunction then
so is ψ(−x). Then use the result of the previous problem.)

Problem 2.4. Figure 2.5 shows a V-shaped potential energy function and its five
lowest energy levels. Using the same horizontal scale, draw qualitatively accurate
graphs of the five corresponding energy eigenfunctions.

Problem 2.5. Figure 2.6 shows an asymmetric potential energy function and its three
lowest energy levels. Using the same horizontal scale, draw qualitatively accurate
graphs of the three corresponding energy eigenfunctions.

Problem 2.6. Figure 2.7 shows a symmetric “double well” potential energy function
and its ground-state energy. Notice that for this energy there are two classically allowed
regions, separated by a classically forbidden region. (a) Using the same horizontal scale,
draw a qualitatively accurate graph of the ground-state wavefunction. (Hint: As in
simpler examples, the ground-state wavefunction has no nodes; but in this example you
shouldn’t make any assumption about the number of “bumps,” because the definition
of a bump is ambiguous.) (b) Argue that the energy of the first excited state will be
only slightly higher than that of the ground state, and draw a qualitatively accurate
graph of the first-excited-state wavefunction.
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Figure 2.6: An asymmetric potential energy function and its three lowest energy levels
(Problem 2.5).

Figure 2.7: A “double well” potential and its lowest energy level (Problem 2.6).

2.2 The shooting method

Are you dissatisfied with the merely qualitative solutions of the previous section?
Good! In this section I’ll make the same ideas quantitative, showing how to solve
the time-independent Schrödinger equation (TISE) for any energy eigenvalue E and
the corresponding eigenfunction ψ(x). The solution will be in numerical form (a list
or a plot of function values), because there is no analytical method that works for
an arbitrary V (x). As in the previous section, the idea is to work our way across
the region a little at a time, using the TISE to adjust the wavefunction’s curvature.

Discretizing the TISE

For any given V (x) and energy E, the TISE relates the value of the function ψ(x)
at each point to its second derivative at that point:

d2ψ

dx2
= −2m

~2

(
E − V (x)

)
ψ(x). (2.3)

To solve this equation numerically, we need to replace the second derivative with
a discrete approximation, expressed in terms of ordinary arithmetic instead of cal-
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Figure 2.8: The slopes of the two dashed lines are good approximations to the derivative
dψ/dx evaluated at x+dx

2 and x−dx2 , respectively. The difference of these slopes, divided
by dx, therefore gives a good approximation to d2ψ/dx2 at the point x.

culus. I’ll do this in two steps, one derivative at a time. First, because the second
derivative is the derivative of the first derivative, we can write it approximately as

d2ψ

dx2
≈

(dψ
dx

at x+dx
2

)
−
(dψ
dx

at x−dx
2

)
dx

, (2.4)

provided that the increment dx is sufficiently small. Note that I’ve used a sym-
metrical “centered difference” approximation, evaluating dψ/dx at a half step away
from x in either direction, which is more accurate than stepping only in one direc-
tion, to x + dx or x − dx. Now we do the same thing with each of the two first
derivatives in the numerator:(dψ

dx
at x+dx

2

)
≈ ψ(x+dx)− ψ(x)

dx
,(dψ

dx
at x−dx

2

)
≈ ψ(x)− ψ(x−dx)

dx
.

(2.5)

These approximations are illustrated in Figure 2.8. Plugging these expressions into
equation 2.4, we obtain what I’ll call the second centered difference approximation
for d2ψ/dx2:

d2ψ

dx2
≈ ψ(x+dx) + ψ(x−dx)− 2ψ(x)

(dx)2
. (2.6)

As a check, note that this expression is positive if ψ(x) is less than the average of
ψ at the two neighboring points (x+dx and x−dx), and negative if ψ(x) is greater
than the average of ψ at the two neighboring points.

With the approximation of equation 2.6 and a little rearrangement, the TISE
becomes

ψ(x+dx) ≈ 2ψ(x)− 2m(dx)2

~2

(
E − V (x)

)
ψ(x)− ψ(x−dx). (2.7)
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So if we know the values of ψ at two neighboring points, x and at x−dx, we can
calculate its value at the next point to the right, x+dx. We can then move a step
to the right and repeat the process to get ψ at the next point, and so on, eventually
obtaining ψ values over the entire region of interest. The smaller the step dx, the
more accurate these values will be. Plotting an accurate graph of the entire function
ψ(x) might require hundreds of calculation steps, but today’s computers can carry
out a billion calculations per second.

You may still be wondering how to find the two starting values ψ(x) and
ψ(x−dx), as well as how to deal with our initial ignorance of the energy eigen-
value E. I’ll address these issues in the context of a concrete example.

Problem 2.7. Check the accuracy of equation 2.6 for the function ψ(x) = ex at x = 0,
for dx = 1, dx = 0.1, and dx = 0.01. What happens to the error when dx is reduced
by a factor of 10?

Problem 2.8. Prove that the second centered difference approximation (equation 2.6)
is exact if ψ(x) is a quadratic polynomial (ax2 + bx+ c).

The finite square well

To illustrate the method, let me pick a specific V (x): the finite square well, pictured
in Figure 2.9 and defined as

V (x) =

{
0 for −a/2 < x < a/2,

V0 elsewhere.
(2.8)

This is the same potential as for the infinite square well, with∞ replaced by V0; I’ve
shifted the well to center it at x = 0 because the resulting symmetry will slightly
simplify the computer code and the description of the solutions. (This is actually
an example that can be solved exactly, aside from the need to numerically solve a
transcendental equation to match the wavefunction at the well boundary. But here
I’ll use it to illustrate the much more general method of numerically solving the
TISE.)

Figure 2.9: The finite square well potential, centered on x = 0 for convenience.
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Problem 2.9. Use the principles of Section 2.1 to sketch qualitatively accurate graphs
of the three lowest-energy eigenfunctions of the finite square well, assuming that all
three energies are less than V0.

Natural units

Before typing a physics equation into a computer, you should almost always rewrite
it in a system of units that is “natural” to the problem being solved. Doing so will
free you from working with numbers that are awkwardly large or small, and from
having to supply numerical values for parameters that turn out to be irrelevant to
the mathematics. For example, in this problem the natural unit of distance is a, the
width of the well, so I’ll set a = 1 in my computer code. I will also set m/~2 = 1;
this combination has dimensions of (energy)−1(distance)−2, so setting it equal to 1
determines our unit of energy: all energies will now be measured in units of ~2/ma2.

Note that after making these choices, we do not have the freedom to also set
V0 = 1. In other words, different V0 values (in these units) represent different prob-
lems to solve, and we’ll have to choose a specific V0 before solving the problem on
a computer. And what would be some interesting V0 values to choose? Well, recall
that for an infinite square well, the energy eigenvalues are h2n2/8ma2. Plugging
in h = 2π~ and setting ~2/ma2 = 1, this becomes (π2/2)n2 ≈ 5n2, so the lowest
energies in our units would be roughly 5, 20, 45, 80, and so on. The most interesting
V0 values should be in this range; values much less than 5 would tend not to trap
the particle at all (though see Problem 2.12), while values much more than 100 start
looking similar to infinity (at least for the low-energy states). I’ll use V0 = 50.

Problem 2.10. Suppose we’re talking about an electron in a one-dimensional finite
square well with a width of 10 nm. What is the size of one natural unit of energy, in
electron-volts? If V0 = 50 in natural units, what is V0 in eV?

Mathematica code

Without further ado, here is some Mathematica code2 for solving the TISE for a
finite square well, using the units just described, with V0 = 50:

v[x_] := If[Abs[x] < 0.5, 0, 50];

energy = 5;

xMax = 1.5;

dx = 0.001;

x = -xMax + dx;

lastPsi = 0.0;

thisPsi = 0.001*dx;

2If you aren’t already familiar with the basic syntax of Mathematica, including function defi-
nitions, lists, While, AppendTo, and ListPlot, see Appendix B.
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psiList = {{-xMax, lastPsi}, {x, thisPsi}};

While[x < xMax,

nextPsi = 2*thisPsi*(1 - dx^2*(energy - v[x])) - lastPsi;

x += dx;

AppendTo[psiList, {x, nextPsi}];

lastPsi = thisPsi;

thisPsi = nextPsi];

ListPlot[psiList, Joined -> True]

First I define the potential energy function v[x_] (using lower case to avoid conflicts
with built-in Mathematica functions, which always start with capital letters). Then
I initialize three constants: an arbitrary initial guess for the energy (roughly equal
to the ground state energy of an infinite well); the maximum x value that I’ll ask
the computer to look at (so the range of x values will be -xMax to xMax); and
the step size dx (which must be much less than 1, the natural unit of length—
though you can get away with 0.01 or more when the potential energy doesn’t have
any discontinuities, as it does here). Next, to set up the step-by-step calculation,
I initialize x to a value that’s one step to the right of -xMax, and initialize the
variables lastPsi and thisPsi to represent ψ(x−dx) and ψ(x). My assumption
here is that the wavefunction is negligibly small at -xMax, so I can set lastPsi to
zero and thisPsi to a tiny value. This tiny value is actually arbitrary, because it
will merely determine the overall normalization of the wavefunction—but to keep
things conceptually reasonable I’ve set the slope to a small value, coincidentally
also equal to 0.001. The final initialization is to create a list, psiList, of the (x, ψ)
pairs that have been determined so far.

With these initializations (and all the decisions they entail) out of the way, the
calculation itself is fairly straightforward. I’ve used a While loop that will execute
repeatedly as long as x is less than xMax. During each iteration I set the variable
nextPsi according to equation 2.7. Then I increment the value of x, append the
new (x, ψ) pair to psiList, and get ready for the next step by renaming thisPsi

to lastPsi and nextPsi to thisPsi. After the loop ends I pass the completed list
to the ListPlot function so we can see what the solution looks like.

I strongly recommend that you type3 the preceding code into your Mathematica
system and use it for your first few numerical solutions of the TISE. But once you
understand what it’s doing, you might as well use the following shortcut. Mathemat-
ica conveniently provides a numerical differential equation solving function called
NDSolve, which accomplishes essentially the same thing as my code above but uses
a more sophisticated algorithm that chooses the step size (equivalent to dx above)
adaptively to try to attain a certain final accuracy. To use NDSolve you would
keep the first three lines of my code above, but then replace the rest of it with the
following:

3If you’re working from an electronic copy of this book, please resist the urge to copy and paste
my code. Typing each instruction with your own fingers will help you make the code your own, to
develop a working knowledge of computational quantum mechanics.
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solution = NDSolve[{psi’’[x]==-2(energy-v[x])psi[x],

psi[-xMax]==0, psi’[-xMax]==0.001}, psi, {x, -xMax, xMax}];

Plot[psi[x] /. solution, {x, -xMax, xMax}]

The NDSolve function requires a list (in curly braces) of the differential equation(s)
and the boundary condition(s). Note that these equations are defined using dou-
ble == signs, and that derivatives are denoted by primes (’). For a second-order
differential equation, the required boundary conditions are the value and the first
derivative of the function, both at the same point. After this list of equations, I
supply the name of the function to solve for and a list consisting of the independent
variable and its beginning and ending points. The result from NDSolve is stored
in the variable solution as what Mathematica calls an interpolating function; the
last line of code plots a graph of this function.

Results for the finite square well

If you execute either version of the code above (or the equivalent in some other
software environment), you’ll get a plot of a function that rises gradually from left
to right, peaks a little to the left of x = 0, then falls gradually and crosses the x axis
a little to the left of the edge of the well at x = 0.5. The function then becomes
negative, but soon reaches x = 0.5 where it begins curving away from the horizontal
axis, blowing up exponentially in the negative direction. This is not a normalizable
wavefunction, and it teaches us a lesson: You can solve the TISE for any energy E,
but not all energy values allow solutions that are normalizable.

The procedure, then, is to rerun the code with different E values until you get a

Figure 2.10: A combined plot showing the results of three numerical solutions to the TISE
for the finite square well with V0 = 50. Each numerical integration starts with a negligibly
small function at the far left, as described in the text. For most E values the solution is
not normalizable, blowing up to +∞ or −∞ in the classically forbidden region at the right.
Fine-tuning the energy to E ≈ 3.41357, however, produces a normalizable solution.
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Figure 2.11: The first three excited states for a finite square well with V0 = 50, obtained by
the same numerical method as in Figure 2.10. The third excited-state wavefunction (with
energy E4) extends much farther into the classically forbidden regions, so I set xMax to 4.0,
even though the plot extends only to ±1.5.

solution that “lies down flat” to the right of the potential energy well. It’s essentially
a trial-and-error process, but with a little practice you can zero-in on an energy value
that works, to several significant figures, in about 20 trials. Figure 2.10 shows three
trials, one with the energy too low, one with the energy too high, and one with the
energy just right to give the one-bump (ground-state) wavefunction. In the same
way, I found the next three energies and wavefunctions, shown in Figure 2.11

Notice that all of these solutions are sinusoidal inside the well and exponential
outside it. (Because the exponential fall-off is so gradual with the last of these
wavefunctions, I increased xMax to 4.0 to get a consistent result—though I still cut
off the plot at ±1.5.) Notice also that the energies are all significantly less than
the corresponding infinite square well energies, (π2/2)n2 ≈ 4.93, 19.74, 44.41, 78.96;
that’s because the finite well lets part of the wavefunction “spill out” beyond the
edges, allowing the wavelength inside to be longer for the same number of bumps.
There are no further normalizable solutions with E < 50. For E > 50, the so-
lutions are sinusoidal even outside the well, like the solutions for a free particle.
Thus, this particular potential well admits exactly four bound-state solutions to
the time-independent Schrödinger equation. Figure 2.12 shows all four bound-state
wavefunctions and their energies, comparing to those of the infinite square well.

I haven’t labeled the vertical axes in Figures 2.10 and 2.11, because the vertical
scales are determined by my arbitrary choice of dψ/dx = 0.001 at the extreme left
edge. To obtain normalized wavefunctions, we would have to compute

∫
|ψ|2dx in

each case, and divide ψ by the square root of the result.

There’s one more thing to notice about the four solutions pictured in Figures
2.10 and 2.11: Each of them is either an even or odd function of x. This will be
true whenever the potential function V (x) is an even function (see Problem 2.3),
so for all such potentials there’s actually a better choice of boundary conditions:
Instead of starting far out along the −x axis, start at x = 0 and either set ψ = 1
and dψ/dx = 0 to obtain the even functions, or set ψ = 0 and dψ/dx = 1 to obtain
the odd functions. (In both cases, the “1” is arbitrary; any other nonzero value will
do.) Then both “tails” of the wavefunction will “wag” as you vary the energy, lying
down flat when the energy is tuned to an eigenvalue. These boundary conditions
avoid the awkwardness that arises when the starting point isn’t far enough to the
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Figure 2.12: Comparison of the energy levels and eigenfunctions of infinite and finite square
wells with the same width. All energies are measured in natural units of ~2/(ma2), where m
is the particle mass and a is the well width. The depth of the finite well is 50 in these units.
Note that the vertical scale for the wavefunction graphs is unrelated to the energy scale.
The energies in the finite well are lower than those in the infinite well because the finite
well allows the wavefunctions to “spill out” into the classically forbidden regions, resulting
in longer wavelengths.

left. In this example I used the more awkward boundary conditions because this
method works even when V (x) isn’t symmetric.

The algorithm that I’ve just described, in which we start at a point with a known
boundary condition and adjust the energy until the other boundary condition is
met, is called the shooting method, because it is reminiscent of repeatedly shooting
projectiles while tuning the launch speed (or angle) to hit a fixed target. The
shooting method is extremely accurate and computationally efficient, though it can
be a bit tedious, finicky, and difficult to automate.

Problem 2.11. Run the explicit shooting-method code on page 51, to obtain the
ground-state energy of the finite square well (with V0 = 50) to four decimal places.
Then increase the step size dx to 0.01 and repeat the process. By what percentage do
the results differ? Still setting dx to 0.01, what happens if you modify the potential
energy function definition to replace < with <=? The problem, as you can now see, is
that because both walls of the well fall on the step boundaries, the effective width of
the well is slightly smaller than it should be when you use <, but slightly larger than
it should be when you use <=. To fix the problem, shift the well to center it on an
x value that is slightly (by less than dx) to one side of x = 0, and then repeat the
shooting process one last time. Discuss the results. Also take a moment to show that
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for an infinite square well, a 1% error in the well width results in a 2% error in the
energy eigenvalues.

Problem 2.12. Use the shooting method to show that a finite square well with V0 =
5.0 (and a width of 1 in natural units) has only one bound state. Then explore what
happens as you further decrease V0 to 2.0, 1.0, 0.5, 0.2, and 0.1. Find the bound-state
energy (and plot the wavefunction) for each of these values, and discuss the results.
(Hints: Use appropriate boundary conditions at x = 0, as described in the text. Note
that you’ll have to increase xMax more and more as V0 decreases.)

Problem 2.13. Consider a particle subject to the potential energy function

V (x) =

{
αx for x > 0,

∞ for x < 0,

where α is a positive constant.

(a) First describe the motion of a classical particle subject to this potential energy
function. Why is a quantum particle subject to this potential sometimes called a
quantum bouncer?

(b) For the quantum case, a natural system of units would set α = 1 and ~2/m = 1. In
terms of these constants, what would then be the natural units of length and energy?
Evaluate these natural length and energy units numerically for the case of an electron
with α = 10 eV/nm.

(c) Carefully describe the boundary conditions that a solution to the TISE must obey,
for a particle subject to this potential.

(d) Use the shooting method to find the three lowest energy eigenvalues (to at least
four significant figures) and plot the corresponding wavefunctions. Specify boundary
conditions at x = 0, and be sure that your solutions also have the required behavior at
large x. Use natural units, but also convert the energy eigenvalues to eV for the case
of an electron with α = 10 eV/nm.

2.3 The matrix method

Now let me describe a totally different numerical method for solving the TISE. This
method is more abstract and takes more effort to understand than the shooting
method, but the investment will pay off by providing a deeper perspective on the
structure of quantum mechanics. Moreover, for many problems this method ends up
being easier to use: instead of laboriously hunting for each individual bound-state
solution, we can use the method of this section to find all of a system’s bound states
at once.4

Again, our goal is to solve the time-independent Schrödinger equation,

Ĥψ = Eψ, (2.9)

4Although this method dates back to the birth of quantum mechanics, I learned how practical
it can be from a series of papers by F. Marsiglio and collaborators, beginning with “The harmonic
oscillator in quantum mechanics: A third way,” Am. J. Phys. 77(3), 253–258 (2009), https:

//doi.org/10.1119/1.3042207.

https://doi.org/10.1119/1.3042207
https://doi.org/10.1119/1.3042207
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for the unknown eigenfunctions ψ and their corresponding eigenvalues E. The basic
idea is to write ψ as a linear combination of some collection of orthonormal basis
functions, which I’ll call φn:

ψ =

∞∑
n=1

cnφn. (2.10)

Our goal is then to find the unknown coefficients cn. The basis functions φn are not
the solutions to the Schrödinger equation that we seek (if they were, the problem
would already be solved!). They should instead be some collection of relatively
simple functions that form an orthonormal basis. Here I will take the φn to be the
sine functions that are energy eigenfunctions for an infinite square well that’s wide
enough to contain (to a good approximation—we hope!) all of the eigenfunctions ψ
that we care about:

φn(x) =

√
2

b
sin
(nπx

b

)
for 0 < x < b, (2.11)

where b is the width of the (hypothetical) infinite well. (When I apply this method
to the finite square well example in a moment, I will take b to be several times larger
than a, and I’ll center the finite well at b/2.)

Still working in general, we now insert the expansion for ψ (equation 2.10) into
the TISE (equation 2.9), and move Ĥ and E inside the sums to obtain

∞∑
n=1

Ĥcnφn =
∞∑
n=1

Ecnφn. (2.12)

We can get rid of the sum on the right by using Fourier’s trick : multiply on the
left by φ∗m (for some arbitrary index m) and integrate over x:∫ ∞

−∞
φ∗m

∞∑
n=1

Ĥcnφn dx =

∫ ∞
−∞

φ∗m

∞∑
n=1

Ecnφn dx. (2.13)

Now, on the right-hand side, we can move the integral inside the sum, and factor
Ecn out of the integral; the integral then gives simply δmn, because the φn functions
are orthonormal, and therefore the only term that contributes to the sum is the one
with n = m. The left-hand side isn’t so simple, but we can at least move the integral
inside the sum and factor the cn out of the integral. Thus we obtain

∞∑
n=1

(∫ ∞
−∞

φ∗mĤφn dx

)
cn = Ecm. (2.14)

The quantity inside the big parentheses is called the mn matrix element of the
Hamiltonian operator,

Hmn = “matrix element” =

∫ ∞
−∞

φ∗m(x)Ĥφn(x) dx = 〈φm|Ĥφn〉, (2.15)
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and it’s something that a computer can calculate straightforwardly. With this
abbreviation, the TISE becomes

∞∑
n=1

Hmncn = Ecm, (2.16)

which has the precise form of the eigenvalue equation for the matrix 5 whose elements
are Hmn: H11 H12 · · ·

H21 H22 · · ·
...

...
. . .


c1

c2
...

 = E

c1

c2
...

 . (2.17)

Therefore the energy eigenvalues E are the eigenvalues of the H matrix, and the
eigenfunctions ψ(x) can be built from the basis functions φn(x) using the elements
of the corresponding eigenvectors. This form of the TISE is useful because many
mathematical computing environments include routines that can quickly find the
eigenvalues and eigenvectors of remarkably large matrices. Of course, you first have
to calculate all the matrix elements using equation 2.15, and that’s often the most
time-consuming part of the process.

Calculating the matrix elements is somewhat simplified if we break the Hamil-
tonian operator into two pieces:

Ĥ = Ĥ0 + ∆V (x). (2.18)

Here Ĥ0 is the Hamiltonian whose eigenfunctions are ψn(x), and ∆V (x) is whatever
is left of our actual Hamiltonian. For our infinite-square-well basis, Ĥ0 is just the
kinetic energy operator, ∆V (x) is simply the V (x) for our actual potential energy
function, and the integrals will run only from 0 to b because the basis functions are
zero elsewhere. Thus, the matrix elements are

Hmn =

∫ b

0
φ∗m(x)Ĥ0φn(x) dx+

∫ b

0
φ∗m(x)V (x)φn(x) dx

= Enδmn +

∫ b

0
φ∗m(x)V (x)φn(x) dx, (2.19)

where in the first term I’ve used the fact that φn is an eigenfunction of H0 with
eigenvalue En, and the fact that the φn functions are orthonormal. Written out as
a matrix, the first term would be simply a diagonal matrix whose entries are the
eigenvalues of the infinite square well, π2n2/2b2 in natural units.

The finite square well

Now let me apply this method to the same example used in the previous section: a
finite square well of width a = 1 and depth V0 = 50 (in natural units). I’ll center the

5If you need a review of matrices and matrix multiplication, see Appendix A.5.
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Figure 2.13: Potential energy function of a finite well of width a and depth V0 centered
within an infinite well of width b. The conventions used in this section are that the mini-
mum x and minimum V are both zero.

finite well inside the infinite well, as shown in Figure 2.13. Here is some Mathematica
code to find the energy eigenvalues E and the corresponding eigenvectors (c1, c2, . . .)
for this system:

b = 4;

v[x_] := If[Abs[x - b/2] < 0.5, 0, 50];

nMax = 50;

basis[n_, x_] := Sqrt[2/b]*Sin[n*Pi*x/b];

hMatrix = Table[(n^2 Pi^2/(2b^2)) KroneckerDelta[m,n] +

NIntegrate[basis[m,x]*v[x]*basis[n,x], {x, 0, b},

AccuracyGoal->8], {m, 1, nMax}, {n, 1, nMax}];

In the first line I set b = 4, making the infinite well and its sine-wave basis functions
four times as wide as the finite well of width a = 1 that we want to study. Then I
define the potential energy function for the finite well, and next I set a cutoff nMax

of 50, which will be the largest n value used throughout the calculations (and the
dimension of the eigenvectors and matrices). The fourth line defines the sine-wave
basis functions, properly normalized. Finally I build the H matrix using the Table

function and formula 2.19. This calculation entails 50× 50 numerical integrations,
and is where nearly all of the computational time is spent; it takes about a minute
to execute on my laptop computer (see Problem 2.17 for a clever way to speed up
this step).

I’ve used a semicolon in the code to suppress the output of the Hamiltonian
matrix, because it’s cumbersome and you don’t actually need to see it. Still, its
structure is rather interesting, so let’s take a quick look. To view all the matrix
elements in decimal approximation, I suggest the following instruction:

PaddedForm[Chop[MatrixForm[hMatrix]], {3, 1}]
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Figure 2.14: A graphical representation of the Hamiltonian matrix for the finite square
well potential shown in Figure 2.13, using a basis of infinite-square-well eigenfunctions
as described in the text. Shades of red represent positive values, shades of blue represent
negative values, and white represents zero. The expanded image on the left shows numerical
values for the upper-left 8× 8 corner of the matrix.

Alternatively, you can use Mathematica’s MatrixPlot function to display a pretty
graphical representation of the matrix:

contrast = 0.01;

MatrixPlot[hMatrix*contrast + 0.5,

ColorFunction -> Function[f, Blend[{Cyan, White, Red}, f]],

ColorFunctionScaling -> False]

(The offset of 0.5 ensures that zero is represented by white. Choose the negative
and positive colors to suit your taste, and adjust the contrast variable to em-
phasize different details.) Figure 2.14 shows both a graphical display and some
selected numerical values. Notice the various patterns, which you can explore in
Problem 2.15.

What we want, though, are the eigenvalues and eigenvectors of this matrix. To
obtain them we can simply use Mathematica’s Eigensystem function:

{eValues, eVectors} = Eigensystem[hMatrix];

Again I’ve used a semicolon to suppress the cumbersome output. But now the
variable eValues contains a list of the eigenvalues, and if you type its name you get
the following:

{811.179, 780.225, 749.343, 719.877, 690.352, 662.866, 634.565, 608.144,

581.992, 555.874, 531.607, 506.755, 483.011, 460.415, 437.107, 415.862,
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Figure 2.15: This plot shows the components cn of one of the eigenvectors for the finite
square well analyzed in this section. This particular eigenvector corresponds to eigenvalue
E = 48.1704, just slightly below V0 = 50 and therefore only weakly bound.

394.466, 373.352, 354.171, 333.967, 315.485, 297.698, 279.237, 263.283,

246.413, 230.559, 216.365, 200.724, 187.821, 174.449, 161.206, 150.544,

137.827, 128.003, 118.079, 107.628, 100.49, 90.6015, 84.3394, 77.3956,

70.5479, 66.78, 59.9372, 57.9902, 52.9032, 52.0802, 48.1704, 29.4697,

13.4824, 3.41566}

Mathematica inconveniently sorts the eigenvalues in descending order (and sorts
the eigenvectors to correspond); although we could reverse the order with some list
manipulation functions, I won’t bother. The eigenvalues that we want are the last
four, which are less than V0 = 50 and therefore correspond to bound states of the
finite well. Moreover, all four of these values agree to three significant figures with
the more accurate values found by the shooting method in Section 2.2. The other
46 eigenvalues are artifacts of the fictitious infinite well; in fact the finite well allows
any energy greater than V0.

We could also print out the components of the eigenvectors, but a picture is
worth a thousand numerals. You can plot the components of any eigenvector using
an instruction like ListPlot[eVectors[[47]], PlotRange -> All], remember-
ing again that the bound states are numbered 47 through 50. With some further
tweaking for aesthetics, this instruction produces the plot shown in Figure 2.15. To
see the actual function of x that corresponds to this eigenvector, we simply build it
out of the basis functions according to equation 2.10:

Plot[Sum[eVectors[[47,n]]*basis[n,x], {n,1,nMax}], {x,0,b}]

This instruction (again with some tweaking for aesthetics) produces the plot shown
in Figure 2.16. To the eye, this graph is identical to the one obtained using the
shooting method, except near the end points where it is forced to zero more quickly
by the walls of the fictitious infinite well. (We could avoid this problem by making
the infinite well wider, but then we would also need to increase the maximum n value
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Figure 2.16: The eigenfunction whose vector components are plotted in Figure 2.15. Com-
pare to the third plot in Figure 2.11.

to incorporate sufficiently short wavelengths.) Building the other three bound-state
wavefunctions is no more difficult.

Finding the eigenvalues and eigenvectors of a matrix is often called diagonaliza-
tion, because the eigenvectors can then be used as a new basis in which the matrix
is diagonal, with entries equal to the eigenvalues. Solving the TISE is always equiv-
alent to diagonalizing a matrix, and this method is practical whenever the infinite
sums are well approximated by a reasonably small number of terms.

You may be wondering how the magical Eigensystem function actually works,
finding all the eigenvalues and eigenvectors of a large matrix almost instantly. The
details are proprietary and undoubtedly quite technical, but the basic idea of such
routines is to successively rotate the basis vectors in various two-dimensional sub-
spaces of the high-dimensional vector space, choosing the rotation angles to make
the off-diagonal elements of the matrix smaller and smaller.6

Problem 2.14. Reproduce the calculation just outlined in the text, for a finite square
well with V0 = 50 in natural units, to obtain the list of eigenvalues and the plots shown
in Figures 2.15 and 2.16. Also plot the eigenvector components and eigenfunctions cor-
responding to the three lowest eigenvalues. Explain why the odd-numbered eigenvector
components are all zero for some eigenvectors, while the even-numbered components
are all zero for others.

Problem 2.15. Explain the patterns in the Hamiltonian matrix shown in Figure 2.14.
In particular: (a) Why is the matrix symmetric? (b) Why does the matrix have a
“checkerboard” pattern, with half its elements equal to zero? (c) What is the pattern
along the main diagonal? Can you find an approximate formula for Hnn that is valid
for large n? (d) Use a sketch of φ1, φ3, and V to explain why H13 is positive. (e) Use a

6See K. Randles, D. V. Schroeder, and B. R. Thomas, “Quantum matrix diagonalization vi-
sualized,” Am. J. Phys. 87(11), 857–861 (2019), arXiv:1905.13269 [physics.ed-ph]. This paper
includes Mathematica code to diagonalize the Hamiltonian matrix one step at a time, visualizing
the results throughout the process. An interactive web app for the same purpose is posted at
http://physics.weber.edu/schroeder/software/QMatrixDiagVis.html.

https://arxiv.org/abs/1905.13269
http://physics.weber.edu/schroeder/software/QMatrixDiagVis.html
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similar sketch to explain why H15 is negative. (f) Explain why elements far away from
the main diagonal are very small.

Problem 2.16. For the quantum bouncer described in Problem 2.13, use the matrix
diagonalization method to find the lowest 10 (or more) energy eigenvalues to reasonable
accuracy. Use the infinite square well basis states, and think carefully about how wide
you need to make the infinite well and how many basis states you need to include. How
can you check the accuracy of your results? For the eigenvector that corresponds to
the 10th eigenvalue, make a plot of the vector components (as a function of n) and
also make a plot of the eigenfunction (as a function of x). Discuss a few of the notable
features of these plots.

Problem 2.17. The time-consuming part of the matrix diagonalization code described
in this section is not the Eigensystem function that diagonalizes the matrix, but rather
the 2500 numerical integrations needed to construct the table of matrix elements. If
you ever need to construct an even larger matrix in this way, you’ll want to speed up
the process. Fortunately, it isn’t hard to do so. Using a product-to-sum trigonometric
identity, show that all of the matrix elements can be written in terms of integrals of
the form ∫ b

0

V (x) cos
(Nπx

b

)
dx,

where N is either m + n or m − n. If the maximum value of n (or m) is nmax, how
many such integrals must you compute, in total? Rewrite the code to pre-compute
these integrals and store their values in a one-dimensional list, then use this list to
construct the two-dimensional table of matrix elements. Check that your code works
correctly for nmax = 50, then try it with larger values of nmax. Comment on the speed
improvement.

Problem 2.18. List some of the relative advantages and disadvantages of the matrix
diagonalization method, compared to the shooting method of Section 2.2. Under what
circumstances would you choose one or the other, and why?

2.4 The harmonic oscillator

It’s time to study another example of solving the Schrödinger equation for a partic-
ular potential energy function V (x). This example is the harmonic oscillator, for
which V (x) is quadratic:

V (x) = 1
2ksx

2 = 1
2mω

2
cx

2, (2.20)

where ks is some “spring constant” and ωc =
√
ks/m is the classical oscillation

frequency, that is, the angular frequency of oscillation of a classical mass m attached
to a rigid wall by a spring with constant ks.

The quantum harmonic oscillator is important for two reasons.
First, it’s a quantitatively useful model of almost anything small that wiggles,

such as vibrating molecules and acoustic vibrations (“phonons”) in solids. The
harmonic oscillator even serves as the basis for modeling the oscillations of the
electromagnetic field and the other fundamental quantum fields of nature.
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Second, the harmonic oscillator is another example of a one-dimensional quan-
tum problem that can be solved exactly. Its detailed solutions will give us further
insight into the behavior of quantum systems in general, helping us understand
which features of the infinite square well are or aren’t common to all trapped quan-
tum particles. And although I won’t do it in this book, you could also use the
known harmonic oscillator energy eigenstates as an alternate “basis” for analyzing
other quantum systems, as in the matrix diagonalization method described in the
previous section.

Natural units

The full Hamiltonian for the harmonic oscillator is

Ĥ = − ~2

2m

d2

dx2
+

1

2
mω2

cx
2. (2.21)

Although this expression contains three constants (~, m, and ωc), they appear in
only two different combinations. Without loss of generality we can choose units
in which both of these combinations, ~2/m and mω2

c , are equal to 1; then the
Hamiltonian becomes simply

Ĥ = −1

2

d2

dx2
+

1

2
x2. (2.22)

To interpret these units, note that the combination√
~

mωc
=

(
~2/m

mω2
c

)1/4

= 1 (2.23)

has units of distance, while the combination

~ωc =
√

(~2/m)(mω2
c ) = 1 (2.24)

has units of energy. All distances and energies will therefore be measured in multi-
ples of these quantities.

Problem 2.19. The fundamental oscillation frequency of a guitar’s high-E string is
330 Hz. Suppose that we model this system as a simple harmonic oscillator with a mass
of 0.25 g, oscillating with an amplitude of 1.0 mm. Find the amplitude and energy of
this oscillator in natural (quantum) units.

Numerical solutions

It’s completely straightforward to solve the time-independent Schrödinger equation,
for the harmonic oscillator, using either of the numerical methods described in the
previous two sections.

If you use the shooting method, you can exploit the fact that V (x) is an even
function and therefore assume that the solutions ψ(x) are either even or odd, sup-
plying boundary conditions ψ(0) = 1 and ψ′(0) = 0 for the even solutions and
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Figure 2.17: Combined plot of the harmonic oscillator potential energy (parabola), the first
five energy levels (horizontal lines), and the five corresponding eigenfunctions. The energy
and distance scales are labeled in natural units. Note that each wavefunction is plotted from
a different horizontal axis, and that the vertical scale for the wavefunctions is unrelated to
the energy scale. As expected, the bound-state wavefunctions oscillate within the classically
allowed regions and decrease exponentially in the classically forbidden regions. Notice that
the energy levels are evenly spaced, and that we number them starting from 0 instead of 1.

ψ(0) = 0 and ψ′(0) = 1 for the odd solutions. The wavefunction plots turn out as
described in Section 2.1: oscillating in the classically allowed region, with increas-
ing wavelength and amplitude as one moves outward, and exponentially decaying in
the classically forbidden regions to either side. Unlike a generic V (x), however, the
harmonic oscillator potential yields an extremely simple set of energy eigenvalues:
1/2, 3/2, 5/2, and so on, in natural units.

If instead you use the matrix diagonalization method, embedding the oscillator
inside an infinite square well, you would center the oscillator inside the infinite well
and choose the well width and number of basis functions to yield as many accurate
eigenvalues and eigenfunctions as possible in whatever time you’re willing to wait
for them. The answers for the eigenvalues are again 1/2, 3/2, 5/2, and so on, and
of course you can construct the associated wavefunctions out of the eigenvector
components.

Figure 2.17 shows the lowest five energy levels superimposed on a graph of the
potential energy, with the corresponding wavefunctions plotted using the energy
levels as baselines, with same horizontal scale. Distances and energies are labeled
in natural units. Notice that the energy rungs on this quantum ladder are evenly
spaced, unlike the infinite square well for which they get farther apart as you go
up. It’s conventional to number the harmonic oscillator energies and wavefunctions
starting with 0 rather than 1, so the number indicates how many “units” of energy
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the system has, relative to the ground state. This convention is a departure from
the one that we use for essentially all other one-dimensional quantum systems.

The natural unit of energy is ~ωc, so in conventional units, the harmonic oscil-
lator energy levels can be summarized in the formula

En = (n+ 1
2)~ωc, for n = 0, 1, 2, . . . . (2.25)

Problem 2.20. Use either the shooting method or the matrix diagonalization method
(your choice!) to numerically find the five lowest energy eigenvalues and corresponding
eigenfunctions of the harmonic oscillator.

Exact solutions

When you solve a problem numerically and get an unexpectedly simple answer,
that’s probably a clue that you could have solved the problem analytically. There
are at least three approaches to analytically solving the TISE for the harmonic
oscillator:

1. Guess the answers. Look at the ground-state wavefunction in Figure 2.17,
and notice that it looks an awful lot like a Gaussian, e−ax

2
for some constant a.

Plug this formula into the TISE and you’ll see that it works as long as a = 1/2
and E = 1/2. One down. For the next solution, a look at the graph might lead
you to the guess the formula xe−ax

2
, and if you plug this in you’ll find that

it works for the same a = 1/2, but with E = 3/2. That’s two. At this point
you might guess (correctly) that all the solutions are polynomial functions
multiplied by the same Gaussian, e−x

2/2. Each polynomial has only even or
odd terms (to give the correct symmetry for the wavefunctions), and you can
find the coefficients by requiring that the TISE be satisfied in each case. It
gets laborious after the first few, but if you fiddle with the equations long
enough you might notice some patterns and discover some general procedures
for finding the coefficients.

2. Power series. This is the most traditional approach, and it’s presented
in all the traditional textbooks. By this method you can prove that the
allowed energies are n + 1/2 for any nonnegative integer n, and that all of
the associated wavefunctions are e−x

2/2 times an nth-order polynomial. You
end up with “recursion formulas” that let you calculate the coefficients of the
polynomials in a straightforward way, but again it gets laborious to work out
more than a handful of them.

3. Ladder operators. This is by far the most elegant method, although it’s
also the most abstract, and it’s hard to see how anyone would have thought of
it, and it’s still laborious to work out more than a handful of the wavefunction
formulas. I’ll present this method in detail in Section 5.2, as we gear up to use
a similar method to understand angular momentum in quantum mechanics.
Feel free to look ahead if you’re curious!
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H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x

Table 2.1: The first eight Hermite polynomials. (You can make a table like this in Math-
ematica with just a single line: TraditionalForm[TableForm[Table[HermiteH[n,x],

{n,0,7}]]].)

Whatever the method used to obtain them, the harmonic oscillator energy eigen-
functions are nth-order polynomials multiplied by the Gaussian e−x

2/2. There’s
no general formula for the polynomials themselves—just algorithms for calculating
their coefficients. But they do have a name: they’re called Hermite polynomials,
abbreviated Hn(x), and I’ve listed the first eight of them in Table 2.1. Notice the
standard normalization convention7 of making the coefficient on xn (the highest
power that appears in Hn) equal to 2n; then all the other coefficients turn out to
be integers. With the polynomials normalized in this way, ψn(x) still has an n-
dependent normalization coefficient that’s not especially easy to work out, but at
least it has a formula. The final formula for the normalized energy eigenfunctions
is

ψn(x) =
1√

2nn!
√
π
Hn(x) e−x

2/2. (2.26)

The Hermite polynomials are built into Mathematica as HermiteH[n,x], so you can
easily use that software to work with eigenfunctions up to n = 100 or more.

Like those of the infinite square well (and indeed, any other quantum system),
the harmonic oscillator eigenfunctions are mutually orthogonal,∫ ∞

−∞
ψm(x)ψn(x) dx = δmn, (2.27)

and they form a complete basis that you can use to expand any other wavefunction:

ψ(x) =
∞∑
n=0

cnψn(x), (2.28)

7I’ve read that mathematicians sometimes use a different normalization convention, so be care-
ful if you ever look up Hermite polynomials in a source that’s aimed at mathematicians rather than
physicists.
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for any wavefunction ψ(x) and some set of complex coefficients {cn}. I’ll omit the
proofs that go with these claims, but you can easily check some special cases (see
Problems 2.21, 2.22, and 2.23).

Once you have the eigenfunctions and eigenvalues, and know that the eigenfunc-
tions form an orthonormal basis, you can do all the usual things with them:

• Integrate |ψn(x)|2 to calculate probabilities of finding the particle in various
locations, when it’s in a particular energy eigenfunction.

• Expand an arbitrary wavefunction in terms of energy eigenfunctions, to predict
the probabilities of finding the particle with various energy values.

• Predict the time dependence of an arbitrary wavefunction, by expanding it in
terms of energy eigenfunctions and inserting wiggle factors. (The Harmonic
Oscillator web app at http://physics.weber.edu/schroeder/software/

HarmonicOscillator.html can animate the behavior of any linear combi-
nation of ψ0 through ψ7.)

• Use the harmonic oscillator eigenfunctions as basis functions for analyzing
other one-dimensional quantum systems.

Problem 2.21. Using pencil and paper, check the analytical solutions to the quantum
harmonic oscillator for n = 0, 1, and 2. Also check the normalization and mutual
orthogonality of these three eigenfunctions.

Problem 2.22. Set the Wave Builder app (http://physics.weber.edu/schroeder/
software/WaveBuilder.html) to use the “Oscillator basis,” and play with it for a
while to see what the basis functions look like, match a few target functions, and draw
your own targets for the computer to solve. Then complete “Challenge round 4” (which
uses the oscillator basis) and match all four of the target functions. Try not to use too
many hints. To keep a record of your success, make a screen capture when you see the
message “Target 4 of 4 matched!”

Problem 2.23. Use Mathematica to (a) print an explicit formula for the n = 20 energy
eigenstate of a harmonic oscillator, ψ20(x); (b) plot a graph of ψ20(x) and a graph of
the associated probability density; (c) check that ψ20(x) is normalized; (d) check that
ψ20(x) is orthogonal to ψ22(x); and (e) check that ψ20(x) satisfies the time-independent
Schrödinger equation. Be sure to add plenty of commentary to your work, to point out
important and interesting details.

Problem 2.24. For a quantum harmonic oscillator in the ground state, calculate the
probability of finding the particle outside the classically allowed region, if you were to
measure its position. (Do the integral numerically.) Repeat the calculation for a few
of the excited states, and discuss the results.

Problem 2.25. Consider a quantum harmonic oscillator that is initially in the follow-
ing state (called a coherent state), built from a superposition of energy eigenstates:

ψ(t = 0) = e−|α|
2/2

∞∑
n=0

αn√
n!
ψn(x), (2.29)

http://physics.weber.edu/schroeder/software/HarmonicOscillator.html
http://physics.weber.edu/schroeder/software/HarmonicOscillator.html
http://physics.weber.edu/schroeder/software/WaveBuilder.html
http://physics.weber.edu/schroeder/software/WaveBuilder.html
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where ψn is a normalized energy eigenstate and α is a dimensionless parameter that
could be any complex number. Although it’s interesting to explore the behavior of
coherent states for different values of α, in this problem you may set α = 1. You may
also neglect the overall normalization factor, e−|α|

2/2.

(a) Use a computer to make an accurate plot of this wavefunction. How many terms
in the sum must you keep in order to get an accurate plot?

(b) Write down a formula for the wavefunction at an arbitrary time t. Express the
frequencies in the wiggle factors explicitly in terms of n.

(c) Use a computer to make some plots to explore how this wavefunction changes with
time. I suggest plotting the probability density, |ψ(t)|2, although you may also wish
to plot the real and imaginary parts of ψ(t). Summarize the behavior in a sentence or
two.

Problem 2.26. The vibrational frequency (ordinary frequency, not angular frequency)
of a carbon dioxide molecule in its “flexing” mode is 2.0×1013 Hz. Assuming that these
vibrations are harmonic, what are the energies (in electron-volts) of the three lowest
vibrational energy levels for this mode? How much energy would a photon need to
have, in order to excite the molecule up to the next-highest vibrational level when it is
absorbed? What is the wavelength of such a photon? What part of the electromagnetic
spectrum is it in?

2.5 Multiple wells

Very often, in molecules and solids, a quantum particle finds itself in a potential that
has two or more local minima, separated by one or more barriers. For example, each
electron in a hydrogen molecule (H2) is attracted to both nuclei, so its potential is a
“double well” with a barrier in between. Another example is the ammonia molecule,
NH3, in which the three hydrogens form a triangle that defines a plane, and the
nitrogen has two classically stable locations relative to them, one on either side of
that plane (see Figure 2.18). Laboratory-fabricated double-well potentials are used
to make light-emitting diodes, and are also being investigated for use as “gates” in
quantum computing. Finally, a double-well potential gives us a starting point for
understanding periodic potentials with more than two wells, such as the potential
felt by a conduction electron in a crystalline metal.

Figure 2.18: An ammonia molecule, NH3, has two classically stable configurations. If the
three hydrogens define the horizontal plane, then the energy is minimized when the central
nitrogen is either slightly above or below the plane, shown at left and right, respectively.
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A double well

The most important features of double wells don’t depend on the exact shape of
the potential, so as a simple model I’ll use a “rectangular” function as shown in
Figure 2.19. Assuming that this potential has several bound states, with energies
E < V0, can you guess the shapes of the energy eigenfunctions and reach some
qualitative conclusions about their energies? Take some time now to try to make
some sketches and educated guesses (see also Problem 2.7).

To solve this problem quantitatively, it’s most convenient to use the matrix
diagonalization method. Here is some Mathematica code to define a rectangular
potential with any number of wells:

nWells = 2; (* number of wells *)

bHeight = 50; (* barrier height *)

bWidth = 0.5; (* barrier width *)

b = nWells + (nWells+1)*bWidth; (* maximum x value *)

v[x_] := If[Mod[x-bWidth, 1+bWidth] < 1, 0, bHeight];

The first three lines define constants for the number of wells, the height of the
barriers between them (V0 in Figure 2.19), and the width of each barrier. The
width a of each well is taken to be one unit of distance, and energies are measured
in multiples of ~2/ma2. The fourth line calculates the maximum value of x, which
will be the width of the infinite well used to define the sine-wave basis functions; note
that this width includes a “barrier” on either side, as well as the one(s) between the
wells. The fifth line defines the potential energy function itself, using Mathematica’s
Mod function to make the pattern repeat over a distance of the well width (1) plus
the barrier width.

The next steps are to define the infinite square well basis functions, calculate all
the matrix elements, and diagonalize the Hamiltonian. The code to carry out these
steps is essentially identical to that in Section 2.3, so I won’t repeat it here. (I used

Figure 2.19: A rectangular double-well potential energy function. The calculation described
in the text uses the width of a single well as the natural unit of distance, and takes the
width of the central barrier to be 1/2.
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Figure 2.20: The lowest six energy eigenfunctions, numbered in order of increasing en-
ergy, for the rectangular double-well potential shown in Figure 2.19. The corresponding
eigenvalues are listed in 2.30. Just as the energies are in closely spaced pairs, so also the
eigenfunctions are in closely related pairs, differing mainly in the relative signs between the
left and right halves and in how the two halves are joined.

the first 50 basis functions to build a 50× 50 Hamiltonian matrix, but you can get
pretty good results with only 25.) The result is that there are seven eigenvalues less
than 50, corresponding to bound states, but I’ll neglect the highest of these (47.9)
because it’s so weakly bound that the infinite square well embedding potential affects
it significantly. The other six bound-state eigenvalues are approximately:

3.406, 3.424, 13.43, 13.53, 29.24, 29.71. (2.30)

Notice that they come in closely spaced pairs, and that the values are quite close
to those for a single square well with the same width and depth (3.414, 13.48, and
29.45, as we found in Section 2.2). The reason for this behavior becomes clearer if
we look at the corresponding wavefunctions, shown in Figure 2.20. Each of these
functions consists essentially of two side-by-side single-well eigenfunctions, modified
slightly so they connect smoothly in the middle. Because the modifications are so
small, the energies are almost the same as for the single well. Notice, though, that
the total number of nodes for each eigenfunction is what you would expect for the
system as a whole: no nodes for the ground state, one for the first excited state,
and so on.

You could, of course, obtain these same eigenfunctions, along with the associated
eigenvalues, using the shooting method.

In defiance of our classical intuition, every energy eigenstate puts half of the
wavefunction on each side of the double-well potential. The two lowest states are
what we sometimes call “cat states,” with two separated peaks. In principle, we
could push the peaks as far apart as we like, by increasing the width of the central
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potential barrier.

Once you have the eigenvalues and eigenfunctions, you can use them in the
usual ways to examine probabilities and time evolution. As you can see, for each
of these eigenfunctions the particle is equally likely to be found in either of the two
wells. Wavefunctions that put the particle entirely in one well or the other do exist,
but they are not energy eigenfunctions and therefore they change over time in a
nontrivial way.

Problem 2.27. Use the matrix diagonalization method to reproduce the list of energy
eigenvalues (2.30) for the rectangular double-well potential described above, and the
corresponding eigenfunction plots shown in Figure 2.20. Then use the shooting method
to check these results.

Problem 2.28. A simple formula for a smoothly varying double-well potential is
V (x) = x4 − 10x2, where both x and V are understood to be measured in some
natural system of units where ~2/m = 1.

(a) Plot this function and locate its two minima.

(b) In preparation for finding the energy eigenvalues and eigenfunctions using the ma-
trix diagonalization method, shift the potential energy function upward so its minimum
value is zero, and shift it by 4 units in the +x direction so that wavefunctions with
energies less than the central barrier height will be entirely at positive x values (aside
from negligible exponential tails). Write down the formula for this shifted potential
function.

(c) Use the matrix diagonalization method, with an infinite square well basis with
width 8, to find the energy eigenvalues and eigenfunctions. Be sure to use enough basis
functions to give a reasonably accurate picture of all the energy levels that are below
the barrier height. Plot an energy level diagram for these levels. (Note that if the list
of eigenvalues is called eValues, you can plot the diagram in Mathematica with an
instruction like Plot[eValues,{x,0,8}], and it’s then easy to combine this plot with
a plot of the potential energy function.) Discuss the patterns that occur in the set of
energy eigenvalues.

(d) Plot the eigenfunctions corresponding to the lowest six (or more) energy eigen-
values, and discuss the features of these eigenfunctions. (Note that you can use the
Mathematica Table function to make several plots all at once.)

The two-state approximation

Imagine a double-well system in an environment where there is plenty of available
energy (from collisions or radiation) to cause transitions from the ground state ψ1 up
to the first excited state ψ2, but not enough energy to excite any of the remaining,
much higher-energy, states. Then only ψ1 and ψ2 will be reasonably probable, so
we can neglect the higher-energy eigenstates to an excellent approximation.

Under these circumstances we call the double well a two-state system. However, a
better name might be two-eigenstate system, or two-basis-state system, because the
actual number of available states is infinite, consisting of all the linear superpositions

ψ = c1ψ1 + c2ψ2, (2.31)
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where c1 and c2 are complex numbers. In order for ψ to be normalized, these
complex numbers must satisfy

1 = 〈ψ|ψ〉 = 〈c1ψ1 + c2ψ2|c1ψ1 + c2ψ2〉 = |c1|2 + |c2|2, (2.32)

where in the last step I’ve used most of the properties of the inner product listed
in Problem 1.28, along with the fact that ψ1 and ψ2 are orthonormal (see Prob-
lem 2.30). Two superpositions of particular interest are

ψL =
1√
2

(ψ1 + ψ2) and ψR =
1√
2

(ψ1 − ψ2), (2.33)

which put the particle almost entirely inside the left well and almost entirely inside
the right well, respectively (as you can see by mentally adding and subtracting the
graphs in Figure 2.20).

One way to visualize these states is to plot the coefficients c1 and c2 in a two-
dimensional plane, as shown in Figure 2.21. We can then think of each state as a
unit-length vector in this abstract two-dimensional space, with c1 and c2 as its com-
ponents. Notice that the vectors ψ1 and ψ2 are orthogonal to each other, as are ψL
and ψR, while the latter pair make 45-degree angles with the former pair. Multiply-
ing a state vector (wavefunction) by −1 has no effect on any physical predictions, so
we can think of any one of these vectors as lying half-way between the two vectors
of the other pair. Unit-length vectors lying at other angles on this diagram would
represent states with other real values of c1 and c2.

The diagram has a severe limitation, though, because it cannot show any of the
equally valid states for which c1 or c2 is complex. For instance, there are two other
states that make 45-degree angles with all four of the states shown in Figure 2.21:

ψ+ =
1√
2

(ψ1 + iψ2) and ψ− =
1√
2

(ψ1 − iψ2). (2.34)

You’re probably wondering what I even mean by the “angle” between two vectors
when one of them has complex components. In this case it may be simpler to
just say that ψ+, for example, can be written as a mixture of equal parts of the
orthogonal vectors ψ1 and ψ2, or as a mixture of equal parts of the orthogonal
vectors ψL and ψR (so ψ+ is another “cat state,” with half of the particle on each
side of the double well). In general, though, we can define the angle between any
two normalized state vectors as the inverse-cosine of the magnitude of their inner
product (in analogy to the angle between ordinary vectors in physical space, aside
from the fact that here the inner product can be complex). See Problem 2.31 for
details.

Now let’s think about how these states change over time. States ψ1 and ψ2

are energy eigenstates, so their time dependence is a simple wiggle factor: e−iE1t/~

or e−iE2t/~, where E1 and E2 are the respective energies. An overall phase factor
of the form eiφ has no effect on any physical predictions, so in a sense this time
dependence is trivial and uninteresting—hence the name stationary states.
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Figure 2.21: A visualization of the states ψ1, ψ2, ψL, and ψR, with the component c1 plotted
horizontally and c2 plotted vertically. The wavefunction shapes are drawn near each of these
four state vectors. An overall factor of −1 has no physical effect on a wavefunction, so the
negated vectors represent the same four physical states. A normalized state vector has unit
length on this diagram, but the diagram cannot show states whose components are complex.

But suppose instead that this system starts out in the state ψL, with the particle
(almost) entirely in the left-hand potential well. Then, to predict the state at a later
time, we expand this initial state in terms of stationary states and insert a different
wiggle factor into each term (as in equation 1.24):

ψ(t) =
1√
2

(
ψ1e
−iE1t/~ + ψ2e

−iE2t/~
)
. (2.35)

To interpret this expression, it’s convenient to factor out the first wiggle factor:

ψ(t) = e−iE1t/~ 1√
2

(
ψ1 + ψ2e

−i∆E t/~), (2.36)

where ∆E = E2 − E1 is the small difference in energy between ψ1 and ψ2. The
overall factor e−iE1t/~ now has no effect on physical predictions, so we can focus
on the time dependence of the ψ2 term, which oscillates clockwise in the complex
plane at angular frequency ∆E/~. When ∆E t/~ = π/2 this complex exponential
equals −i, so the state is physically equivalent to ψ−, with half of the probability on
each side of the double well. After another such interval the complex exponential
equals −1, so the state is physically equivalent to ψR, with the particle (almost)
entirely in the right-hand well. The oscillation then continues through a state that
is equivalent to ψ+, and finally back to (a state equivalent to) ψL. Figure 2.22 shows
the full oscillation cycle.

This back-and-forth motion between the two potential wells, right through the
classically forbidden barrier, is an example of quantum-mechanical tunneling. The
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Figure 2.22: Sequence of frames showing a full oscillation period T of the wavefunction of
equations 2.35 and 2.36, using the specific energies and eigenstates for a rectangular double
well with depth 50 and a barrier width of 0.5 in natural units. In each frame the probability
density |ψ(x)|2 is plotted vertically, with color hues indicating the complex phase of the
wavefunction. Note that these phases are oscillating very rapidly due to the overall wiggle
factor in equation 2.36; the more important feature is that the phase in the right-hand
well is a quarter-cycle ahead of that in the left-hand well during the first half-period of
oscillation (left column), and a quarter-cycle behind during the second half-period (right
column). Gray shading indicates the classically forbidden regions.

time required for the particle to tunnel through the barrier is half the oscillation
period T :

Tunneling time =
T

2
=

π~
∆E

. (2.37)

Making the barrier between the wells higher and/or wider would dramatically reduce
the energy splitting ∆E, and thus dramatically increase the tunneling time.

The problems below explore the features of this two-state system in more depth,
and we will encounter other examples of two-state systems later in this book. Two-
state systems are important not only because they are common in nature, but also
because they illustrate many features of quantum behavior in the simplest possible
way. Moreover, two-state systems are the foundation of the fast-growing field of
quantum information science. In analogy to the way we can interpret a classical
two-state system as a “binary digit” or bit (0 or 1), we often refer to a quantum
two-state system as a “quantum bit” or qubit. In a classical bit, the two “states”
are really just two arbitrary ranges of a property that actually has many possible
values—such as the amount of charge on a transistor or the degree of magnetization
of a small piece of material. In a qubit, on the other hand, the binary nature of
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the system is intrinsic—but we can also put the system into arbitrary superposition
states, of the form of equation 2.31, that are effectively mixtures of 0 and 1.

Problem 2.29. The difference in energy between the two lowest levels of an ammonia
molecule is only 0.99×10−4 eV. If the molecule starts out in a mixture of these two levels
that puts the nitrogen all on one side of the three hydrogens, at what frequency will it
oscillate back and forth between the two minima of the potential energy function? How
much time does it therefore take to “tunnel” through the potential barrier? If, in the
oscillation process, it radiates an electromagnetic wave with the oscillation frequency,
what is the wavelength? What is the energy of a photon with this wavelength? (This
is the mechanism of the ammonia maser, an early predecessor of the laser.)

Problem 2.30. Fill in the missing steps in equation 2.32, carefully justifying every
step.

Problem 2.31. Show that for two arbitrary states in the two-dimensional space,

ψc = c1ψ1 + c2ψ2 and ψd = d1ψ1 + d2ψ2, (2.38)

the inner product is

〈ψc|ψd〉 = c∗1d1 + c∗2d2 =
(
c∗1 c∗2

)(d1

d2

)
, (2.39)

where the last expression is a convenient matrix version of the formula. Then use
this formula to show that the wavefunctions ψ+ and ψ− defined in equation 2.34 are
normalized and are orthogonal to each other. Finally, show that either ψ+ or ψ− makes
a 45-degree angle with all four of the state vectors shown in Figure 2.21, where the
angle θ between two normalized state vectors ψα and ψβ is defined by cos θ = |〈ψα|ψβ〉|.

Problem 2.32. Consider an arbitrary linear operator Â that acts in a two-dimensional
state space, converting an arbitrary state ψc into some other state ψd:

ψd = Âψc. (2.40)

Show that if we write the states ψc and ψd as column vectors, using the ψ1-ψ2 basis
as in the previous problem, then Â becomes a 2× 2 matrix whose elements are Amn =
〈ψm|Âψn〉, as in equation 2.15. (Hint: Start with equation 2.40 and expand each of the
state vectors as in equation 2.38. Then take the inner product with ψ1 or ψ2 from the
left.) What is the 2 × 2 matrix for the Hamiltonian operator? Can you find a matrix
whose eigenvectors are ψL and ψR? Can you find a matrix whose eigenvectors are ψ+

and ψ−?

Problem 2.33. Although the matrix elements of the previous two problems are writ-
ten using ψ1 and ψ2 as basis vectors, we can choose any orthogonal pair as our basis.
Suppose, then, that we use ψL and ψR as basis vectors. What, then, are the compo-
nents of ψ1, ψ2, ψ+, and ψ−? What is the Hamiltonian matrix? Starting with this
rewritten Hamiltonian matrix, solve the characteristic equation to show that it has the
same eigenvalues as before, then show that the eigenvectors are also as expected.
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More than two wells

I’ve written the code on page 70 so you can add more potential wells simply by
increasing the value of nWells. Can you guess what happens to the pattern in the
energy eigenvalues when there are three, four, or more wells? Can you guess what
the wavefunctions look like? (The detail that’s probably hardest to guess is what
happens when the number of wells is odd and the wavefunction needs to be an odd
function, with a node in the middle. But this is just a detail.)

Rather than showing you more results here, let me just invite you to think
about what should happen with more than two wells, and then to use Mathematica
to check your guesses and derive some numbers and plots. You might also enjoy
exploring the results from two “canned” simulations: Quantum Bound States8 from
the PhET project at the University of Colorado, and the 1-d Quantum States Ap-
plet9 by Paul Falstad. Falstad’s applet can even animate the time dependence of
superposition states and tunneling through barriers.

When there are many potential wells in a periodic structure, the allowed energies
come not in pairs or small groups but in quasi-continuous bands, each consisting of a
very large number of closely spaced energies. The bands are separated by wide gaps
in which no energies are allowed. This behavior underlies the dramatic differences
between insulators, conductors, and semiconductors, as you can explore further in
a course on solid state physics.

Problem 2.34. Use the matrix diagonalization method to find the bound-state ener-
gies and eigenfunctions for a four-well rectangular potential energy function with a well
width of 1, a barrier width of 0.5, and barrier height of 50 in natural units. I suggest
using the code on page 70 for defining the potential energy function (setting nWells

to 4). Plot enough of the eigenfunctions to give a general idea of the patterns, and
discuss the results in enough detail to show that you understand the patterns.

8https://phet.colorado.edu/en/simulation/legacy/bound-states
9http://www.falstad.com/qm1d/

https://phet.colorado.edu/en/simulation/legacy/bound-states
http://www.falstad.com/qm1d/


Chapter 3

Unbound states in one
dimension

The previous chapter was all about bound states, in which a particle is trapped
inside a potential energy well and its energy can have only certain quantized val-
ues. Our main goal was to find those values, along with the associated energy
eigenfunctions.

We now turn our attention to particles that are not trapped, so they have enough
energy that the classically allowed region extends forever in one or both directions.
In this case, as I explained at the end of Section 2.1, the energy eigenfunctions will
go through an infinite number of spatial oscillations, whose wavelengths can vary
continuously, so the energies are not quantized. We can pick any energy we like
(at least above a certain threshold), and solve the TISE to find a corresponding
eigenfunction.

But the energy eigenfunctions aren’t necessarily the functions we want. For an
untrapped particle these eigenfunctions extend over an infinite amount of space.
They’re technically not normalizable and, more importantly, they’re unphysical:
real particles are always at least somewhat localized. Also, in many cases, real
untrapped particles are moving in approximately well-defined directions, at approx-
imately well-defined speeds. So in Section 3.2 we will study wavefunctions that are
approximately localized in both position and momentum. First, though, we need
to take a careful look at how momentum factors into an arbitrary wavefunction.

3.1 Momentum space

I hope you’re now comfortable with the idea of expanding an arbitrary wavefunction
ψ(x) in terms of basis functions:

ψ(x) =

∞∑
n=1

cnφn(x), (3.1)

78
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where the φn can be any complete—but discrete—basis set. So far in this book, the
φn have been energy eigenfunctions, associated with a V (x) (like the infinite square
well or the harmonic oscillator) that rises to infinity on both sides, trapping any
particle and quantizing all energies.

What I want to do now is write the corresponding expansion in terms of mo-
mentum eigenfunctions, eipx/~, where p can be any real number. (These functions
are also energy eigenfunctions for a free particle, when V (x) = 0 everywhere.) If
this collection of basis functions were discrete, we could express any other function
ψ(x) in terms of them by using a sum:

ψ(x) =
∑
p

cp e
ipx/~ (wrong). (3.2)

But because p is continuous, we need to replace the sum by an integral:

ψ(x) =
1√
2π~

∫ ∞
−∞

ψ̃(p) eipx/~ dp. (3.3)

In this formula I’ve also switched from the letter c to the symbol ψ̃ (which I pro-
nounce “sigh twiddle”), and factored out a constant from ψ̃ for a reason that I’ll
explain in a moment. The important thing to notice is that instead of a discrete
set of coefficients {cn}, we now have a continuous function, ψ̃(p), that encodes
how much of each basis function eipx/~ is incorporated into the wavefunction ψ(x).
This function, ψ̃(p), has a name: the momentum-space wavefunction. For every
(position-space) wavefunction ψ(x), there must be a corresponding momentum-
space wavefunction ψ̃(p).

And how do we find ψ̃(p) for a given ψ(x)? Again, think about the discrete case.
There, to find a particular cm, we would use Fourier’s trick : multiply equation 3.1
by φ∗m(x), integrate over x, and exploit the orthonormality of the basis functions to
kill off every term in the sum except the one we want (see equation 1.38). Let’s try
the same trick here. Multiplying both sides of equation 3.3 by e−ip

′x/~ (where p′ is
some arbitrary momentum value that in general is different from p) and integrating,
we have ∫ ∞

−∞
dxψ(x) e−ip

′x/~ =
1√
2π~

∫ ∞
−∞

dx

∫ ∞
−∞

dp ψ̃(p) eipx/~ e−ip
′x/~

=
1√
2π~

∫ ∞
−∞

dp ψ̃(p)

∫ ∞
−∞

dx ei(p−p
′)x/~, (3.4)

where in the second line I’ve interchanged the order of the integrals and moved
ψ̃(p) outside the x integral. (I’ve also written dx and dp next to their correspond-
ing integral signs, so you can tell which integral goes with which variable.) The
x integral is now an inner product of the two basis functions eipx/~ and eip

′x/~. If
these basis functions were a discrete and orthonormal set, this inner product would
equal a Kronecker delta δpp′ . Here, where the set of basis functions is continuous,
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we instead get a Dirac delta function, times a normalization constant:∫ ∞
−∞

ei(p−p
′)x/~ dx = 2π~ δ(p− p′). (3.5)

This lovely mathematical result may be unfamiliar to you, so think about it a
moment: When p 6= p′, the integrand on the left oscillates and averages to zero,
while the delta function on the right indeed equals zero. On the other hand, when
p = p′, the integrand on the left is 1, so there’s no cancelation and we get infinity—
just as the delta function says. The factor of ~ on the right-hand side comes from
a change of variables; the more generic version of the formula would be simply∫ ∞

−∞
eikx dx = 2π δ(k). (3.6)

The factor of 2π is not easy to guess, but I hope you’ll accept it by the time we’re
through.

Plugging the orthonormality relation 3.5 into equation 3.4 and using the delta
function to carry out the p integral, we obtain∫ ∞

−∞
dxψ(x) e−ip

′x/~ =
1√
2π~

∫ ∞
−∞

dp ψ̃(p) 2π~ δ(p− p′) =
√

2π~ ψ̃(p′). (3.7)

We can now rename p′ → p to obtain our desired result,

ψ̃(p) =
1√
2π~

∫ ∞
−∞

ψ(x) e−ipx/~ dx. (3.8)

You may recognize equations 3.3 and 3.8 as the formulas for a Fourier transform
and inverse Fourier transform, respectively. (The factors of ~ don’t normally appear
in math courses, but that’s just a matter of using p = ~k as our variable instead
of k.) Mathematicians can give you a rigorous proof, without using delta functions,
that either of these equations implies the other; that fact is called Plancherel’s
theorem. If nothing else, you should consult such a proof to see where the factor
of 2π comes from. But as a physicist, I find it more intuitive to think in terms of
“Fourier’s trick,” which projects out the desired “component” of the “vector” ψ(x),
and to invoke the delta-function identity 3.5 (or 3.6) at the appropriate point in the
calculation.

For a free particle, the momentum eigenfunctions eipx/~ are also energy eigen-
functions, so equation 3.3 is just the expansion we need in order to insert wiggle
factors and obtain the wavefunction as a function of time:

ψ(x, t) =
1√
2π~

∫ ∞
−∞

ψ̃(p) eipx/~ e−iEt/~ dp (free particle). (3.9)

Here E is a continuous variable that depends on p; if the particle is nonrelativistic,
then E = p2/2m. So for a free particle, you can calculate the time dependence of any
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initial wavefunction ψ(x, 0) by first using equation 3.8 to find the momentum-space
wavefunction and then plugging that into equation 3.9.

Unfortunately, carrying out Fourier-transform integrals with pencil and paper is
feasible only for the simplest of wavefunctions. Professionals almost always rely on
computers for this task, and fortunately, many computer software packages include
powerful routines for “fast Fourier transforms” of numerical data. In Mathematica,
the applicable functions are called Fourier and InverseFourier. Learning to use
these functions would take a bit of time, however, so I’ve decided not to incorporate
such calculations into this book (at least for now).

Problem 3.1. Derive equation 3.5 from equation 3.6.

Problem 3.2. Suppose ψ(x) = eip0x/~ (where p0 is a constant). What is ψ̃(p)? Sketch
both functions and discuss their physical interpretations.

Problem 3.3. Suppose ψ(x) = δ(x − x0) (where x0 is a constant). What is ψ̃(p)?
Sketch both functions and discuss their physical interpretations.

Problem 3.4. Equation 3.3 expresses an arbitrary wavefunction ψ(x) as a linear com-
bination of the momentum eigenfunctions eipx/~. What is the analogous equation that
expresses ψ(x) as a linear combination of the position eigenfunctions δ(x− x′)? (Here
I’m using x′ to label which position eigenfunction we want, just as the variable p in
eipx/~ labels which momentum eigenfunction we want.)

Probabilities and averages

Once you have the momentum-space wavefunction ψ̃(p), you can use it to calculate
momentum probabilities just as you would use ψ(x) to calculate position probabil-
ities: (

Probability of measuring

momentum between pa and pb

)
=

∫ pb

pa

|ψ̃(p)|2 dp. (3.10)

This is the Born rule for momentum, analogous to equation 1.6 for position and
equation 1.60 for energy. As Figure 3.1 shows, the probability of measuring a
particle’s momentum to be within a certain range is the area under the graph of
|ψ̃(p)|2. Of course, this formula doesn’t make sense unless ψ̃(p) is normalized, so
that the integral from −∞ to ∞ equals 1. But as you might guess, this will always
be the case if you calculate ψ̃(p) from a ψ(x) that is itself normalized.

If you want to know the average momentum, you can get it from ψ̃(p) in a
way that’s exactly analogous to calculating the average position from ψ(x) (see
equation 1.8):

〈p〉 =

∫ ∞
−∞

p |ψ̃(p)|2 dp. (3.11)

And, naturally, a similar formula works for any function of p. However, if average
values are all you want, then there’s actually no need to calculate ψ̃(p) at all. For
example, you can get 〈p〉 directly from ψ(x) by evaluating the integral

〈p〉 =

∫ ∞
−∞

ψ∗(x)
(
−i~ d

dx

)
ψ(x) dx. (3.12)
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Figure 3.1: When you measure a particle’s momentum, the probability of obtaining a
result within a given range equals the area under the graph of the square-modulus of the
momentum-space wavefunction.

Notice that the quantity inside the big parentheses is the momentum operator.
If instead it were the position operator (x), then this would just be the familiar
formula for 〈x〉. To derive equation 3.12, just insert expansion 3.3 for both ψ and
ψ∗ on the right-hand side, being careful to use a different p variable in each. Then
note that the x integral gives a delta function, which you can use to carry out one
of the p integrals, leaving you with an expression that is precisely identical to the
right-hand side of equation 3.11.

In fact, you can calculate the average value of any observable quantity using
an expression of the form of equation 3.12, replacing the momentum operator with
the operator of your choice. For powers of the momentum such as 〈p2〉, the proof
is essentially the same as the proof of equation 3.12. For operators that involve
both x and p, such as the Hamiltonian operator when V (x) is nonzero, the proof
is analogous but rests on the assumption that the operator has a complete set of
mutually orthogonal eigenfunctions (as in Problem 1.39).

Problem 3.5. Derive equation 3.12, following the steps described in the text below
it.

3.2 Wavepackets

We’re now ready to investigate the properties of wavefunctions that are somewhat
localized in space, with approximately well-defined momentum, but with neither
position nor momentum (nor any other observable quantity) precisely defined. Such
a “compromise” wavefunction is called a wavepacket. It’s the closest we can come,
in quantum mechanics, to making a particle behave classically.

The simplest version of a wavepacket consists of a momentum eigenfunction
multiplied by an “envelope” function that’s large in some central region and dies
out smoothly to either side. For mathematical convenience it’s easiest to take the
envelope to be a Gaussian bell curve, so I’ll express the wavepacket as follows:

ψ(x) = Ae−(x−x0)2/a2eip0x/~. (3.13)
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Figure 3.2: A Gaussian wavepacket (equation 3.13), plotted as real and imaginary parts
(above) and as magnitude with phase as color hue (below). This particular wavepacket has
p0 > 0 and a = 3h/p0 (that is, positive nominal momentum, and width parameter equal
to three wavelengths). The height at the peak is A and the horizontal displacement of the
peak from the origin is x0.

Here I’m using the symbol p0 for this wavefunction’s nominal momentum value. The
parameter a has units of length and is a rough measure of the width of the packet,
while x0 is the location of the wavepacket’s peak amplitude. You can express the
normalization constant A in terms of a (see Problem 3.8), but often it’s handier to
just write it as A.

What does this wavefunction look like? Figure 3.2 shows an example, but the
details depend on the sign of p0 and on how a compares to the oscillation wavelength,
h/p0.

But there’s a reason I called p0 the “nominal” momentum value. A wavepacket
is not a momentum eigenfunction but rather a mixture of momentum eigenfunc-
tions with a whole range of p values. To quantify exactly what mixture it is, we
need to compute the momentum-space wavefunction, by taking the inverse Fourier
transform (equation 3.8):

ψ̃(p) =
1√
2π~

∫ ∞
−∞

(
Ae−x

2/a2eip0x/~
)
e−ipx/~ dx. (3.14)

Here I’ve set x0 = 0 for simplicity. Be careful not to confuse p0, a constant parameter
that defines our particular wavepacket, with p, the variable on which the momentum-
space wavefunction depends. To carry out the integral, combine the three exponents,



84 Chapter 3. Unbound states in one dimension

Figure 3.3: The momentum-space wavefunction corresponding to the wavepacket plotted in
Figure 3.2, with a = 3h/p0. As in equation 3.16, the wavepacket is centered at x0 = 0 for
simplicity; this simplification makes the momentum-space wavefunction pure real.

complete the square, and use the basic Gaussian integration formula∫ ∞
−∞

e−αx
2
dx =

√
π

α
. (3.15)

The result is
ψ̃(p) = B e−(a(p−p0)/2~)2 , (3.16)

where B is a normalization constant that you can express in terms of a if you wish.
(Remarkably, ψ̃(p) is pure real—but this doesn’t happen when x0 is nonzero, as
you’ll see in Problem 3.10.)

So the momentum-space wavefunction is also a Gaussian bell curve. It’s centered
on p0 as we would expect, with a width in momentum space of approximately 2~/a
(see Figure 3.3). This result means that if you were to measure the momentum of
this Gaussian wavepacket, the most likely outcome would be p0 but you would be
reasonably likely to obtain any value in the range p0± 2~/a. Notice that the width
of ψ̃(p) is inversely proportional to the width of the (position-space) wavefunction
ψ(x). So the more we try to localize a particle in space (by reducing the value of a),
the more uncertainty we introduce into its momentum—and vice-versa. More pre-
cisely, if you calculate the standard deviations σx and σp for a Gaussian wavepacket
you can show (see Problem 3.8) that their product is a constant, independent of a:

σxσp =
~
2

for a Gaussian wavepacket. (3.17)

This is a special case of the famous Heisenberg uncertainty principle, which says
more generally that there is no wavefunction for which this product of standard
deviations is less than ~/2.

Problem 3.6. Use a computer to plot Gaussian wavepackets with a = h/p0 and with
a = 10h/p0, both for p0 > 0, and with a = 3h/|p0| for p0 < 0. In each case, either
plot the real and imaginary parts of ψ on the same graph, or plot |ψ| and fill the area
underneath with color hues determined by the complex phase, as in Figure 3.2.
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Problem 3.7. To understand why a wavepacket of width a has a momentum-space
width on the order of ~/a, imagine adding just two momentum eigenfunctions, eip0x/~

and eip1x/~ (rather than the actual continuous infinity of eigenfunctions that build ψ(x)
according to equation 3.3). These two waves interfere constructively at x = 0 to form
the peak of this “packet,” and we want them to interfere destructively at around x = a
to make the “packet” die out over that distance. What, then, should be the difference
between p1 and p0? Discuss your result briefly.

Problem 3.8. (a) Find the normalization constant A in equation 3.13, and use it to
find the normalization constant B in equation 3.16. (b) Calculate 〈x2〉 and hence σx
for a Gaussian wavepacket, in terms of the width parameter a used in equation 3.13.
To derive the needed integration formula, differentiate both sides of equation 3.15 with
respect to α. (c) Calculate σp for a Gaussian wavepacket, in terms of ~ and a, and
then check the uncertainty principle, equation 3.17.

Problem 3.9. Calculate the standard deviation σE of the energy, for a free Gaussian
wavepacket with nominal momentum p0 and width parameter a.

Problem 3.10. Calculate the momentum-space wavefunction of a Gaussian wavepacket
(equation 3.13) without setting x0 = 0 as I did in the text. How does the resulting

function ψ̃(p) change, as you vary x0? Include a sketch (or a computer-drawn plot) as
part of your answer.

Time evolution

Now suppose that this Gaussian wavepacket describes a nonrelativistic particle at
time zero, and that the particle is free, with V = 0 everywhere. How will the
wavepacket evolve as time passes? We could calculate the answer using equation 3.9,
but it’s more enlightening to think about the features we expect the answer to have.
(Another advantage of the reasoning that follows is that there is no need to assume
that the shape of the envelope is precisely Gaussian, as long as we interpret a as a
rough measure of its width.)

First of all, we expect the individual “ripples” within the wavepacket to move,
on average, at the nominal phase velocity,

vphase =
ω

k
=
E/~
p0/~

=
p2

0/2m

p0
=

p0

2m
. (3.18)

This is only half the nominal velocity of the particle, as we already saw in equa-
tion 1.20. But the packet itself moves not at the phase velocity but at the so-called
group velocity, which (according to the standard formula for any type of wave) is

vgroup =
dω

dk
=

d

dk

(
~k2

2m

)
k=p0/~

=
p0

m
. (3.19)

So the packet as a whole moves at the nominal particle velocity, twice as fast as the
ripples within it.

But the packet is actually a mixture of waves moving at a whole range of ve-
locities, so as it moves along, some of these components move faster and others
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Figure 3.4: Time evolution of a free Gaussian wavepacket. The initial packet (left) has
the form of equation 3.13 with a = 1.5h/p0. As time passes the packet moves to the
right and spreads; the time interval between successive curves in this composite image is
2ma/p0. Look closely at the phase oscillations in the final packet (right) and notice that
the wavelength is shorter in the leading portion than in the trailing portion, because the
shorter-wavelength components move faster.

move more slowly. Soon this “dispersion” causes the packet to spread out, just
as a large group of hikers naturally spreads out along the trail, with the faster
ones in the lead and the slower ones behind. Although the wavelength of the
oscillations within the packet is initially uniform, it will not remain uniform: as
the packet moves and spreads, its leading edge will contain shorter-wavelength
(higher-velocity) oscillations, while its trailing edge will contain longer-wavelength
(lower-velocity) oscillations. Meanwhile the peak amplitude of the packet will
decrease, to conserve probability as the width increases. Figure 3.4 illustrates
all these effects for one particular choice of wavepacket parameters; you can ex-
plore a wide variety of parameters using the Quantum Wavepackets simulation at
http://physics.weber.edu/schroeder/software/Wavepackets.html.

To quantify the spreading effect, recall from equation 3.16 that the faster com-
ponents of the wavepacket have momentum values that are larger than average by
about 2~/a. This means their velocity is larger than average by about 2~/ma,
so at time t they will have traveled farther than average by about 2~t/ma. Once
this quantity exceeds the initial width a, the spreading effect will dominate the
wavepacket’s width:

width ∼ 2~t
ma

after t ∼ ma2

2~
. (3.20)

It’s interesting to compare the time scale for the spreading to become significant,
ma2/2~, to the time scale for the wavepacket to move a distance equal to its width,
ma/p0. These two time scales are roughly the same when the nominal wavelength,
h/p0, is equal to the packet width. When the wavelength is much less than the
packet width, so that many waves fit inside, the packet moves many times its own
width before it spreads significantly. On the other hand, if the wavelength is much
longer than the packet width, the packet’s spreading will be more noticeable than
its motion.

http://physics.weber.edu/schroeder/software/Wavepackets.html
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Naturally, all of these physical effects are predicted by the more formal math-
ematics. Problem 3.14 explores the spreading effect, and then Problem 3.15 adds
in the motion. I’ve relegated these calculations to the problems because the calcu-
lations are somewhat laborious, and it’s all too easy to get so bogged down in the
algebra that the physics gets lost. But please do work the problems when you’re
ready, so you can see how the full formula for ψ(x, t) backs up everything I’ve just
described.

Alternatively, we can also explore wavepacket spreading numerically, as de-
scribed in the following section (and as implemented in the Quantum Wavepackets
simulation).

But whatever our tools—physical reasoning, analytical calculation, or numerical
simulation—the behavior of a Gaussian wavepacket is a critically important example
of quantum behavior. This example quantifies the tradeoff between states with well-
defined position and states with well-defined momentum, showing exactly how close
a particle can come to having both at the same time, and even showing how the
passage of time amplifies the initial quantum fuzziness.

Problem 3.11. For the wavepacket shown in Figure 3.4, compare the characteristic
spreading time, ma2/2~, to the time between the successive curves. Discuss.

Problem 3.12. Imagine that the wavepacket shown in Figure 3.4 has been undis-
turbed at times before t = 0, so the same principles (and equations) that determine
its properties at positive times also apply at negative times. What would the packet
have looked like at negative times? Would it have been narrower than at t = 0 or
wider? Would the wavelength of its phase oscillations have been uniform, or larger in
the leading portion, or larger in the trailing portion? Explain.

Problem 3.13. Suppose that we model a pitched baseball (mass 145 g, speed 40 m/s)
as a Gaussian wavepacket with an initial width of 10−10 m (a little less than the width
of an atom). Should the batter worry about this wavepacket spreading before the ball
reaches the plate? Explain carefully, and also discuss some other possible values for
the initial width.

Problem 3.14. Consider a stationary free Gaussian wavepacket, with p0 = 0, centered
at the origin (so x0 = 0). Carry out the integral in equation 3.9 to find an explicit
formula for ψ(x, t). (Hints: Combine all the exponents and complete the square. Use
the abbreviation τ = 2~t/ma2; this is a dimensionless time parameter, equal to the
time in units of the characteristic spreading time of equation 3.20. I also found it
helpful to temporarily use the abbreviation α for the coefficient of the p2 term in the
exponent.) Your answer will initially be in a form that is hard to interpret, because
it has factors of i in awkward places. To fix the exponent, multiply and divide by a
complex expression to make the denominator real, thus moving the i to the numerator;
then split the exponential into a real envelope and a pure phase factor. To fix the
square root, write its argument in the form beiφ (where b and φ are real), then note

that
√
eiφ = eiφ/2. Finally, having put your answer into a reasonable form, explain its

properties in some detail.

Problem 3.15. Repeat Problem 3.14 for a moving Gaussian wavepacket, with p0 6= 0.
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3.3 Numerically solving the TDSE

Even for the idealized example of a free Gaussian wavepacket, finding an explicit
formula for the wavefunction at a future time, ψ(x, t), is laborious. If the initial
state is more complicated, or (more importantly) if the particle interacts with a
nontrivial potential energy function V (x), then chances are no such formula even
exists. Fortunately, though, it’s not hard to use a computer to predict the time
evolution of an arbitrary initial wavefunction, subject to an arbitrary potential
energy, by direct numerical integration of the time-dependent Schrödinger equation
(TDSE).

First let me write the TDSE in natural units, setting ~ = m = 1:

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ V (x)ψ. (3.21)

We now discretize x into a list of evenly spaced values, using the second centered
difference approximation (equation 2.6) for the second spatial derivative:

i
∂ψ

∂t
= −1

2

ψ(x+dx) + ψ(x−dx)− 2ψ(x)

(dx)2
+ V (x)ψ(x), (3.22)

where dx is now the (non-infinitesimal) spacing between adjacent x values. To
simplify this equation I will use units in which dx = 1. Then our unit of momentum
will be ~/dx, our unit of velocity will be ~/(mdx), and our unit of time will be
m(dx)2/~. With this simplification and a bit of rearrangement, the TDSE becomes

i
∂ψ

∂t
= −1

2

[
ψ(x+1) + ψ(x−1)

]
+
[
1 + V (x)

]
ψ(x). (3.23)

We still need to discretize time, replacing ∂ψ/∂t with a discrete approximation.
The easiest way to do this would be to write

∂ψ

∂t
≈ ψ(x, t+dt)− ψ(x, t)

dt
, (3.24)

with the understanding that each ψ on the right-hand side of equation 3.23 is
evaluated at t (rather than at t+dt or some other time). But this approximation is
inaccurate because it has a forward bias, taking the future time t+ dt into account
but not the past time t − dt (see Figure 3.5). It is much more accurate to use the
centered-difference approximation

∂ψ

∂t
≈ ψ(x, t+dt)− ψ(x, t−dt)

2 dt
, (3.25)

which treats the near future and recent past symmetrically. Inserting this approxi-
mation into equation 3.23 and solving for ψ(x, t+dt), we obtain our fully discretized
version of the TDSE:

ψ(x, t+dt) = ψ(x, t−dt) + i dt
[
ψ(x+1, t) +ψ(x−1, t)− 2

(
1 + V (x)

)
ψ(x, t)

]
. (3.26)
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Figure 3.5: The slope of a centered secant line (dashed, equation 3.25) is a better approx-
imation to the derivative of the actual function (solid curve) at t than is the slope of a
forward-biased secant line (dotted, equation 3.24).

Equation 3.26 is the kernel of what I’ll call the centered-difference method of
solving the TDSE. The procedure is to loop over all x points on the discretized
lattice, using this equation to calculate ψ(x, t+dt), and then step forward in time
and repeat the process to calculate ψ at the next time increment, and the next, and
so on. There are just a few more details to fill in:

• Choosing the time step. The calculation will go faster if we use a larger
value of dt, but it turns out that if we make dt too large, the process becomes
unstable: small spurious inaccuracies grow exponentially with time until ψ
becomes huge and nonsensical. The largest dt you can get away with depends
on V (x).1 In our units this largest value is always less than 0.5, and in practice
dt = 0.45 works well most of the time.

• Boundary conditions. Equation 3.26 won’t work at either end of the spatial
interval of our calculation, because it would then refer to x values that are
beyond the ends by dx. The usual approach is therefore to set ψ = 0 at each
end at all times, effectively embedding our system inside an infinite square
well. We then use equation 3.26 only at the interior points.

• Getting started. Of course we must provide an initial wavefunction, ψ(x, 0).
But in order to use equation 3.26 for the first time, we also need to know
ψ(x,−dt), one step before time zero. A simple solution is to calculate it using

1See P. B. Visscher, “A fast explicit algorithm for the time-dependent Schrödinger equation,”
Computers in Physics 5 (6), 596–598 (1991); or H. Gould, J. Tobochnik, and W. Christian, An Intro-
duction to Computer Simulations Methods, third edition (Pearson, San Francisco, 2007, electronic
version available at http://www.opensourcephysics.org/items/detail.cfm?ID=7375), equation
16.34. I actually learned the algorithm described in this section from Thomas A. Moore (personal
communication) in about 1982, but Visscher gets credit for the careful stability analysis.

http://www.opensourcephysics.org/items/detail.cfm?ID=7375
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equation 3.24 with a negative value of dt. Even though this approximation
isn’t very accurate, the harm is minimal because we’re using it only once.

Now let me show an implementation of the centered-difference method using
Mathematica. I’ll start by defining the size of the spatial lattice, creating a table of
potential energy values, and plotting the potential function:

xMax = 400;

v = Table[If[x < 200, 0, 0.06*((x - 200)/200)], {x, 1, xMax}];

ListPlot[v, Joined -> True]

Because Mathematica list indices start at 1 rather than 0, it’s easiest to let x range
from 1 to xMax. My arbitrary potential energy function is 0 in the left half of the
interval and linear in the right half, with a slope chosen so that my wavefunction
(see below) will have enough energy to penetrate about half-way into the linear
region.

Next I’ll initialize the time variable, the time step, and the wavefunction itself:

t = 0;

dt = 0.45;

x0 = 100;

p0 = 0.25;

a = 30;

psi = Table[Exp[-(x-x0)^2/a^2] Exp[I p0 x], {x, 1, xMax}];

psiLast = psiNext = Table[0, {x, 1, xMax}];

For[x = 2, x < xMax, x++,

psiLast[[x]] = psi[[x]]

- (I*dt/2)*(psi[[x+1]] + psi[[x-1]] - 2(1+v[[x]])psi[[x]])];

For the initial wavefunction I’m using a Gaussian of the form of equation 3.13, cen-
tered in the region where the potential energy is zero, with a positive momentum so
it will move toward the linear-potential region. I chose the value of p0 so the nominal
wavelength, 2π/p0, would be significantly larger than the lattice spacing, dx = 1.
After initializing the “current” wavefunction psi, I’ve initialized the wavefunctions
at the previous and next time steps (psiLast and psiNext) to zero—although here
it would actually suffice just to initialize the endpoints. The For loop at the end of
this code block uses equation 3.24 to properly initialize psiLast.

The initializations are now complete, but before we start calculating forward in
time we need a plot to show what this wavefunction looks like. This part of the
code will be pretty arcane, but I hope you’ll like the result:

Dynamic[(psiInterp = Interpolation[psi];

Plot[Abs[psiInterp[x]]^2, {x, 1, xMax},

PlotRange -> {0, 1},

Filling -> Axis,
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ColorFunction -> Function[x, Hue[Arg[psiInterp[x]]/(2 Pi)]],

ColorFunctionScaling -> False,

PlotPoints -> 500,

Epilog -> Inset[Style[StringJoin["t = ",

ToString[Round[t]]], 20], {10, 0.9}, {Left, Top}]] )]

The outer Dynamic function causes the plot to update itself whenever psi changes
(as it soon will). Before creating the plot we create what Mathematica calls an
interpolating function, so it can evaluate the function at any x value it wants (not
just at integer values). The function we’re plotting is the probability density, |ψ|2,
but we fill the area beneath it using a ColorFunction that assigns the hue based
on the wavefunction’s phase (“Arg”). The Epilog adds text to show the current
value of the time variable, rounded to the nearest integer, in 20-point type, near
the upper-left corner of the plot.

After all these preliminaries, the simulation code itself is refreshingly concise:

While[t < 2500,

For[x = 2, x < xMax, x++,

psiNext[[x]] = psiLast[[x]] +

I*dt*(psi[[x+1]] + psi[[x-1]] - 2*(1+v[[x]])psi[[x]])];

psiLast = psi;

psi = psiNext;

t += dt];

The For loop uses equation 3.26 to calculate the new wavefunction at each (interior)
point. The rest of the code gets us ready for the next time step, by copying the
current wavefunction into the space for the previous one, copying the next wave-
function into the space for the current one, and incrementing the time variable.
All of this code repeats until the time variable reaches 2500, long enough for the
wavepacket to move several hundred distance units at its nominal initial velocity of
0.25.

Figure 3.6 shows some of the results of running this code—but please don’t take
my word for it! Type the code in yourself and watch the full animation sequence.
Check that your results agree with mine, then try changing the various parameters
to better understand the effect of each. It’s also worthwhile to try to explain what’s
happening qualitatively, as the wavepacket moves and spreads and slows and re-
verses. But I’ve chosen this particular example not because it has any fundamental
importance, but rather because the results are sufficiently complicated that I could
never have obtained them with pencil and paper. You now know how to predict the
time evolution of any initial wavefunction, subject to any potential energy function!

The following problems ask you to modify the code to explore a variety of further
scenarios. The next section takes a closer look at what happens when a quantum
particle encounters a potential energy barrier.

Problem 3.16. The code on page 90 gives the initial wavepacket a nominal momentum
of 0.25 in natural units. What is its nominal kinetic energy? If this were a classical
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Figure 3.6: Selected animation frames generated by the numerical TDSE code presented in
this section. The initial Gaussian wavepacket moves to the right and encounters a linear
“ramp” potential beginning at x = 200. The wavepacket then slows down, stops (at about
t = 1250), and reverses direction, as its shape spreads and becomes irregular.

particle with the same initial energy, how far would it penetrate into the region with
the linear potential (that is, where would its turning point be)?

Problem 3.17. Explain the pattern of color hues (indicating the wavefunction phase)
in each of the frames in Figure 3.6, relating the color pattern to the packet’s direction
of motion, speed, and so on.

Problem 3.18. Run the code given in the text, and check that you can reproduce the
results shown in Figure 3.6. Then run the same code using larger and smaller values
of the time step dt, and describe the results.

Problem 3.19. Adapt the code in this section to reproduce the results shown in
Figure 3.4, saving or printing a few representative animation frames as in the figure.
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Explain carefully how you chose the initial wavepacket parameters, and discuss the
wavepacket’s behavior in some quantitative detail. Check that the wavelength within
your final wavepacket varies from front to back as the figure shows.

Problem 3.20. Adapt the code in this section to study a spreading stationary Gaus-
sian wavepacket, with V = 0, as in Problem 3.14. Start with a fairly narrow wavepacket
that is centered in the simulation space, let it spread to fill most of the space, then save
the resulting image and describe its qualitative features in some detail. Then repeat
the simulation starting with a pair of narrow stationary wavepackets, separated by a
gap that is a few times wider than their widths. Again save an image showing the
results, and explain what is happening qualitatively.

Problem 3.21. Adapt the code in this section to study a moving Gaussian wavepacket
with V = 0, and run it long enough to observe what happens when the wavepacket
reaches the boundary of the simulation region. Describe and explain the results in as
much detail as you can.

3.4 Scattering from a barrier

The example of the previous section (see Figure 3.6) becomes more interesting if
we modify the potential function slightly, so it doesn’t keep rising indefinitely as x

Figure 3.7: When a wavepacket hits a step potential, it can split into reflected and trans-
mitted pieces. I produced these animation frames using the code in the previous section,
with a modified potential function (and a larger value of xMax). The width of the sloped
step is 20 units.
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increases. Figure 3.7 shows a wavepacket hitting a sloped step potential that rises
linearly to a maximum value of 0.025 in natural units (compared to 0.060 at the
extreme right in Figure 3.6); I’ve also made the slope several times steeper than
before, so the sloping portion has a width of just 20 units. The particle experiences
a constant leftward force within this 20-unit interval, but no force on either side.

As before, this interaction causes intricate changes in the shape of the wavepacket.
But now there is also a major qualitative difference in the outcome: the wavepacket
splits into a reflected packet, which comes back to the left as before, and a transmit-
ted packet, which continues to the right. We call this a scattering process, because
the incoming particle can be sent outward in more than one direction. After it
interacts with the potential barrier, the particle is in a so-called “cat state,” with
two widely separated peaks.

We can calculate the relative probabilities of reflection and transmission by
simply integrating the final |ψ|2 over appropriate ranges. When I do this I get
a reflection probability of approximately 24% and a transmission probability of
approximately 76%. Throughout this section I’ll refer to these probabilities as R
and T , respectively.

To understand why the reflection and transmission probabilities have these val-
ues, recall from page 90 that the nominal momentum p0 of the initial wavepacket is
0.25 in natural units. This means that its nominal kinetic energy, 1

2p
2
0, is 0.03125,

which is somewhat greater than the step height, 0.025. A classical particle with this
momentum would have enough energy to overcome the leftward force and continue
to the right (at reduced speed); its transmission probability would be 100%.

The main reason why the quantum wavepacket’s transmission probability is less
than 100% is because p0 is merely its nominal momentum. As we saw in Section 3.2,
the wavepacket is actually a mixture of a range of momentum states, with a width
in momentum space that is inversely proportional to the width in position space.
Here the position-space width is a = 30 in natural units, so the momentum-space
width is on the order of 0.03. If we subtract this from the nominal momentum
of 0.25 and then calculate the corresponding kinetic energy, we get only 0.024,

Figure 3.8: The momentum-space probability distribution of the initial wavepacket shown
in Figure 3.7, calculated from equation 3.16. The portion to the right of the dashed line
has enough energy to penetrate the potential barrier, but the portion to the left does not.
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which is less than the step height. Figure 3.8 shows the initial wavepacket’s entire
momentum-space probability distribution, highlighting the momentum ranges that
do and don’t have enough energy to penetrate the force barrier. The barrier acts as a
filter, allowing the high-energy (high-frequency) components of the packet through,
and reflecting the low-energy (low-frequency) components. When I integrate |ψ̃(p)|2
over the appropriate ranges I find that 78.6% of the wavepacket has more than the
critical energy, while 21.4% has less.

Notice that this filtering effect doesn’t quite account for all of the 24% reflection
probability. That’s because even when a quantum particle’s energy is above the
threshold for transmission, there is still a chance that it will reflect. In this respect,
a quantum particle behaves less like a classical particle and more like a classical
wave. For example, you already know that even when a light wave of a particular
frequency is perfectly capable of penetrating a sheet of glass, a portion of it will
instead reflect.

Problem 3.22. Modify the code in Section 3.3 to reproduce the scenario of Figure 3.7.
Be sure to calculate the reflection and transmission probabilities. How would you expect
the results to change if you increase the initial wavepacket width (a) from 30 to 50?
After writing down your expectation, try it and see.

Problem 3.23. Draw a reasonably accurate sketch of the momentum-space probability
distribution for the final (t = 1200) state shown in Figure 3.7. Show the probability
distribution for the initial state (Figure 3.8) on the same sketch, for comparison.

Scattering probabilities for definite energies

To better understand the reflection/transmission process, it would be nice if we
could focus on just one energy at a time, rather than simulating a narrow wavepacket
that mixes a broad range of energies. Moreover, real-world wavepackets are often
much wider in space, and therefore have much more precisely defined energies, than
the narrow packet used in Figure 3.7.

But our brute-force method of numerically integrating the time-dependent Schrö-
dinger equation is not well suited to studying wide wavepackets with precise energies.
To simulate a wider wavepacket we would have to make room for it, extending our
grid of x values in both directions, and we would have to wait longer for the entire
wavepacket to interact with the barrier. The simulation would therefore take much
longer to run, due to both the longer integration time and the larger number of x
values to calculate during each time step.

Fortunately, there is a much better way. To determine the behavior of a definite-
energy particle interacting with our potential barrier, we can simply solve the time-
independent Schrödinger equation within the region of interest, using appropriate
boundary conditions. The solution will represent a steady-state scenario or, equiv-
alently, the limit of infinitely wide incoming and outgoing wavepackets. In the
regions with constant V , to the left and right of where the force acts on the parti-
cle, the solution will consist of appropriate momentum eigenfunctions to represent
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Figure 3.9: In a generic one-dimensional scattering situation, the potential energy takes an
arbitrary form within a limited region (here 0 to b) but is constant on either side. The
steady-state scattering solution to the TISE consists of incident plus reflected momentum
eigenfunctions to the left of the region of the force, and a transmitted momentum eigen-
function to the right.

the incoming, reflected, and transmitted waves. The relative amplitudes of these
eigenfunctions will determine the reflection and transmission probabilities.

To make all this more explicit, let me introduce some assumptions and some
notation (see Figure 3.9). Let the nontrivial part of the potential energy function
have a width of b, extending from x = 0 to x = b. I’ll assume that the potential
energy is constant (so there is no force) to either side of this region, and I’ll put its
(arbitrary) zero level on the left:

V (x) =

{
0 for x < 0,

V0 for x > b.
(3.27)

Then if the incident wave comes in from the left with energy E, we can write the
wavefunction in each of the force-free regions as

ψ(x) =

{
Aeikx +Be−ikx for x < 0,

Ceik
′x for x > b,

(3.28)

where the angular wavenumbers are

k =
√

2E and k′ =
√

2(E − V0), (3.29)

in units where the particle mass and ~ are equal to 1. The coefficients A, B, and C
tell us the relative amplitudes of the incident, reflected, and transmitted waves, and
can all be complex, to allow for phase shifts. But all that matters is the relative
amplitudes and phases, so without loss of generality I will set C to a complex
number of unit magnitude (and arbitrary phase, as you’ll see below). Solving the
TISE throughout the entire region will then tell us the corresponding values of A
and B.

In principle, for a sufficiently simple potential function, we could try to solve
the TISE analytically. But it’s much easier, and much more generally doable, to
solve it numerically. We can use essentially the same “shooting method” as in
Section 2.2, except this time we’re not trying to find an unknown energy eigenvalue;
we can choose any energy we like, and shoot just once. We’ll shoot from right to
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left, because it’s on the right that the wavefunction is completely known (given an
arbitrary choice of C).

Without further ado, here is some Mathematica code to solve the TISE for these
conditions. First I need to define the potential energy function:

v0 = 0.025; (* height of potential step *)

b = 20; (* width of sloped potential step *)

xMax = 100;

v[x_] := If[x < 0, 0, If[x > b, v0, x*v0/b]];

Plot[v[x], {x, -xMax, xMax}]

Here the constant xMax is the distance, to either side of x = 0, over which I will
solve the TISE. For now I’m using the same potential function as in Figure 3.7
(aside from the horizontal shift to put x = 0 at the bottom of the “ramp”), but
the rest of the code will work for essentially any potential in the middle region. To
carry out the solution I’ll use NDSolve:

energy = 0.03;

kp = Sqrt[2(energy-v0)];

solution = NDSolve[{psi’’[x] == -2(energy-v[x])psi[x],

psi[xMax] == 1, psi’[xMax] == I*kp}, psi, {x, -xMax, xMax}];

Notice the boundary conditions in the last line: given that ψ(x) = Ceik
′x for any

x > b, we must have dψ/dx = ik′Ceik
′x in this region; I’ve arbitrarily set ψ = 1 at

xMax, and this choice forces me to set ψ = ik′ at this same point. (In the code I’ve
used kp for k′, and I’ve used equation 3.29 to calculate its value from the energy.)

Now that I have the solution, the first thing I want to do is plot it. I’ll plot the
probability density |ψ|2, and use color hues to represent phases as usual:

Plot[Abs[psi[x]]^2 /. solution, {x, -xMax, xMax},

PlotRange -> {0, All},

Filling -> Axis,

ColorFunction -> Function[x, Hue[Arg[psi[x]/.solution]/(2Pi)]],

ColorFunctionScaling -> False,

PlotPoints -> 500]

Figure 3.10 shows the resulting plots for three different values of the wavefunction
energy. There’s a lot to notice in these plots! In the transmission region, to the right
of x = 20, the numerical solution has a constant amplitude, with color hues indicat-
ing a rightward momentum flow and wavelengths that you can check are consistent
with the formula k′ =

√
2(E − V0). At the extreme right end, the red hue indicates

that the wavefunction is pure real, in accord with my chosen boundary condition.
To the left of x = 0, meanwhile, the probability density oscillates, showing interfer-
ence between the incident and reflected waves. Even here, however, the color hues
indicate that the net momentum is to the right, because the reflected amplitude
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Figure 3.10: Numerical solutions of the TISE for three selected energies, for the same sloped
step potential as in Figure 3.7 (aside from a horizontal shift). The dashed lines mark the
ends of the sloped step. The boundary conditions are chosen so that the solution on the
right is a pure right-going traveling wave. On the left we see interference between the
incident and reflected waves. Larger interference fringes correspond to a larger reflection
probability R, as described in the text. Here the distance units are arbitrary (inherited
from the increment dx in Section 3.3), while the size of the energy unit is determined by
the distance unit via ~ = m = 1.

is always smaller than the incident amplitude. Notice that the wavelength of the
interference fringes is exactly half the wavelength of the phase oscillations. Finally,
and most importantly, the relative size of the interference fringes is large when the
wavefunction energy is only slightly above V0, and small when E is substantially
higher.

Think a little more about the size of the interference fringes. If there were
no reflection at all, there would be only an incident wave in the left region so we
would see a constant magnitude, with no fringes. On the other hand, if we had
100% reflection, the right- and left-moving waves in this region would have the
same amplitude, so the fringes would be as large as possible, with total destructive
interference at the minima. In general, the larger the relative size of the interference
fringes, the greater the value of the reflection probability R.

Now let’s quantify this idea. According to equation 3.28, the probability density
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in the left region is

|ψ(x)|2 =
(
A∗e−ikx +B∗eikx

)(
Aeikx +Be−ikx

)
= |A|2 + |B|2 +AB∗ e2ikx +A∗B e−2ikx. (3.30)

The cross-terms look a bit threatening, but we can tame them by writing A and B
in amplitude-phase form:

A = |A|eiα, B = |B|eiβ, (3.31)

for some angles α and β (whose values won’t concern us). Now with two lines of
algebra you can obtain the much nicer formula

|ψ(x)|2 = |A|2 + |B|2 + 2|A||B| cos(2kx+ α− β), (3.32)

which is explicitly real and shows exactly how the probability density oscillates in x
with a wavelength of π/k. The high points of the oscillation are where the cosine
equals +1, and we can take the square root at any of these points to obtain

|ψ|max =
√
|A|2 + |B|2 + 2|A||B| = |A|+ |B|. (3.33)

Similarly, the low points are where the cosine equals −1, so

|ψ|min =
√
|A|2 + |B|2 − 2|A||B| = |A| − |B|. (3.34)

It’s easy to solve this pair of linear equations for |A| and |B| in terms of the maximum
and minimum values of |ψ|, which we can obtain from our numerical solution. What
we really want, though, is the reflection probability R, which is the ratio of the
reflected intensity to the incident intensity. These intensities are proportional to
the squared magnitudes of the respective amplitudes, just like any other quantum
mechanical probabilities. The bottom line, then, is that the reflection probability is

R =
|B|2

|A|2
=

(
|ψ|max − |ψ|min

|ψ|max + |ψ|min

)2

, (3.35)

and because whatever isn’t reflected must be transmitted, the transmission proba-
bility is T = 1−R.

To use equation 3.35 we could just read the maximum and minimum |ψ|2 values
off of our plots, but it’s more accurate to let the computer find them. The relevant
Mathematica functions are FindMaximum and FindMinimum, and like other numerical
analysis functions, they take some getting used to. Here’s my code:

max = FindMaximum[Abs[psi[x]] /. solution,

{x, -0.8 xMax, -0.2 xMax}][[1]];

min = FindMinimum[Abs[psi[x]] /. solution,

{x, -0.8 xMax, -0.2 xMax}][[1]];

reflection = ((max - min)/(max + min))^2
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Figure 3.11: The reflection probability as a function of the wavefunction energy, for scat-
tering of a quantum particle from a sloped step potential as in Figures 3.7 and 3.10. The
height of the step is 0.025, and each curve is for a different value of the width b of the slope.
I calculated the three curves for b > 0 numerically, but used equation 3.36 for the b = 0
curve.

For both the maximum and minimum, I told Mathematica to search an interval
of x values that includes multiple fringes, but that stays away from the edges of
the regions where the numerical solution is either undefined (beyond the far left)
or no longer of the assumed form (right of x = 0). I appended “[[1]]” to extract
the values of the maximum and minimum, throwing away the information about
where these values occur (try each line without the [[1]] to see what I mean). The
results of this calculation are written in Figure 3.10, for each of the three energies
shown. I was a bit surprised by the small R values in relation to the sizes of the
fringes, but that’s what you get from taking the square roots and such, according
to equation 3.35.

Figure 3.11 shows more generally how the reflection coefficient falls off as the
energy increases, at a rate that depends on the width b of the sloped potential step.
When the slope is very shallow (large b), the quantum particle behaves almost as a
classical particle, with essentially no reflection as long as its energy is just a little
above the step height. At the other extreme, an abrupt step with b = 0 produces
maximum reflection. This behavior is analogous to that of light, which reflects more
strongly from an abrupt boundary than from a smoothly varying interface.

As you might guess, the b = 0 case is simple enough that there’s no need
to calculate R numerically. In this case, as you can show in Problem 3.29, the
reflection probability is given by the reasonably simple formula

R =

(
k − k′

k + k′

)2

=

(
1−
√

1− V0/E

1 +
√

1− V0/E

)2

. (3.36)
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Problem 3.24. Use a ruler (or the electronic equivalent) to measure the wavelength
of each of the wavefunctions shown in Figure 3.10, both to the left of the step and
to the right. (On the left, measure the wavelength of the phase oscillations, not the
interference fringes.) Then calculate what each of these measured wavelengths should
be, and check for agreement.

Problem 3.25. In the code on page 97 I set xMax to 100. Why do you think I chose
that value? Would the code still work for a larger or a smaller value? Discuss.

Problem 3.26. Starting from equation 3.30, write out a complete derivation of equa-
tion 3.35, including the algebraic steps omitted in the text.

Problem 3.27. Use the code in the text to reproduce the three wavefunctions shown
in Figure 3.10. Also try some intermediate energy values, and plot the reflection prob-
ability as a function of E. Check that your plot agrees with Figure 3.11.

Problem 3.28. All three of the wavefunction plots in Figure 3.10 are for values of E
that are greater than the step height V0. What do you think would happen if E is
less than V0? Write down your expectation in some detail, then run the code for some
E < V0 and see if you’re right. Does the solution have any features that you didn’t
expect?

Problem 3.29. Use the results that you proved in Problem 2.1 to derive equation 3.36.

Problem 3.30. Each of the curves in Figure 3.11 shows R as a function of E for
fixed b, but we could do it the other way around. Sketch your best guess for what a
plot of R vs. b for fixed E would look like, say for V0 = 0.025 and E = 0.030. Then
adapt the code to produce a quantitatively accurate version of this plot, being sure
to include enough points to see the details. How accurate was your guess? Can you
explain the interesting features of the plot?

Tunneling

There are many other potential shapes, besides the sloped step potential, that
give rise to interesting scattering behavior. For instance, with a succession of two
abrupt steps we can obtain constructive and destructive interference effects that are
analogous to thin-film interference of light. I will save that scenario for Problem 3.35,
and consider here the case of scattering from a barrier in which the potential energy
is greater than the energy of the incident particle. The barrier is then a classically
forbidden region, so a classical particle would have a 100% reflection probability.
But if the barrier is sufficiently thin, with a classically allowed region on the other
side, then a quantum particle has a chance to tunnel through it—in analogy to the
tunneling between the two sides of a double well that we explored in Section 2.5.

Figure 3.12 shows an example. For simplicity I’m taking the barrier to be
rectangular in shape: an inverted finite square well. More explicitly,

V (x) =

{
Vb for 0 < x < b,

0 elsewhere.
(3.37)
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Figure 3.12: A rectangular potential barrier (a) with V = 0.05 inside, and scattering
solutions of the TISE for this potential with E = 0.04, so that the inside of the barrier is
a classically forbidden region. In (b) the barrier width is 10 units and the reflected wave is
nearly as strong as the incident wave, producing a strong interference pattern on the left
and a tunneling probability of only 15%. In (c) the barrier width is only 1 unit and the
tunneling probability is 97%. The dashed vertical lines indicate the barrier edge locations.
The distance unit is arbitrary (inherited from the increment dx in Section 3.3); the energy
unit is determined by the distance unit via ~ = m = 1.

The figure shows solutions to the TISE for Vb = 0.05, E = 0.04, and two values of b.
As you can see, these barriers are narrow enough to result in significant tunneling
probabilities: 15% for b = 10 and 97% for b = 1.

Producing wavefunction plots like those in Figure 3.12, and calculating the corre-
sponding reflection and transmission probabilities R and T , is quite straightforward
using a slightly modified version of the numerical TISE code that begins on page 97.
It’s equally easy to adapt that code to more realistic, non-rectangular barrier shapes.
For the rectangular barrier, though, you can also solve the TISE analytically to get
an explicit formula for the tunneling probability as a function of Vb, E, and b (see
Problem 3.34).

Rather than diving straight into such a detailed calculation, I’d like to take a
semi-quantitative approach and try to understand when the tunneling probability
is large, and when it is small. Look closely at the wavefunction inside the barrier
in Figure 3.12(b), and notice that it has the approximate shape of a decaying ex-
ponential function. The total amount of exponential decay determines the relative
amplitudes of the wavefunction on either side, and hence the transmission probabil-



3.4. Scattering from a barrier 103

ity T . This decay amount is determined, in turn, by the distance b over which the
decay occurs, along with the rate of decay, which depends on how far E is below Vb.

More precisely, recall from Problem 1.36 that the solution to the TISE inside
the barrier is actually a sum of decaying and growing exponential functions:

ψ(x) = De−κx +Ge+κx (inside barrier), (3.38)

where

κ =

√
2m(Vb − E)

~
(3.39)

is the forbidden-region counterpart to k (note the sign change inside the square
root), and D and G are complex constants. The decaying and growing terms must
actually be equal in magnitude at the right edge of the barrier, in order to match
the horizontal slope of the pure right-moving traveling wave to the right (see Prob-
lem 3.32). But as we move leftward into the barrier from the right, the e+κx term
decreases exponentially, while the e−κx term grows exponentially. For a sufficiently
wide barrier, with κb� 1, the e+κx term soon becomes negligible and the e−κx term
then dominates. (Notice in Figure 3.12(b) that the phase of the wavefunction varies
just inside the right edge of the barrier, where the e+κx term is still significant, but
is constant near the left edge, where this term is negligible.)

So let’s assume that we’re dealing with a wide barrier, with κb � 1. Then the
wavefunction amplitude decreases from left to right across the barrier by roughly a
factor of e−κb, and the probability density decreases by the square of this factor.
There’s still the complication that the wavefunction on the left side of the barrier is
a standing-wave superposition of incident and reflected waves, but the amplitude of
this wave superposition at the barrier edge will ordinarily be within a factor of 2 or
so of the amplitude of just the incident wave. Ignoring this factor for simplicity, we
can conclude that the transmitted probability density is smaller than the incident
probability density by a factor of e−2κb, that is,

T ∼ e−2κb. (3.40)

That’s for a rectangular barrier of width b. For a barrier of arbitrary shape, we
can divide the classically forbidden region into a succession of smaller intervals in
which the potential is approximately constant. Then, if we apply the (admittedly
fuzzy) logic of the previous paragraph to a single interval at location x with width dx,
we can write

ψ(x+ dx) ∼ e−κ(x) dx ψ(x), (3.41)

where

κ(x) =

√
2m(V (x)− E)

~
. (3.42)

Applying equation 3.41 to each interval in succession then gives

ψ(b) ∼ e−κ(x1) dxe−κ(x2) dx · · · e−κ(xn) dxψ(0)

= exp
(
−
∑
i

κ(xi) dx
)
ψ(a), (3.43)
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where xi is the value of x in the ith interval, and I’ve assumed that the classically
forbidden region extends from x = a to x = b. Taking the square modulus of both
sides and converting the sum to an integral, we find for the tunneling probability

T ∼ exp

(
−2

∫ b

a
κ(x) dx

)
. (3.44)

Again, this formula is valid only when T � 1, and even then gives only a rough
estimate.

Problem 3.31. Modify the code starting on page 97 to reproduce the wavefunction
plots in Figure 3.12. Also check that you get the correct transmission probabilities.

Problem 3.32. Prove that for a tunneling solution to the TISE for a rectangular bar-
rier, as shown in Figure 3.12, the magnitudes of the decaying and growing exponential
contributions to the wavefunction (see equation 3.38) just inside the right edge of the
barrier must be equal.

Problem 3.33. Use equation 3.40 to estimate the tunneling probability for the pa-
rameters used in Figure 3.12(b), and comment on the result.

Problem 3.34. [Derive explicit formula for tunneling through a rectangular barrier,
and compare to approximate formula.]

Problem 3.35. [Explore scattering from a rectangular well or low barrier or double
step, focusing on interference effects.]

3.5 Summary of one-dimensional wave mechanics

This chapter concludes our exclusive focus on a single, structureless, quantum parti-
cle moving in one dimension. Before we go on to consider a wider variety of systems,
let’s step back and summarize the logical principles of quantum mechanics in the
one-dimensional case.

Principle 1: The states of the system correspond to wavefunctions.

By now you’ve worked with quite a variety of wavefunctions: position and mo-
mentum eigenfunctions, energy eigenfunctions for trapped and untrapped particles,
wavepackets, and the complicated functions that result from wavepackets interact-
ing with nontrivial potentials.

Wavefunctions are complex-valued, with both a magnitude and a phase at each
point in space. But only relative phases matter, so we’re always free to specify
the phase of the wavefunction at one particular x value, or to multiply the entire
wavefunction by a pure phase constant, eiφ. Some wavefunctions are simple enough
that we can use this freedom to make them purely real.

As far as we know, any complex-valued function of x is an allowed wavefunction,
so long as it is normalized. Sometimes we can get away with using unnormalized
wavefunctions, when we care only about qualitative features or relative magnitudes.
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And sometimes we can even get away with using wavefunctions that can’t be nor-
malized, such as delta functions and momentum eigenfunctions and the scattering
solutions of Figures 3.10 and 3.12.

Although any normalized wavefunction is allowed, this doesn’t mean that every
normalized wavefunction is easy to realize in the laboratory. Localized wavepackets
and harmonic oscillator eigenfunctions occur all the time in real-world situations,
while “cat states” with two or more widely separated peaks require more specialized
preparation.

Principle 2: Observable quantities correspond to operators.

I’ve already listed the important operators for one-dimensional quantum mechan-
ics in Table 1.1: x for position, −i~(d/dx) for momentum, and the Hamiltonian
operator,

Ĥ = − ~2

2m

d2

dx2
+ V (x), (3.45)

for total energy (kinetic plus potential). The most important property of these oper-
ators is that each has a complete set of eigenfunctions, for which the corresponding
physical quantity is well defined and equal to the corresponding eigenvalue. Be-
cause the position eigenfunctions are different from the momentum eigenfunctions,
it’s impossible to put a particle into a single quantum state for which both posi-
tion and momentum are well defined. The same is true for position and energy,
and also for momentum and energy except in the trivial case where V is constant.
However, each set of eigenfunctions forms a complete set, so we can express an
arbitrary wavefunction as a mixture of position eigenfunctions (see Problem 3.4),
or as a mixture of momentum eigenfunctions (see equation 3.3), or as a mixture of
energy eigenfunctions (see equations 1.33 and 2.28).

Inconveniently for us, the position eigenfunctions (delta functions) and momen-
tum eigenfunctions (eipx/~) are not normalizable—but that doesn’t stop us from
expressing an arbitrary wavefunction in terms of them, or from using normaliz-
able wavefunctions, such as very narrow spikes or very wide wavepackets, that are
equivalent to the idealized eigenfunctions for all practical purposes.

Principle 3: Measurement probabilities are given by the Born rule.

Suppose that our particle is in state ψ(x) and we measure an observable quantity
whose operator is Â, with eigenvalues ai and corresponding eigenfunctions αi(x).
Then the possible outcomes of the measurement are the various eigenvalues ai, but
in general we can predict only the probability of obtaining each of these outcomes.
When the eigenvalues are discrete, the probability of obtaining a particular eigen-
value ai equals the square modulus of the component of ψ along the corresponding
eigenfunction αi:

(Probability of ai) = |〈αi|ψ〉|2 =

∣∣∣∣∫ ∞
−∞

α∗i (x)ψ(x) dx

∣∣∣∣2. (3.46)
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This equation is called the Born rule. In the special case where ψ(x) is one of
the eigenstates αi, the inner product equals 1, giving a probability of 100%, for
obtaining that particular outcome ai, while the probability of getting any other
outcome is zero, because that corresponding eigenfunction will be orthogonal to ψ
(inner product equal to zero).

When the eigenvalues are continuous, the probability of obtaining any one of
them is infinitesimal, so we have to integrate this squared magnitude over some range
of desired values as in equation 1.6 for position and equation 3.10 for momentum.

Principle 4: A measurement causes the state to collapse.

Whatever the result of a measurement, the measurement process causes the system’s
state to abruptly “collapse” to become whatever eigenstate corresponds to the value
obtained. This means that if you immediately measure the same physical quantity
again, you will always get the same result that you got the first time.

Principle 5: The TDSE governs time evolution.

As time passes, the wavefunction changes smoothly according to the time-dependent
Schrödinger equation (TDSE),

i~
∂ψ

∂t
= Ĥψ, (3.47)

where Ĥ is the Hamiltonian operator in equation 3.45. In Section 3.3 you saw
how to solve this equation numerically for any V (x) and any initial wavefunction.
Alternatively, if we can find the energy eigenfunctions, then we can expand any
initial ψ in terms of them and write down the solution as in equation 1.24. In the
special case in which the initial ψ is an energy eigenfunction, the TDSE tells us that
its time dependence is a simple wiggle factor, e−iEt/~, and therefore the probability
density does not change over time.

* * *

As I mentioned at the end of Section 1.2, Principles 3 and 4 awkwardly leave
the word “measurement” undefined. This ambiguity rarely matters in practice, but
it makes many of us uncomfortable. Some researchers have gone so far as to reject
Principles 3 and 4 as parts of the fundamental theory, asserting (or at least hoping)
that instead they somehow emerge as a consequence of the other three principles—
when we generalize these principles to include not just the particle we’re measuring
but also the apparatus that we’re using to measure it. Whether or not that idea has
merit, we are now ready to turn our attention to more general quantum systems.



Chapter 4

Beyond one dimension

We’re finally ready to generalize quantum mechanics beyond the system of a single,
structureless particle in one dimension. Specifically, we will now consider:

• a particle moving in two- or three-dimensional space;

• systems of multiple particles; and

• particles with internal degrees of freedom (such as spin).

This chapter lays out the basic framework for treating this greater variety of systems,
with examples that illustrate some of the new features they have. Later chapters
will explore some of the most important applications in greater depth.

4.1 Multiple spatial dimensions

Let’s now consider a quantum particle in two-dimensional or three-dimensional
space. I’ll mostly focus on the two-dimensional case, because the equations are
less cumbersome and the pictures are easier to draw—but I’ll occasionally add re-
marks about what happens in three dimensions.

Wavefunctions

In many ways, the generalization from one to two spatial dimensions is straight-
forward. The wavefunction ψ is now a complex-valued function of two variables, x
and y, normalized so that ∫ ∞

−∞
dx

∫ ∞
−∞

dy |ψ(x, y)|2 = 1. (4.1)

To compute the probability of finding the particle within some two-dimensional
region, we would integrate |ψ|2 only over that region.

If a particle is localized, then its wavefunction is nonzero only over a small range
of x and y values (see Figure 4.1). In the idealized limit, such a function becomes

107
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Figure 4.1: A localized wavefunction in two dimensions, shown as a “surface plot” with
ψ (which in this case is real) plotted vertically. In the limiting case in which the width
of the peak goes to zero and its height goes to infinity, this function becomes a position
eigenfunction, δ(2)(~r − ~r0).

a position eigenfunction, which is nonzero everywhere except at a single point, and
can be expressed as a product of delta functions:

δ(x− x0)δ(y − y0) = δ(2)(~r − ~r0), (4.2)

where ~r = (x, y) and the superscript (2) denotes a two-dimensional delta function.
As in one dimension, however, a position eigenfunction is not normalizable.

An idealized momentum eigenfunction, on the other hand, would have the form

eipxx/~eipyy/~ = ei~p·~r/~, (4.3)

where ~p = (px, py). This function varies only as ~r changes in the ~p direction, as
shown in Figure 4.2(a). The wavefunction is constant along any line perpendicular
to ~p, so we call this a linear wave. In three dimensions the wavefunction would be
constant along any plane perpendicular to ~p, so we would call ei~p·~r/~ a plane wave.

As an example of a more realistic wavefunction, Figure 4.2(b) shows a two-
dimensional Gaussian wavepacket, whose formula would be something like

ψ(x, y) = e−(x2+y2)/a2ei~p·~r/~, (4.4)

where for simplicity I’ve centered the wavepacket at the origin and neglected an
overall normalization constant.

Figures 4.1 and 4.2 also illustrate two ways to visualize a two-dimensional wave-
function: either as a 3D surface plot with |ψ| or |ψ|2 on the vertical axis, or as a 2D
density plot using saturation or brightness to represent |ψ| or |ψ|2. We can also use
color hues to represent the wavefunction phases, as in earlier chapters. (Visualizing
three-dimensional wavefunctions is quite a bit more difficult, but there’s some cool
software at http://falstad.com that can help.)

http://falstad.com
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Figure 4.2: (a) A portion of a two-dimensional momentum eigenstate, ei~p·~r, with the di-
rection of ~p indicated. (b) A two-dimensional Gaussian wavepacket (equation 4.4) with the
same average momentum as in (a). In these “density plots” the color hue indicates the
phase of the wavefunction, while the saturation is proportional to the probability density
|ψ|2 (so white indicates a value of zero).

Probabilities

As I mentioned after equation 4.1, you can compute the probability of finding the
particle in any two-dimensional region by integrating |ψ|2 over that region. This
is the two-dimensional version of the Born rule, equation 1.6. For a rectangular
region, the explicit formula would be(

Probability of finding

a < x < b and c < y < d

)
=

∫ b

a
dx

∫ d

c
dy |ψ(x, y)|2, (4.5)

as shown in Figure 4.3. Another important special case is where the region includes
the full range of one coordinate but only a limited range of the other. For instance,
if we measure x but not y, then the probability we care about is(

Probability of finding

a < x < b and any y

)
=

∫ b

a
dx

∫ ∞
−∞
dy |ψ(x, y)|2 =

∫ b

a
dxPx(x), (4.6)

where the last expression defines the one-dimensional probability distribution Px(x):

Px(x) =

∫ ∞
−∞
|ψ(x, y)|2 dy. (4.7)

We can define a similar distribution Py(y) as the integral of |ψ|2 over all x; we would
then integrate Py(y) over a limited range of y values to obtain the probability of
finding the particle within that range, if we measure y but not x.
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Figure 4.3: In two dimensions, we integrate |ψ|2 over a two-dimensional region to obtain
the probability of finding the particle within that region.

To obtain probabilities for momentum measurements, we use the two-dimensional
inverse Fourier transform of ψ,

ψ̃(px, py) =
1

2π~

∫ ∞
−∞
dx

∫ ∞
−∞
dy ψ(x, y) e−i~p·~r/~, (4.8)

in analogy to equation 3.8. The square modulus of ψ̃ is then the momentum-space
probability density, which we can integrate over any desired region of momentum
space to obtain the probability of finding ~p in that region, in analogy to equa-
tion 3.10.

The Born rules for position and momentum require us to integrate over ranges
of values, because the eigenvalues are continuous. In the simpler case where the
eigenvalues are discrete, as for the energy of a trapped particle, no integration is
needed. But to find the component of an arbitrary wavefunction ψ in the “direc-
tion” of particular eigenfunction αi, we need to calculate the two-dimensional inner
product,

〈αi|ψ〉 =

∫ ∞
−∞
dx

∫ ∞
−∞
dy α∗i (x, y)ψ(x, y). (4.9)

(Equation 4.8 is the special case in which αi ∝ ei~p·~r/~, and equation 4.1 simply
says that the component of a normalized wavefunction in its own direction is 1.) If
the eigenfunction αi corresponds uniquely to eigenvalue ai, then the probability of
obtaining this measurement outcome (when we measure the quantity for which αi
is an eigenstate) is the square of the inner product, |〈αi|ψ〉|2.

In multiple dimensions, however, we will sometimes find that eigenvalues are
degenerate:1 two or more orthogonal eigenfunctions αi can have the same eigen-
value a. In this case we need to sum over all these eigenfunctions to obtain the

1Degeneracy also occurs in one dimension, but not as often. The most notable case is left-
and right-moving traveling waves of the same wavelength, which are degenerate eigenfunctions of
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Figure 4.4: When two eigenvectors α1 and α2 have the same eigenvalue, they define a
plane in which every other vector is also an eigenvector with the same eigenvalue. If the
system’s state vector is ψ, the probability of obtaining that eigenvalue as a measurement
outcome is (according to equation 4.10) the squared length of the projection of ψ onto the
plane. If the measurement yields this eigenvalue as a result, then the state collapses to the
projected vector, renormalized so its length is 1. (This figure is drawn for vectors with real
components. Complex vectors are much harder to visualize!)

probability we want:

(Probability of a) =
∑
i

|〈αi|ψ〉|2, (4.10)

where the sum runs over all i for which the eigenfunction αi corresponds to eigen-
value a.

Degeneracy creates some further technical complications for us, because any
linear combination of degenerate eigenfunctions is also an eigenfunction, with the
same eigenvalue (see Problem 4.1). So, for instance, when we have two degenerate
eigenfunctions, we really have a two-dimensional eigenspace, consisting of all the
linear combinations that mix the original two functions in various proportions (see
Figure 4.4 for a vector visualization of this space). The sum of squared components
in equation 4.10 is equal (by the Pythagorean theorem) to the squared length of the
projection of ψ onto the two-dimensional eigenspace. At least for the purpose of this
particular observable quantity, the choice of basis functions within the eigenspace is
arbitrary—so we can sometimes simplify calculations by aligning, say, α1 with the
projection of ψ, so that α2 and ψ are orthogonal.

Degeneracy also creates an apparent ambiguity when the wavefunction collapses
as a result of a measurement. If the measured result is degenerate, then which of
the degenerate eigenfunctions should the wavefunction collapse to? Figure 4.4 again
suggests the natural answer: ψ collapses to a vector (function) that lies along its
projection in the degenerate subspace, so that its components in the α1 and α2

directions are in the same ratio to each other as before.

the Hamiltonian (energy) operator for a free particle. The energy levels of a bound particle in one
dimension are never degenerate, as shown in Problem 2.2.



112 Chapter 4. Beyond one dimension

At the end of this section I’ll give a specific example in which two-dimensional
bound-state energies are degenerate. Meanwhile, we already saw an example of
degeneracy in equation 4.6, where we imagined measuring the position of a particle
along the x direction but not along y. The integral over y in that equation corre-
sponds to the sum over degenerate eigenvectors in equation 4.10. Moreover, if we
go ahead and measure x and obtain the result x = a, then the wavefunction col-
lapses to a delta function in the x direction, multiplied by the original wavefunction
evaluated at x = a:

ψnew(x, y) ∝ ψold(a, y) δ(x− a). (4.11)

This partially collapsed wavefunction is just the projection of the original wavefunc-
tion onto the degenerate subspace that corresponds to the measurement outcome.

Problem 4.1. Prove that if α1 and α2 are both eigenfunctions of some linear operator
Â with the same eigenvalue a, then any linear combination of the form c1α1 + c2α2 is
also an eigenfunction of Â with eigenvalue a.

Nonseparable wavefunctions

The example wavefunction formulas in equations 4.2, 4.3, and 4.4 all have the special
property that they can be factored into a function of x times a function of y:

ψ(x, y) = f(x)g(y) (usually not possible). (4.12)

We say that such functions are separable (in rectangular coordinates). However, this
property is the exception rather than the rule. It’s easy to write down wavefunction

formulas, such as e−x
2y2/a4 and eik

√
x2+y2 , that are not separable.

One especially easy way to construct nonseparable wavefunctions is to combine
two or more separable wavefunctions into a superposition. For example, consider
the superposition of Gaussians

e−(x−a)2e−(y−b)2 + e−(x−b)2e−(y−a)2 , (4.13)

where x, y, a, and b are understood to be measured as multiples of some suitable
unit. Each of the two terms in this expression is separable, but the entire expression
(which is an equally legitimate wavefunction) is not. If the difference b − a is a
few units, then this function looks something like Figure 4.5. This is just a two-
dimensional “cat state,” similar to those in Figures 1.6 and 1.7, with the two peaks
separated along a diagonal direction. Loosely speaking, we would say that the
particle is half in one place and half in the other.

The nonseparability of most wavefunctions isn’t a mere mathematical curiosity:
it has the important physical consequence that measurements of the two coordinates
are correlated. For instance, if you were to measure either the x or y coordinate of
a particle in the cat state shown in Figure 4.5, you would have a 50/50 chance of
obtaining a value either near a or near b. But if x is near a then y must be near b,
and vice-versa. To put it more vividly, suppose you measure x first, and happen to
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Figure 4.5: A two-peak “cat state” in two dimensions, consisting of Gaussian shapes cen-
tered at (a, b) and (b, a). See equation 4.13.

obtain a value near a. This measurement collapses the wavefunction to lie entirely
within the peak around x = a and y = b, so you can now be certain that a subsequent
measurement of y will yield a result near b. The measurement of x not only provides
information you didn’t previously have about y; it actually changes the probability
distribution for the subsequent y measurement. (Problem 4.3 explores this scenario
further.)

I should point out that sometimes a nonseparable wavefunction becomes sep-
arable if you switch to a different coordinate system. For example, the function

eik
√
x2+y2 is separable in polar coordinates, while the wavefunction of Figure 4.5

can be factored if you rotate the coordinate axes by 45 degrees. Often the relevant
coordinate system is dictated by some other outside condition, so a change of coor-
dinates may or may not be appropriate. And if you make these wavefunctions just
a little more complicated, they can’t be factored in any coordinate system.

Ironically, even though the vast majority of wavefunctions are not separable,
we’ll spend most of our time working with wavefunctions that are separable. This
is because they are mathematically simpler, and also because the separable wave-
functions are complete: any other wavefunction can always be expressed as a linear
superposition of separable wavefunctions (as in equation 4.13). Just don’t let these
separable wavefunctions give you the false impression that the quantum world is
always so simple. In quantum mechanics you need to keep reminding yourself that
your basis vectors are merely a basis, from which you can build arbitrary linear
combinations to represent the unlimited variety of the world.

Problem 4.2. Show how to factor the two-dimensional Gaussian wavepacket function
in equation 4.4, identifying the functions called f(x) and g(y) in equation 4.12.

Problem 4.3. Sketch the one-dimensional probability distributions Px(x) and Py(y)
(as defined in equation 4.7) for the two-peaked wavefunction shown in Figure 4.5. Then
sketch (as two-dimensional density plots, like Figure 4.5) two other wavefunctions, one
separable and one not, that are different from this wavefunction yet have the same
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Px(x) and Py(y). Describe in some detail what each of these wavefunctions predicts
for the outcomes of sequential measurements of x and y. For instance, if you measure
x and happen to obtain a result near a, what can you then predict about the outcome
of a measurement of y?

Problem 4.4. Make a color-phase density plot of each of the following two-dimensional
wavefunctions, and in each case, explain how you can tell from the image whether
or not the function is separable in rectangular (x, y) coordinates: (a) eik(x−y); (b)

eik(x−y) +e−ik(x−y); (c) eik
√
x2+y2 ; (d) eik

2(x2+y2). (In all cases, take k to be a positive
constant.)

Problem 4.5. Show both pictorially and algebraically that the wavefunction in equa-
tion 4.13 is separable if you rotate the coordinate axes by 45 degrees. Describe (and
draw) at least two conceptually distinct ways in which you could modify this wavefunc-
tion so that it is not separable in any rotated coordinate system.

Operators

In two dimensions there are two independent position operators, x̂ = x and ŷ = y,
which we can think of as components of a two-dimensional vector position operator,
~̂r = ~r. Similarly, there are two momentum operators,

p̂x = −i~ ∂
∂x

and p̂y = −i~ ∂
∂y
, (4.14)

which we can think of as components of a two-dimensional vector momentum op-
erator, ~̂p = −i~∇. The sinusoidal linear waves in equation 4.3 are eigenfunctions of
these operators, with the expected eigenvalues px and py.

To find the Hamiltonian operator for this two-dimensional system, we simply
start with the classical expression for the system’s total energy and substitute op-
erators for the momentum components:

Ĥ =
1

2m
(p̂2
x + p̂2

y) + V (~̂r) = − ~2

2m

( ∂2

∂x2
+

∂2

∂y2

)
+ V (~r). (4.15)

The differential operator inside the big parentheses is called the Laplacian, often
abbreviated ∇2. With this Hamiltonian you can now write down either the TISE
(Ĥψ = Eψ) or the TDSE (Ĥψ = i~ ∂ψ/∂t) for this two-dimensional system.

Problem 4.6. Suppose that a particle in two dimensions is subject to a potential
energy function of the form V (x, y) = V1(x) + V2(y), where V1 and V2 are arbitrary
functions of a single variable. Prove in this case that (a) you can solve the TISE by
the method of separation of variables, to obtain a complete, separable set of energy
eigenfunctions; and (b) if the particle’s wavefunction is separable at t = 0, then it will
remain separable as time passes.

The square infinite square well

Now let’s take a first look at bound states in two dimensions. Just as we started
with the one-dimensional infinite square well in Section 1.4, the natural place to
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start here is with a two-dimensional infinite square well (or “box”). To keep things
as simple as possible, I’ll assume that the well is literally a square:

V (x, y) =

{
0 if 0 < x < a and 0 < y < a,

∞ elsewhere.
(4.16)

This potential forces all wavefunctions to be zero outside the square box, and forces
all wavefunctions to approach zero as x or y approaches 0 or a from inside. Other-
wise, inside the box, any normalized complex-valued wavefunction is allowed.

As with any potential well, the most important wavefunctions are the energy
eigenfunctions. To find them we could start with the two-dimensional TISE, but the
answers are so easy to guess that there’s little point in being so formal. The energy
eigenfunctions of a one-dimensional infinite square well are

√
2/a sin(nπx/a), so the

natural guess for the two-dimensional case is a product of two such functions, that
is,

ψ(x, y) =
2

a
sin
(nxπx

a

)
sin
(nyπy

a

)
, (4.17)

where nx and ny are separate quantum numbers, each of which can be any positive
integer. (This formula applies only inside the box; again, every wavefunction must
be zero outside.) Figure 4.6 shows nine of these eigenfunctions.

To find the corresponding energy eigenvalues, we can just use the two-dimensional
formula for nonrelativistic kinetic energy (applied inside the well where V = 0),
and then recognize that each term has the same form as the one-dimensional for-
mula 1.30:

E = K =
p2
x

2m
+

p2
y

2m
=

h2

8ma2
(n2
x + n2

y). (4.18)

Figure 4.7 shows a table and diagram of the low-lying energy levels. Note that most
of these levels are doubly degenerate, because interchanging nx and ny leaves the
energy unchanged.

Remember, though, that “doubly degenerate” actually means that there is an
entire two-dimensional space of degenerate states. For instance, the degenerate
states ψ1,2 and ψ2,1 (where the subscripts indicate nx and ny, respectively) each have
energy 5h2/(8ma2), but so does any linear combination of the form c1ψ1,2 + c2ψ2,1,
where c1 and c2 are complex numbers. Figure 4.8 shows a few of these infinitely
many combinations.

A far greater variety of wavefunctions can be constructed as linear combinations
of basis states that don’t necessarily have the same energy. In fact, the sine-wave
products written in equation 4.17 form a complete basis, so any other wavefunction
(that goes to zero at the four edges of the box) can be written in terms of them. They
are also mutually orthogonal, by virtue of the orthogonality of the one-dimensional
square well energy eigenfunctions.

Problem 4.7. Show by direct substitution that the wavefunction formula 4.17 solves
the TISE, and verify the energy formula 4.18.
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Figure 4.6: Separable energy eigenfunctions of the two-dimensional square infinite square
well (equation 4.17) with nx ≤ 3 and ny ≤ 3. In these density plots the saturation is propor-
tional to |ψ|; red indicates positive values and cyan negative values, with zero represented
by white.

Problem 4.8. Most of the energy levels shown in Figure 4.7 are doubly degenerate.
What is the lowest level that is triply degenerate, and what are the corresponding
quantum numbers nx and ny? What is the lowest level with four-fold degeneracy, and
what are the corresponding quantum numbers?

Problem 4.9. For the two-dimensional square infinite square well, find an approximate
formula for the number of independent energy eigenstates with energies less than Emax,
assuming that Emax is sufficiently large so that this number is much larger than 1.
(Hint: Represent the states as dots on a two-dimensional plot with nx and ny along
the axes.) Then, working in the same approximation, find a formula for the number
of independent eigenstates per unit energy ; this quantity is called the density of states.
You should find that the density of states for this system is a constant, independent of
energy.2

Problem 4.10. Use a computer to reproduce each of the wavefunction plots in Fig-
ure 4.8. Then, using the computer if necessary, determine how the appearance of each

2The density of states is an important quantity in quantum statistical mechanics. See, for
example, D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, San Francisco,
2000), chapter 7.
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Figure 4.7: A list of some of the possible quantum number combinations for a two-
dimensional square infinite square well. The numbers in the third column are equal to
the corresponding energies in units of h2/(8ma2), and are plotted vertically on the energy
level diagram at right.

of these wavefunctions changes as time passes. Describe these changes carefully for
each case.

Problem 4.11. Suppose that a particle in a two-dimensional square box is in the
superposition state

ψ(x, y) ∝ ψ2,3 + 1
2ψ3,2,

where the subscripts indicate nx and ny, respectively, in equation 4.17.

(a) Normalize this wavefunction (that is, find the constant of proportionality).

(b) Use a computer to plot this wavefunction.

(c) Imagine that you intend to measure the y coordinate of this particle. Calculate and
plot the probability distribution Py(y) that shows the relative probability of obtaining
each y value.

(d) Suppose instead that before measuring y you first measure x, and you happen
to obtain the result x = a/4. Calculate and plot the probability distribution Py(y)
that now applies to your subsequent measurement of y, and compare to the answer to
part (c).

Problem 4.12. Suppose that a particle in a two-dimensional square box is in the
superposition state

ψ(x, y) ∝ ψ2,3 + 1
2ψ3,2 − 2

3ψ1,4,

where the subscripts indicate nx and ny, respectively, in equation 4.17.

(a) Normalize this wavefunction.

(b) Suppose that you measure the energy of this particle. What values might you
obtain, and what are their probabilities?

(c) For each possible result that you might obtain in your energy measurement, what
is the particle’s normalized wavefunction immediately afterward?
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Figure 4.8: A selection of superpositions of two degenerate basis states for a particle in a
square infinite square well. The two basis states, shown in Figure 4.6, are the first excited
states ψ1,2 and ψ2,1, where the subscripts indicate nx and ny, respectively. Color hues
represent complex phases as usual. (The expressions below the images are not normalized,
and I’ve adjusted each image saturation independently.)

Problem 4.13. Consider a two-dimensional rectangular infinite square well, with
width a in the x direction and width b in the y direction. What are the energy eigenfunc-
tions for this system and their corresponding energies? Draw an energy level diagram
for the case a = 2b and another for the case a = 10b, in each case including enough
states to show an interesting feature or two. Describe those features in some detail,
comparing the two cases to each other and to the case a = b.

Problem 4.14. Consider a three-dimensional cube-shaped infinite square well, with
width a in each dimension. Write down appropriate formulas for the energy eigenfunc-
tions and eigenvalues, and draw an energy level diagram showing the low-lying levels
and their degeneracies. What is the lowest level with a degeneracy other than 1, 3,
or 6? (A “degeneracy” of 1 actually means that the level is not degenerate.)

Problem 4.15. Repeat Problem 4.9 for the case of a three-dimensional cube-shaped
infinite square well. This time you should find that the density of states is not a
constant function of energy, so sketch a graph of this function.

Problem 4.16. Consider a two-dimensional quantum harmonic oscillator, with the
same natural frequency ωc in both dimensions:

V (x, y) = 1
2mω

2
c (x2 + y2).

Find a complete set of energy eigenfunctions for this system, and their corresponding
eigenvalues. (Write the eigenfunctions in terms of Hermite polynomials, as in Sec-
tion 2.4.) Draw an energy level diagram that shows degenerate basis states separately,
with enough levels to make the pattern clear. Use a computer to plot a selection of the
energy eigenfunctions, including some superpositions of the separable basis states.
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4.2 Numerical methods for multiple dimensions

As you showed in Problem 4.6, some two-dimensional problems are separable into
two one-dimensional problems. Whenever the two-dimensional potential energy
function is simply a sum of one-dimensional potential energy functions,

V (x, y) = V1(x) + V2(y), (4.19)

you can separate the TISE into independent equations for the x and y dimensions,
and then solve these separately by the methods (analytical or numerical) of Chapters
2 and 3. If, in addition, the initial wavefunction ψ(x, y) factors into a product of the
form f(x)g(y), then the wavefunction continues to have this separable form as time
passes, with each factor evolving in time according to a one-dimensional TDSE.

Similar simplifications occur in three dimensions, and in Chapter 6 we’ll see
how to separate central-force problems in terms of spherical coordinates (or in two
dimensions, polar coordinates).

The point I want to emphasize now is that whenever you can separate a multi-
dimensional problem into two or more one-dimensional problems, you should ! That’s
because one-dimensional problems are relatively easy, and multidimensional prob-
lems are inherently much more difficult. I don’t know of any nonseparable mul-
tidimensional problems that can be solved analytically (probably there are a few
contrived examples). So to solve nonseparable problems we’re pretty much forced to
use numerical methods—and these numerical solutions are much harder in multiple
dimensions than in just one.

To get some idea of why numerical solutions are much harder in multiple dimen-
sions, just consider the amount of computer memory required to store the wave-
function. For instance, if we discretize space into 100 grid locations in each dimen-
sion, then we can store a one-dimensional wavefunction as an array of 100 complex
numbers. Storing a two-dimensional wavefunction at the same resolution requires
1002 = 10,000 complex numbers, and for a three-dimensional wavefunction this
would become 1003 = 1,000,000 complex numbers! The time required for a compu-
tation grows in a similar way. More generally, the difficulty of a quantum problem
grows exponentially with the number of dimensions.3 This is not true in classical
mechanics, where the numerical difficulty of a problem is merely proportional to the
number of dimensions.

Still, difficult doesn’t mean impossible. Today’s personal computers are suffi-
ciently powerful that we can use them to solve a remarkable variety of quantum
problems that are irreducibly multidimensional. This section describes several nu-
merical methods for attacking these difficult problems.

3Richard Feynman famously made this point in “Simulating Physics with Computers,” Intl. J.
Theor. Phys. 21, 467–488 (1982), https://doi.org/10.1007/BF02650179.

https://doi.org/10.1007/BF02650179
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Figure 4.9: A square grid for numerically solving quantum problems in two dimensions. As
shown in equation 4.21, the Laplacian operator ∇2 compares ψ(x, y) to the average value
of ψ at the four nearest-neighbor points (highlighted in black).

Solving the TDSE

Let’s start with time evolution. This is easy in principle, because the centered-
difference method of solving the TDSE, described in Section 3.3, generalizes straight-
forwardly to multiple dimensions.

In two dimensions (to be specific), we can discretize space into a square grid,
with grid spacing δ in both dimensions, as shown in Figure 4.9. Focusing on a
particular grid location (x, y), we approximate the second partial derivatives in the
Hamiltonian operator (equation 4.15) using the second centered difference approx-
imation (equation 2.6):

∂2ψ

∂x2
≈ ψ(x+δ, y) + ψ(x−δ, y)− 2ψ(x, y)

δ2
,

∂2ψ

∂y2
≈ ψ(x, y+δ) + ψ(x, y−δ)− 2ψ(x, y)

δ2
.

(4.20)

Adding these equations gives us an approximation for the two-dimensional Lapla-
cian:

∇2ψ ≈ 4

δ2

(
ψnn − ψ(x, y)

)
, (4.21)

where ψnn is an abbreviation for the average of ψ at the four nearest-neighbor grid
locations. Thus, the Laplacian operator tells us how different ψ(x, y) is from the
average value of ψ at the nearest-neighbor points. (If you’ve studied electrostatics
in some detail, you may recall that the Laplacian of the electric potential in empty
space is zero, implying that the potential at any point is equal to the average of its
values at neighboring points.)

Combining approximation 4.21 for ∇2ψ with the centered difference approxima-
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tion 3.25 for ∂ψ/∂t, the two-dimensional TDSE becomes

i
ψ(x, y, t+dt)− ψ(x, y, t−dt)

2 dt
≈ − 2

δ2

(
ψnn(t)−ψ(x, y, t)

)
+V (x, y)ψ(x, y, t), (4.22)

in units where ~ = m = 1. Notice that everything on the right-hand side is evaluated
at the “current” time t, while the left-hand side involves the future time t+dt and
the previous time t−dt. Solving for ψ(x, y, t+dt) gives an explicit formula for the
future value in terms of current and previous values, just as in the one-dimensional
case described in Section 3.3.

Everything else about implementing the two-dimensional centered-difference al-
gorithm is also analogous to the one-dimensional case, except that the correct choice
of the time step dt isn’t obvious. In turns out that in two dimensions, dt/δ2 must
be somewhat less than 0.25, rather than 0.5 as in one dimension.

But I’m not going to show you any Mathematica code to solve the two-dimensional
TDSE, because as of this writing, Mathematica on a personal computer is too slow
to run such a simulation “while you wait.” Instead I’ve implemented the algorithm
in JavaScript, which in today’s web browsers is many times faster. That simula-
tion program is called Quantum Scattering in Two Dimensions, and is posted at
http://physics.weber.edu/schroeder/software/QuantumScattering2D.html.
The simulation uses a 400× 400 grid, and displays the wavefunction as a color den-
sity plot as in the figures in the previous section. The user interface lets you choose
from a variety of potential barriers and wells, and the initial state is a Gaussian
wavepacket aimed toward the central region from the left.

Figure 4.10 shows some snapshots from three different runs of this simulation. I
hope you can see from these examples that two-dimensional wavefunctions behave
a lot like water waves, sound waves, or light waves. But please don’t settle for these
still images! Run the simulation yourself to see the full animated processes, and a
wider variety of scenarios. If you know just a little about JavaScript syntax (or Java
or C, which are very similar), you can easily modify the simulation source code to
use a potential function and initial state of your choice.

Problem 4.17. Generalize equations 4.21 and 4.22 to three spatial dimensions.

Problem 4.18. Use a ruler and protractor (or the electronic equivalent) to measure
the hole spacing, the wavelength, and the approximate angles of the first-order inter-
ference maxima in the two-hole interference pattern shown in the middle-right image
of Figure 4.10. Check that these quantities approximately satisfy the expected re-
lationship. (Don’t expect perfect agreement, because the usual formula for two-slit
interference is valid only very far away from the slits.)

Problem 4.19. Use the Quantum Scattering in Two Dimensions app to investigate
single-hole diffraction. Set the hole size to 50 and the packet energy to 0.10, and use
these values to predict the angle of the first minimum of the diffraction pattern. Run
the simulation, use a protractor to measure the angle, and compare to your prediction.
Then reduce the energy to 0.025 and repeat.

http://physics.weber.edu/schroeder/software/QuantumScattering2D.html
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Figure 4.10: Snapshots from the Quantum Scattering in Two Dimensions simulation, show-
ing a right-moving Gaussian wavepacket that encounters a potential barrier or well. Each
row shows a sequence of three still images from a single simulation run (with the satura-
tion adjusted independently for each image). Top row: A linear barrier whose potential
is somewhat greater than the average wavepacket energy, but that is thin enough to give
a large tunneling probability. Middle row: A linear barrier with a high enough potential
to reflect the wavefunction, but with two holes, creating a two-source interference pattern
on the right. Bottom row: A small circular well with a negative potential energy, which
attracts the particle to produce an intricate interference pattern.

Solving the TISE on a grid

You might be wondering why I just explained how to numerically solve the two-
dimensional time-dependent Schrödinger equation, before doing the same for the
time-independent Schrödinger equation. After all, in one dimension it was easier
to solve the latter—and it was much less computationally intensive, when we used
the “shooting method” to integrate from one end of the region of interest across to
the other.

The problem is that the shooting method does not generalize to more than one
dimension! In multiple dimensions there are boundary conditions around all sides
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of the region of interest, so there is no good place to shoot from, or to shoot to. We
need a fundamentally different approach.

The approach that I’ll describe in this subsection is to discretize space into a grid
(as in the previous subsection) and start with a trial wavefunction on the grid that
does not satisfy the TISE, but that does satisfy the boundary conditions. We’ll
specifically look at localized bound states on a two-dimensional square grid, for
which the boundary conditions are simply that ψ = 0 along all four edges. In this
case a reasonable starting function would be a product of one-bump sine waves (that
is, the ground state of an infinite square well filling the region). We’ll then gradually
modify the trial wavefunction in a way that reduces its average energy. When this
process converges, we’ll have found the system’s ground-state wavefunction. We can
then use a slightly modified process to find the first excited state, then the second
excited state, and so on.

There are a couple of different ways to accomplish this gradual modification of
the trial wavefunction. One is an adaptation4 of the so-called relaxation method
for solving Laplace’s equation or Poisson’s equation, which you may have studied
in the context of electrostatics. Here I’ll present an alternative method that is
somewhat slower but more closely akin to the TDSE algorithm described in the
previous subsection.

The trick is to evolve the trial wavefunction according to the partial differential
equation

∂ψ

∂τ
= −Ĥψ, (4.23)

where Ĥ is the usual Hamiltonian operator (equation 4.15 in two dimensions) and τ
is a new variable that I’ll call fake time.5 Some people call τ imaginary time, because
this equation is identical to the TDSE except for the replacement it → τ . I claim
that if we solve this differential equation, with our trial wavefunction as an “initial”
condition, ψ will eventually converge to the system’s ground-state wavefunction (a
solution to the TISE).

To prove this claim, imagine expanding ψ(τ) (the solution to equation 4.23) in
terms of the (unknown) energy eigenfunctions ψn:

ψ(τ) = c1(τ)ψ1 + c2(τ)ψ2 + · · · . (4.24)

Such an expansion must exist, because the energy eigenfunctions always form a
complete set. Plugging this expansion into equation 4.23 gives

∂c1
∂τ

ψ1 +
∂c2
∂τ

ψ2 + · · · = −(E1c1ψ1 + E2c2ψ2 + · · · ), (4.25)

where each En is the energy eigenvalue that corresponds to ψn. But the ψn functions
are mutually orthogonal (or in the case of degenerate eigenfunctions, we can specify

4D. V. Schroeder, “The variational-relaxation method for finding quantum bound states,” Am.
J. Phys. 85(9), 698–704 (2017), https://doi.org/10.1119/1.4997165.

5I learned both the term and the method from Steven E. Koonin and Dawn C. Meredith,
Computational Physics: Fortran Version (Addison-Wesley, Reading, MA, 1990), Section 7.4.

https://doi.org/10.1119/1.4997165
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that we’re using an orthogonal basis), so we can project-out any one of them using
Fourier’s trick. That is, we take the inner product of both sides of equation 4.25
with a particular ψn, and this kills off all the rest of the terms in the equation,
leaving us with simply ∂cn/∂τ = −Encn, whose solution is

cn(τ) = cn(0) · e−Enτ . (4.26)

In other words, the coefficients cn decay at exponential rates that depend on their
corresponding energies. The high-energy terms in the expansion 4.24 decay away
most quickly, and the ground-state term decays most slowly. (If the ground-state
energy is negative, then its coefficient grows the most quickly.) As τ → ∞, every
term in the expansion becomes exponentially negligible in comparison to the ground
state, so ψ becomes the ground state.

To actually carry out the fake time evolution, we need to discretize equation 4.23.
For the right-hand side we can use exactly the same discretization as for the actual
TDSE (equation 4.22 in two dimensions). To discretize the τ derivative, though, it
turns out that we can’t use the centered-difference approximation that we used for
the actual TDSE, because in the fake-time case this would give a discrete equation
that is unstable no matter how small the time step! (By unstable I mean that tiny
round-off errors would grow exponentially over time, to give a huge and spurious
“solution.”) But the fix is easy: We simply use the forward-time approximation in
equation 3.24:

∂ψ

∂τ
≈ ψ(x, y, τ+dτ)− ψ(x, y, τ)

dτ
. (4.27)

This approximation was unsuitable for the actual TDSE because it doesn’t conserve
probability—but that’s not a concern here, where we’re intentionally making the
wavefunction decay away over “time.”

With this approximation for the τ derivative, the discretized fake-time TDSE
in two dimensions is

ψ(x, y, τ+dτ)− ψ(x, y, τ)

dτ
≈ 2

δ2

(
ψnn(τ)− ψ(x, y, τ)

)
− V (x, y)ψ(x, y, τ). (4.28)

Notice that we can solve this equation for the “future” ψ entirely in terms of the
“current” ψ; there is no need to store the “previous” ψ, as when we used the
centered-difference approximation for ∂ψ/∂t.

In a future edition of this book I will provide an explicit example of carrying out
the fake-time algorithm to find the ground state of a nonseparable two-dimensional
quantum system. It’s feasible to do this in Mathematica, because in many cases we
can get good results with a grid size of only (say) 50× 50, much smaller than what
is needed for a useful TDSE simulation. Meanwhile, please check out the Quan-
tum Bound States in Two Dimensions web app at http://physics.weber.edu/

schroeder/software/BoundStates2D.html, which can solve a variety of problems
of this type. The web app actually uses the faster algorithm cited in footnote 4, but
the fake-time algorithm would give the same results and would be similar to watch
in action.

http://physics.weber.edu/schroeder/software/BoundStates2D.html
http://physics.weber.edu/schroeder/software/BoundStates2D.html
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Figure 4.11: An arbitrary method of ordering basis functions in the matrix representation
of the Hamiltonian. Each table entry is a row number (and also a column number) in the
Hamiltonian matrix, while nx and ny are the quantum numbers that we ordinarily use to
label the basis functions, e.g., in equation 4.17 for the square infinite square well basis. In
this example the basis is truncated after nx = ny = 4, yielding a 16×16 matrix; in practice
the cutoff should be considerably higher.

I still need to explain how to find other TISE solutions besides the ground state.
The method is to find the ground state first, then start over with a new trial function
that has a node (for example, one of the two-bump first excited states of the square
infinite square well). This time, during the fake-time evolution, we periodically
project-out any ground-state component from the trial wavefunction. This ensures
that the trial function remains orthogonal to the ground state, so the lowest-energy
state for it to converge to will be the first excited state. Once we find that, we
can start over and project-out both the ground state and the first excited state in
order to find the second excited state, and so on. The process may sound a bit
cumbersome, but as long as we need only a few low-lying energy eigenfunctions, it
works remarkably well.

The matrix method

The other method that we used in Chapter 2 to solve the one-dimensional TISE was
matrix diagonalization. Unlike the shooting method, the matrix method does gen-
eralize pretty straightforwardly to multiple dimensions. And it’s usually the method
of choice if you need to find more than a handful of low-lying energy eigenfunctions.

Setting up the Hamiltonian matrix for a two-dimensional system is just a tad
cumbersome, because each basis function is naturally labeled with two quantum
numbers (nx and ny, for the number of “bumps” in each dimension), and we need
to assign each such pair to a unique row (and corresponding column) of the matrix.
Figure 4.11 shows a way to do this that’s as simple as any, for an unrealistically
small cutoff of 4 for the maximum number of bumps in either dimension. In practice
you would almost always need to go up to at least 10 bumps, and in that case the
matrix would have 100 rows (and 100 columns). Diagonalizing a matrix of that
size, or even larger, is no problem at all for Mathematica, but calculating all the
matrix elements by brute force, as we did in Section 2.3, can take quite a while. So
in practice you would want to use the trick of Problem 2.17, which speeds up the
calculation enormously but unfortunately makes the code more complicated.
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Problem 4.20. Referring to Figure 4.11, find a formula for the matrix row number in
terms of the quantum numbers nx and ny. Do this first for a cutoff at nx or ny equal
to 4, and then for a general cutoff nmax. Then find the formulas for going backwards;
that is, given a matrix row number N , find the formulas for nx and ny. Use the “floor”
function, denoted bxc or in Mathematica, Floor[x], which rounds a real number down
to the nearest integer.

Problem 4.21. List some of the apparent advantages and disadvantages of the matrix
diagonalization method, compared to the fake-time-evolution method of the previous
subsection. What is the practical limit on the accuracy in each case? For what types
of potentials would you choose one method or the other? Which one seems easier to
code?

4.3 Multiple particles

I’ll get right to the point:

A system of two particles has only one wavefunction.

Read that sentence aloud. Repeatedly. It takes some getting used to.
And it gets worse: A system of three particles, or four, or 1023, also has only

one wavefunction.
But let’s start with just two particles, and say they’re moving in just one dimen-

sion (to keep things as simple as possible). Then if x1 represents a possible position
of the first particle and x2 represents a possible position of the second particle, the
wavefunction is a function of two variables: ψ(x1, x2). We say that ψ lives in a
two-dimensional configuration space (see Figure 4.12). In fact, the collection of all
allowed wavefunctions for this system is mathematically the same as for a single
particle in two dimensions: Just change (x, y) to (x1, x2). (The preceding state-
ment is strictly true only if the two particles are somehow distinguishable from each
other. If they are identical in every way then some wavefunctions are not allowed,
as I’ll explain at the end of this section.)

How do we interpret ψ(x1, x2)? Well, if you integrate its square modulus over
some range of x1 values and some range of x2 values, you should get the probability
of finding the first particle in the first range and the second particle in the second
range (if you measure both of their positions):(

Probability of finding

a < x1 < b and c < x2 < d

)
=

∫ b

a
dx1

∫ d

c
dx2 |ψ(x1, x2)|2. (4.29)

This two-particle Born rule is completely analogous to equation 4.5 for a single
particle in two dimensions. And with the analogy in mind, it is straightforward to
write formulas for the normalization condition, for the momentum-space wavefunc-
tion ψ̃(p1, p2), and for a general inner product (see equations 4.1, 4.8, and 4.9).

Of particular interest in the two-particle case is the probability of finding one
particle in a certain interval, regardless of the position of the other particle. To find
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Figure 4.12: For a classical system of two particles in one dimension, a single point in
configuration space (top left) tells us the locations of both particles in physical space (bottom
left). For a quantum system of two particles in one dimension, integrating the squared
magnitude of the wavefunction over any rectangular region in configuration space (top
right) gives us the probability of finding the two particles within the corresponding intervals
in physical space (bottom right).

this probability you need to integrate over all possible values of the other particle’s
coordinate:(

Probability of finding

a < x1 < b and any x2

)
=

∫ b

a
dx1

∫ ∞
−∞
dx2 |ψ(x1, x2)|2 =

∫ b

a
dx1 P1(x1), (4.30)

where the last expression defines the one-particle probability distribution

P1(x1) =

∫ ∞
−∞
|ψ(x1, x2)|2 dx2, (4.31)

in analogy with equations 4.6 and 4.7. (We can similarly define a function P2(x2)
by integrating |ψ|2 over x1.) Moreover, if we go ahead and measure x1 and obtain
the result x1 = a, then the wavefunction collapses to a delta function in the x1

direction, multiplied by the original wavefunction evaluated at x1 = a:

ψnew(x1, x2) ∝ ψold(a, x2) δ(x1 − a), (4.32)

precisely analogous to equation 4.11

We can also construct example wavefunctions that correspond to those in Sec-
tion 4.1. If both particles have well-defined positions, then their wavefunction is just



128 Chapter 4. Beyond one dimension

Figure 4.13: Some possible wavefunctions for a system of two particles in one dimension,
with each particle in a Gaussian wavepacket state. See Problem 4.22.

a product of delta functions, δ(x1 − a)δ(x2 − b). If both particles have well-defined
momenta, their wavefunction is a product of complex exponentials, eip1x1/~eip2x2/~.
And if both particles are in Gaussian wavepacket states, then their wavefunction
is a product of a Gaussian wavepacket function of x1 and a Gaussian wavepacket
function of x2. To visualize these states we can use the very same illustrations as in
Figures 4.1 and 4.2, again with the replacement (x, y) −→ (x1, x2). You just have
to keep reminding yourself that the two directions on the plot correspond to the
locations of the two particles along a single axis in physical space, rather than two
different directions in space.

Problem 4.22. Figure 4.13 shows some two-particle wavefunctions for which each
particle is in a Gaussian wavepacket state. The coordinates x1 and x2 are measured
from the same origin and are plotted at the same scale. For each of the three plots,
draw a sketch in one-dimensional physical space showing the approximate location of
each of the two particles, with an arrow indicating each particle’s direction of motion.
Label the two particles “1” and “2” in your sketches.

Nonseparable wavefunctions

The example wavefunctions in Problem 4.22, and those described in the paragraph
preceding it, all have the special property that they can be factored into a function
of x1 times a function of x2:

ψ(x1, x2) = f(x1)g(x2) (usually not possible). (4.33)

We say that such functions are separable, and in such cases you can get away with
saying that each particle has its own wavefunction. However, as in the case of
a single particle in two spatial dimensions, this property is the exception rather
than the rule. The vast majority of all possible two-particle wavefunctions are not
separable.
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Figure 4.14: A two-peak “cat state” for a two-particle system, consisting of Gaussian shapes
centered in configuration space at (a, b) and (b, a). See equation 4.34.

One way to construct nonseparable wavefunctions is to combine two or more sep-
arable wavefunctions into a superposition. For example, consider the superposition
of Gaussians

e−(x1−a)2e−(x2−b)2 + e−(x1−b)2e−(x2−a)2 , (4.34)

where x1, x2, a, and b are understood to be measured as multiples of some suitable
unit. Each of the two terms in this expression is separable, but the entire expression
(which is an equally legitimate wavefunction) is not. If the difference b− a is a few
units, then this function looks something like Figure 4.14. This is a “cat state” in
two-dimensional configuration space.

The nonseparability of most two-particle wavefunctions isn’t a mere mathemat-
ical curiosity: it has the important physical consequence that measurements per-
formed on the two particles are correlated. For instance, if you were to measure the
position of either of the particles in the cat state shown in Figure 4.14, you would
have a 50/50 chance of obtaining a value either near a or near b. But if x1 is near a
then x2 must be near b, and vice-versa. To put it more vividly, suppose you measure
the position of particle 1 first, and happen to find it near a. This measurement col-
lapses the wavefunction to lie entirely within the peak around x1 = a and x2 = b, so
you can now be certain that a subsequent measurement of the position of particle 2
will yield a result near b. The measurement of x1 not only provides information you
didn’t previously have about x2; it actually changes the probability distribution for
the subsequent x2 measurement.

Whenever a two-particle wavefunction is not separable, we say that the two
particles are entangled.6 Then it’s impossible to accurately describe the state of
one particle without also referring to the other. Separate measurements performed

6Erwin Schrödinger coined this term in 1935, but it didn’t come into common use until the
1990s. See D. V. Schroeder, “Entanglement isn’t just for spin,” Am. J. Phys. 85(11), 812–820
(2017), https://doi.org/10.1119/1.5003808. Significant portions of Sections 4.1 and 4.3 are
based on this article.

https://doi.org/10.1119/1.5003808
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on two entangled particles are correlated, so that a measurement of one alters the
probability distribution for a measurement on the other.

Ironically, even though the vast majority of allowed multi-particle wavefunctions
are entangled, we’ll spend quite a bit of time working with wavefunctions that
are separable, that is, not entangled. This is because separable wavefunctions are
mathematically simpler, and also because they are complete: any other wavefunction
can always be expressed as a linear superposition of separable wavefunctions (as in
equation 4.34). Just don’t let these separable wavefunctions give you the false
impression that the quantum world is always so simple. In quantum mechanics you
need to keep reminding yourself that your basis vectors are merely a basis, from
which you can build arbitrary linear combinations to represent the unlimited variety
of the world.

You may be wondering what physically causes particles to become entangled,
or to remain unentangled, in the real world. To answer that question we need to
take a look at two-particle quantum dynamics.

Problem 4.23. When you look at Figure 4.14, it’s tempting to assume that each of
the two peaks of the wavefunction represents one of the two particles. Why is this
assumption wrong? What does each of the two peaks represent? Explain carefully.

The two-particle Hamiltonian

The operators for position and momentum in a two-particle system are exactly what
you would expect: x̂1 = x1, p̂1 = −i~∂/∂x1, and so on. So let’s move right along
and talk about the Hamiltonian operator, which governs the system’s dynamics.

The Hamiltonian of a two-particle system is, as usual, the operator that cor-
responds to the system’s total energy. So it consists of a kinetic energy term for
each particle, plus an arbitrary potential energy term that can depend on both
coordinates:

Ĥ = − ~2

2m1

∂2

∂x2
1

− ~2

2m2

∂2

∂x2
2

+ V (x1, x2), (4.35)

where m1 and m2 are the masses of the two particles. The presence of two different
masses makes this expression look a little more complicated that that for a single
particle in two spatial dimensions, but it doesn’t add any actual mathematical
complexity because the masses can (if we wish) be absorbed into the units that we
use to measure x1 and x2.

Moreover, we can usually simplify the two-particle potential energy function by
writing it as a sum of three pieces:

V (x1, x2) = V1(x1) + V2(x2) + V12(x2 − x1). (4.36)

The first two terms on the right-hand side are from external forces acting on each of
the two particles, while the third term is from the interaction between the particles.
When all three terms are present, the Hamiltonian and the associated Schrödinger
equations (time-dependent and -independent) are still pretty complicated. But
when one or more terms is absent, things simplify.
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First consider the important special case of noninteracting particles, for which
V12 = 0. Then the results of Problem 4.6 (with the substitution (x, y) → (x1, x2))
apply, and for most purposes we effectively have two single-particle systems that
we can treat separately. More precisely, we know in this case that (a) there exists
a complete set of separable solutions to the TISE; and (b) if the system starts out
in a separable (unentangled) state, the TDSE predicts that it will remain in one.

The other important special case is when V1 = V2 = 0 in equation 4.36, meaning
that there are no external forces acting on either particle. Then it is useful to
rewrite the Hamiltonian in terms of center-of-mass and relative coordinates:

xcm =
m1x1 +m2x2

m1 +m2
, xr = x2 − x1. (4.37)

In terms of these coordinates, the system effectively separates into a free “particle”
of mass m1 + m2 whose coordinate is xcm, and a second “particle” whose mass is
the reduced mass, m1m2/(m1 + m2), with coordinate xr, subject to the interac-
tion potential V12(xr). These two fictitious “particles” will have a complete set of
unentangled energy eigenstates, and will remain unentangled so long as they start
out that way, even while the two actual particles interact and, typically, become
entangled during the process.

Two particles in a box

Now recall from Section 4.1 the example of a single particle in a two-dimensional
square infinite square well. With the substitution (x, y) → (x1, x2), we can trans-
late that example to apply instead to a system of two particles trapped in a one-
dimensional infinite square well (a one-dimensional “box”). To make the analogy
precise we need to assume that the two particles interact only with the walls of the
box and not with each other, so that V12 in equation 4.36 is zero. One way to make
sure the particles don’t interact would be to put them in separate one-dimensional
boxes, measuring x1 and x2 from the left edge of each of the respective boxes. Al-
ternatively, the particles could be in the same box but of types that just don’t exert
any significant forces on each other.

Assuming that the two particles don’t interact, the separable energy eigenfunc-
tions are again products of sine waves (eigenfunctions for a one-dimensional box), as
written in equation 4.17 and illustrated in Figure 4.6. If the two particles have the
same mass (but are still distinguishable in some other way, for reasons I’ll explain
later), then the energy levels are again given by equation 4.18, as illustrated in Fig-
ure 4.7. (If the two particles have different masses, then the energy level structure
is more complicated, but still straightforward to work out.)

Furthermore, for two particles in a one-dimensional box we can again construct
nonseparable superposition states such as those shown in Figure 4.8. These are
states in which the two particles are entangled. Now, just because such states exist
doesn’t necessarily mean they will actually occur. For instance, if the two particles
are in separate boxes and don’t interact even indirectly, then there is no mechanism
to put them into an entangled state.
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Figure 4.15: Potential energy functions (left) and ground-state wavefunctions (right), plot-
ted in configuration space, for a system of two equal-mass particles in a one-dimensional
box, interacting with each other via a Gaussian potential of the form of equation 4.38. The
potential range b is equal to 1/4 the box width, and the potential strength V0 is measured
in units in which ~, the particle masses, and the box width are all equal to 1. (The infinite
potential energy outside the box is not shown.) I calculated the wavefunctions using the
fake-time method described in Section 4.2, but no calculations are needed to understand
their qualitative shapes.

On the other hand, suppose that the two particles are in the same box, and that
they do interact with each other. The exact form of the interaction isn’t critical for
the point I want to make, but to be specific, let’s say the interaction potential is a
smooth Gaussian,

V12(x2 − x1) = V0 e
−(x2−x1)2/b2 , (4.38)

where V0 and b are constants that determine the strength and the range of the
interaction. The force between the two particles is repulsive if V0 is positive and
attractive if V0 is negative. In configuration space, we can visualize this potential as
a linear ridge (for V0 > 0) or trough (for V0 < 0) running along the main diagonal
(see Figure 4.15).

In the repulsive case, the inter-particle potential divides the configuration-space
box into a double well. The ground-state wavefunction therefore has two peaks,
which become well separated for appropriate choices of V0 and b, as shown in Fig-
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ure 4.15) (top right). This two-particle wavefunction qualitatively resembles the
entangled “cat state” shown in Figure 4.14. In physical space, it tells us that the
particles will be found on opposite sides of the one-dimensional box, with no pref-
erence for either particle being on a particular side.

In the attractive case, the wavefunction gets pulled into the linear potential
trough, as shown in Figure 4.15 (bottom right). This is also an entangled state, but
this time it tells us that the two particles are close together instead of far apart.

I’ve shown only the ground-state wavefunctions in Figure 4.15, but in fact all
of the energy eigenfunctions are entangled for this system of two trapped particles
that interact with each other. The Entanglement in a Box web app, at http://

physics.weber.edu/schroeder/software/EntanglementInBox.html, shows the
four lowest-energy wavefunctions for this system, letting you adjust V0 and b and
watch how the wavefunctions depend on these parameters.

Although this example of two interacting particles in one dimension may seem
artificially simple, it illustrates some of the same phenomena that arise in actual
three-dimensional systems. For example, an ordinary hydrogen atom consists of two
particles—a proton and an electron—that attract each other and are closely bound
together even while the atom as a whole may be in less localized state. And in a
helium atom, the two electrons repel each other even while both are confined by the
stronger potential of the nucleus.

Problem 4.24. For the wavefunction shown in the bottom-right image of Figure 4.15,
make a qualitatively accurate sketch of the single-particle probability densities P1(x1)
and P2(x2). Then suppose that you measure x1 and happen to obtain the result
x1 = a/3. Sketch the new probability density P2(x2) that applies immediately after
this measurement.

Problem 4.25. Sketch your best guess for what the first excited-state wavefunctions
would look like for the systems shown in Figure 4.15, in both the repulsive and attractive
cases. Then use the Entanglement in a Box web app to check your sketches.

Problem 4.26. If two equal-mass (but distinguishable) particles in a box do not in-
teract, their second-lowest energy level is doubly degenerate, corresponding to either
ψ1,2 or ψ2,1, or any linear combination of these, as illustrated in Figures 4.6 and 4.8
(with the substitution (x, y) → (x1, x2)). Suppose, however, that the two particles
interact weakly via a potential of the form of equation 4.38, with |V0| small and b less
than the box width. Without doing any calculations, explain why this interaction will
break the degeneracy. Determine which of the many mixtures of ψ1,2 and ψ2,1 are now
the approximate energy eigenstates, and which of these eigenstates has the higher or
lower energy. Treat the cases of repulsive and attractive interactions separately. (You
can check your answers using the Entanglement in a Box web app.)

Two-particle scattering

It isn’t just energy eigenfunctions that become entangled when particles interact.
The time-dependent Schrödinger equation also predicts that if two particles start
out in a non-entangled state and then interact with each other, they will typically
become entangled.

http://physics.weber.edu/schroeder/software/EntanglementInBox.html
http://physics.weber.edu/schroeder/software/EntanglementInBox.html
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Figure 4.16: Scattering of two interacting particles in one dimension. The images at the
top show the full wavefunction, plotted in configuration space, at three successive times.
The gray diagonal band is the interaction potential, equation 4.39. Underneath are plotted
the single-particle probability densities P1(x1) (in green) and P2(x2) (in magenta).

Figure 4.16 illustrates the simplest possible interaction of this type, in one spatial
dimension. Each of the two particles is initially in a Gaussian wavepacket state, so
their combined wavefunction (shown at the upper left) is separable. I’ve placed the
two single-particle wavepackets at opposite sides of the region shown, and aimed
them toward each other, with the same average speed. I’ve then assumed that the
particles interact via a simple repulsive potential that is constant out to a certain
distance and zero beyond that:

V (x1, x2) =

{
V0 if |x2 − x1| < b,

0 otherwise.
(4.39)

In configuration space this potential is a diagonal barrier, shown in gray in the
figure. This scenario is mathematically equivalent to that in the top row of images
in Figure 4.10—with the substitution (x, y) → (x1, x2) and a 45-degree rotation of
the potential barrier and initial wavepacket orientation. I’ve adjusted the potential
strength V0 and range b to give a transmission probability close to 50% (actually
a little less), so in the subsequent frames we see the expected interference pattern
between the incident and reflected waves, and then the separation of the reflected
and transmitted packets. The final state is entangled, similar to the two-peak cat
state shown in Figure 4.14, but with the two peaks moving away from each other
as time passes.

To create Figure 4.16 I used the Colliding Wavepackets web app at http://

physics.weber.edu/schroeder/software/CollidingPackets.html, which simu-
lates the time evolution of the two-particle wavefunction using the centered-difference

http://physics.weber.edu/schroeder/software/CollidingPackets.html
http://physics.weber.edu/schroeder/software/CollidingPackets.html
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algorithm for the two-dimensional TDSE, as described in Section 4.2. By all means,
run the app to see the full animation sequence, and adjust the parameters to vary
the outcome of the scattering interaction.

As you can see, I didn’t have to make the interaction between these two par-
ticles exotic or contrived in any way, in order to obtain an entangled final state.
Entanglement is a generic outcome of interactions, so if we want to understand the
quantum mechanics of particles that interact with each other, we will have to work
with entangled states. Schrödinger himself emphasized this point when he coined
the term “entangled” in 1935:

When two systems, of which we know the states by their respective
representatives [i.e., wavefunctions], enter into temporary physical in-
teraction due to known forces between them, and when after a time of
mutual influence the systems separate again, then they can no longer
be described in the same way as before, viz. by endowing each of them
with a representative of its own. I would not call that one but rather
the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought. By the interaction the
two representatives (or ψ-functions) have become entangled.7

Problem 4.27. Suppose that you wish to use a computer to simulate a system of n
interacting particles in one dimension, using a spatial grid with a resolution of 100 grid
locations (as I assumed in the discussion on page 119). If your computer uses eight
bytes to store each complex number, what is the largest n for which it can store an
arbitrary wavefunction for this system? (To answer this question you’ll need to use a
realistic value for the computer’s total storage capacity; be sure to state this value.)
Now suppose instead that you wish to simulate a single carbon atom, with six electrons
in three-dimensional space, also at a resolution of 100 grid locations in each dimension.
How much storage would you need for this system’s wavefunction? Compare to the
total capacity of all of Google’s servers, which as of this writing is estimated to be on
the order of 10 exabytes.

Identical particles

Quantum mechanics allows two (or more) particles to be identical in a sense that
isn’t really possible in classical mechanics. Consider what happens when two par-
ticles have all the same intrinsic properties (mass, electric charge, spin orientation,
etc.), and in addition, their probability density is unchanged under the operation
of interchanging its two arguments:

|ψ(x2, x1)|2 = |ψ(x1, x2)|2. (4.40)

If this relation holds, then the two particles can’t even be distinguished by their
locations—or rather, by the probabilities of their being found at various locations—
because the probability of finding particle 1 near x = a and particle 2 near x = b

7E. Schrödinger, “Discussion of Probability Relations between Separated Systems,” Math.
Proc. Camb. Phil. Soc. 31, 555–563 (1935), https://doi.org/10.1017/S0305004100013554.

https://doi.org/10.1017/S0305004100013554
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Figure 4.17: An example of a two-particle probability density |ψ(x1, x2)|2 that is symmetric
under the interchange of x1 and x2, so its configuration space plot is symmetric under
reflection through the diagonal line x2 = x1. This means we can’t use the probability
density function to distinguish the particles from each other; for instance, the probability
of finding particle 1 near a and particle 2 near b (small upper square) is the same as the
probability of finding particle 1 near b and particle 2 near a (small lower square).

is the same as that of finding particle 2 near x = a and particle 1 near x = b,
for any a and b (see Figure 4.17). This situation is fundamentally different from
classical mechanics, in which you can always distinguish particles by their locations
(if nothing else).

In terms of the wavefunction itself, there are actually two different ways8 that
equation 4.40 can be realized:

ψ(x2, x1) = +ψ(x1, x2) or ψ(x2, x1) = −ψ(x1, x2). (4.41)

In the first case the wavefunction is symmetric under interchanging x1 and x2, while
in the second case it is antisymmetric. Moreover, it’s not hard to prove that if two
particles are identical and either of equations 4.41 holds at one particular time, then
the time-dependent Schrödinger equation will ensure that the same interchange re-
lation holds at all other times. The symmetry or antisymmetry of the wavefunction
for any two such particles is a permanent property of those particles, and it will
never be meaningful to ask which one is which.

It seems that nature has taken advantage of both the symmetric and antisym-
metric options, and filled the universe with particles that are truly identical to
each other in one or the other of these two possible ways. Particles for which
ψ(x2, x1) = +ψ(x1, x2) are called bosons (after Satyendra Nath Bose, 1894–1974),
and include photons, pions, helium-4 nuclei, and many other species of nuclei and
atoms. Particles for which ψ(x2, x1) = −ψ(x1, x2) are called fermions (after Enrico

8Equation 4.40 would also be satisfied if ψ changed by an arbitrary phase eiφ when x1 and
x2 are interchanged, but consistency requires that repeating the interchange operation restore the
wavefunction to its original value, so φ can be only 0 or π.
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Figure 4.18: Four possible wavefunctions for a system of two particles in a one-dimensional
box. In each of the four cases it is reasonable to say that one of the particles is in the single-
particle state ψ1(x) and one of the particles is in the single-particle state ψ2(x). For states
ψ1,2 and ψ2,1, we can also say which of the two particles is in each of these single-particle
states, so the two particles are distinguishable. If the two particles are identical bosons,
then only the symmetric state ψsym is allowed. If they are identical fermions, then only the
antisymmetric state ψanti is allowed. For the states ψsym and ψanti it is not meaningful to
ask which particle is in which single-particle state.

.

Fermi, 1901–1954), and include electrons, protons, neutrons, helium-3 nuclei, and
many other species of nuclei and atoms. You can tell which particles are bosons
and which are fermions by looking at their intrinsic spins, which I’ll discuss further
in Chapter 7.

Often, when describing a system of two identical particles, we start with a
wavefunction ψ0(x1, x2) that’s neither symmetric nor antisymmetric, and then we
symmetrize or antisymmetrize it by adding or subtracting the same function with
its arguments interchanged:

ψsym(x1, x2) = A
(
ψ0(x1, x2) + ψ0(x2, x1)

)
,

ψanti(x1, x2) = B
(
ψ0(x1, x2)− ψ0(x2, x1)

)
.

(4.42)

Here A and B are normalization constants whose values depend on the function ψ0.
Figure 4.18 shows a simple example of these ideas, for a system of two particles in

a one-dimensional box. If the particles are distinguishable, then two of the (many)
possible system wavefunctions are

ψ1,2 = ψ1(x1)ψ2(x2) =
2

a
sin
(πx1

a

)
sin
(2πx2

a

)
,

ψ2,1 = ψ1(x2)ψ2(x1) =
2

a
sin
(πx2

a

)
sin
(2πx1

a

)
,

(4.43)

where ψ1(x) and ψ2(x) are the usual single-particle energy eigenfunctions for a
particle in a box of width a. Because ψ1,2 and ψ2,1 are separable, these system
states separately describe the state of each particle. And for either ψ1,2 or ψ2,1 we
can say which particle is in state ψ1(x) and which is in state ψ2(x). For instance,
if particle 1 is a proton and particle 2 is an electron, then ψ1,2 describes a state in
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which the proton has the one-bump wavefunction ψ1(x) while the electron has the
two-bump wavefunction ψ2(x).

If, on the other hand, the two particles are identical bosons, then neither ψ1,2 nor
ψ2,1 is an allowed wavefunction because neither is symmetric under the interchange
x1 ↔ x2. But the symmetrized combination ψsym = A(ψ1,2 + ψ2,1), that is,

ψsym = A

[
2

a
sin
(πx1

a

)
sin
(2πx2

a

)
+

2

a
sin
(πx2

a

)
sin
(2πx1

a

)]
, (4.44)

is allowed. Like ψ1,2 and ψ2,1, this wavefunction describes a state in which one
of the particles is in state ψ1(x) and one of the particles is in state ψ2(x). The
difference is that ψsym does not specify which of the particles is in which of these
single-particle states.

Similarly, if the two particles are identical fermions, then neither ψ1,2 nor ψ2,1 nor
ψsym is an allowed wavefunction because none of these is antisymmetric under the
interchange x1 ↔ x2. But the antisymmetrized combination ψsym = B(ψ1,2−ψ2,1),
that is,

ψanti = B

[
2

a
sin
(πx1

a

)
sin
(2πx2

a

)
− 2

a
sin
(πx2

a

)
sin
(2πx1

a

)]
, (4.45)

is allowed. Again, this wavefunction describes a state in which one of the particles
is in state ψ1(x) and one of the particles is in state ψ2(x), without specifying which
of the particles is in which of these single-particle states.

An even simpler example would be if we try to put both particles in the same
single-particle state:

ψ(x1, x2) = ψn(x1)ψn(x2), (4.46)

where ψn is any single-particle wavefunction (not necessarily an energy eigenfunc-
tion). This two-particle wavefunction is already symmetric under x1 ↔ x2, so it
could describe a system of two identical bosons (or a system of two distinguishable
particles). But if we try to antisymmetrize it, by subtracting ψ(x2, x1), we get zero,
which is not a normalizable wavefunction. We can only conclude that it is impos-
sible to put two identical fermions into the same single-particle state. This fact is
called the Pauli exclusion principle (after Wolfgang Pauli, 1900–1958).

Problem 4.28. Work out the normalization constants A and B in equations 4.44 and
4.45. (Hint: We already know that the states ψ1,2 and ψ2,1 are normalized, so it’s not
necessary to carry out any integrals of sine functions.)

Problem 4.29. What are the energies of the four states depicted in Figure 4.18,
assuming that these particles are nonrelativistic and do not interact with each other?
(Express your answers in terms of the ground-state energy E1 = h2/(8ma2).). What
can you say about the energies of the individual particles in each of the four cases?

Problem 4.30. Based on the four plots in Figure 4.18, discuss the relative probability
of finding these two particles near each other, in each of the four cases. For which of
these wavefunctions are the two particles closest together, on average? For which are
they farthest apart, on average? How can you tell?
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Problem 4.31. To quantify your answers to the previous problem, calculate the rms
(root-mean-square) distance between the two particles for each of the four wavefunc-
tions shown in Figure 4.18. To do this, you’ll need to evaluate the integral

〈(x2 − x1)2〉 =

∫ ∫
(x2 − x1)2|ψ(x1, x2)|2 dx1 dx2, (4.47)

which gives the average of the square of the distance, and then take the square root.
(You can do these integrals with pencil and paper, but it’s easier to use Mathematica.
Numerical answers, expressed to two or three decimal places of precision, are fine.)
Discuss briefly whether your answers are qualitatively reasonable.

Problem 4.32. Notice that the wavefunction ψanti in Figure 4.18 is zero along the
diagonal line x2 = x1. What does this fact imply about the outcomes of position
measurements made on the two particles? Does this property apply to all wavefunctions
for systems of two identical fermions? Why or why not? Does this property ever
apply to wavefunctions for systems of identical bosons, or for distinguishable particles?
Explain your answers as clearly as you can.

Problem 4.33. Sketch four wavefunction density plots, analogous to those shown in
Figure 4.18, for the case where one particle is in the single-particle state ψ1(x) while
the other is in the three-bump single-particle state ψ3(x). Point out some of the notable
features of your plots.

Problem 4.34. Consider a system of three particles in a one-dimensional box, with
one particle in each of the single-particle states ψ1(x), ψ2(x), and ψ3(x). (a) If
these particles are distinguishable, then one possible wavefunction for the system is
ψ1(x1)ψ2(x2)ψ3(x3). Write similar expressions for all the other such separable wave-
functions. (b) If these particles are identical bosons, then their wavefunction must be
symmetric under any of the interchanges x1 ↔ x2, x2 ↔ x3, and x3 ↔ x1. What, then,
is the fully symmetrized wavefunction for this system? (c) If these particles are iden-
tical fermions, then their wavefunction must be antisymmetric under any of the same
interchanges. What, then, is the fully antisymmetrized wavefunction for this system?

4.4 Particles with internal structure

Our third and final generalization of quantum mechanics is to particles that have
internal degrees of freedom. The quantum state of such a particle depends not
only on variables that represent positions in space, but also on one or more internal
variables.

The most familiar type of internal degree of freedom is spin, a particle’s intrinsic
angular momentum. But there are many other examples. Electrons within atoms
and molecules can be internally excited above their ground states, and molecules
can be in various rotational and vibrational states. Quarks and gluons each have
several “color” states, and the quarks also have various “flavor” states (up, down,
strange, charm, top, bottom), as do the leptons (electron, muon, tau, and three
neutrino varieties). Even the familiar proton and neutron can sometimes be treated
as two different states of a single “nucleon” system.
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One common feature of all these internal properties is that we can enumerate
the independent states in a discrete list. Although this list of independent states can
sometimes be nominally infinite, the number of relevant states under any given con-
ditions is usually finite and often small. In some of the most important cases there
are just two independent states, for example, the two lowest-energy configurations
of an ammonia molecule (as discussed in Section 2.5), or the spin-up and spin-down
orientations of an electron along a given axis. (Any such two-state system is called
a qubit.)

Because the number of independent internal states is usually small, it is con-
venient to represent these states as finite-dimensional vectors, and to represent the
operators that act on them as matrices. I’ve already introduced this representation
in Section 2.3 and Problems 2.31 and 2.32, but let me now summarize and generalize
this formalism.

Matrix representation of states and operators

The idea is to pick a complete set of orthonormal states φn as our basis. We can
then write the most general internal state as a linear combination:

ψ = c1φ1 + c2φ2 + · · · , (4.48)

for some complex coefficients cn that satisfy the normalization condition∑
n

|cn|2 = 1 (4.49)

(as in equation 1.45, except that here the sum is finite). If the list of basis states is
understood, then to specify an arbitrary state we need only list the cn values. For
all practical purposes, then, this list of coefficients is the state of the system. We
typically write the list as a column vector, so knowing the state of the system is
equivalent to knowing the column vector of coefficients:

ψ ←→

c1

c2
...

 . (4.50)

When we express the state of a system in this column-vector form, we can also
express all mathematical operations purely in terms of vector and matrix arithmetic.
Addition, negation, subtraction, and scalar multiplication work the same as for any
other types of vectors.

To compute inner products we need to be a little careful. For instance, if we
express two system states ψc and ψd as

ψc = c1φ1 + c2φ2 + · · · , ψd = d1φ1 + d2φ2 + · · · , (4.51)

then their inner product is

〈ψc|ψd〉 =
∑
n

c∗ndn, (4.52)
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with a complex conjugation on the components of the vector on the left, in analogy
with equation 1.35 (see also Problem 2.31). We can also write this formula in matrix
form, by transposing and conjugating the ψc column vector to make a row vector:

〈ψc|ψd〉 =
(
c∗1 c∗2 · · ·

)d1

d2
...

 . (4.53)

Inner products are important in quantum mechanics because they appear in the
Born rule, that is, in the formula for the probability of obtaining a particular mea-
surement outcome. Suppose that the state ψd of equation 4.51 is the current system
state, while ψc is an eigenstate, with eigenvalue λ, of some observable quantity that
we measure. Then the probability of obtaining λ as our measurement outcome is
the square magnitude of the inner product:

(
Probability of obtaining

measurement result λ

)
= |〈ψc|ψd〉|2 =

∣∣∣∣∣∣∣
(
c∗1 c∗2 · · ·

)d1

d2
...


∣∣∣∣∣∣∣
2

. (4.54)

(If the eigenvalue λ is degenerate, then we need to sum this expression over all of
its linearly independent eigenstates ψc.)

Furthermore, we can also express operator equations, including the Schrödinger
equations, using matrix notation. Consider the action of an arbitrary linear operator
Â acting on an arbitrary state ψc, resulting in some other state ψd:

ψd = Âψc. (4.55)

Inserting the expansions 4.51, this equation becomes∑
n

dnφn =
∑
n

cnÂφn, (4.56)

where I’ve used the linearity of Â to move it inside the sum and past the constant cn.
Now take the inner product with an arbitrary basis state φm, from the left (Fourier’s
trick!): ∑

n

dn〈φm|φn〉 =
∑
n

〈φm|Âφn〉cn. (4.57)

Here I’ve used the linearity of the inner product to distribute it over the sums and
factor out the constants cn and dn. The inner product on the left is now δmn, which
kills off all terms in the sum except the one with n = m, for which it is 1. The inner
product on the right is what we call the mn matrix element of Â:

“Matrix element” = Amn = 〈φm|Âφn〉. (4.58)

We are therefore left with the equation

dm =
∑
n

Amncn, (4.59)
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or in matrix notation, d1

d2
...

 =

A11 A12 · · ·
A21 A22 · · ·

...
...

. . .


c1

c2
...

 . (4.60)

This matrix equation is completely equivalent to the original operator equation 4.55.
And any other equation involving operators, perhaps with additional terms, scalar
multiplications, and/or time derivatives, can be similarly rewritten in matrix rep-
resentation. In summary, when we associate each state ψ with a column vector, we
also associate each operator Â with the appropriate matrix,

Â←→

A11 A12 · · ·
A21 A22 · · ·

...
...

. . .

 , (4.61)

and the action of the operator becomes an ordinary matrix multiplication.

You may have noticed that when I introduced the symbols ψ and φn at the
beginning of this section, I called them “states” rather than “wavefunctions,” and
I wrote simply ψ and φn, not ψ(x) and φn(x). Sometimes we can express these
internal states as functions of some internal position variable(s); for instance, the
vibrational states of a diatomic molecule can be represented as functions of x, where
x is the intermolecular separation distance (see Section 2.4). But in other cases,
including the spin of fundamental particles such as electrons and photons, there is
no continuous internal variable (as far as we know) to play the role of x in a “wave-
function” ψ(x). One nice thing about the column vector representation of quantum
states is that it works equally well whether or not we also could represent the states
as wavefunctions. But I should confess that in the cases when we don’t have actual
wavefunctions, I haven’t actually derived all of the vector-matrix formulas written
above. For instance, I motivated the inner product formula, equation 4.52, through
an analogy to the inner product of wavefunctions in terms of an integral. In fact,
if the basis states are functions of x, then you can derive equation 4.52 from that
more familiar integral formula. But when there are no actual wavefunctions, equa-
tion 4.52 becomes a definition, which cannot be derived. Similarly, in deriving the
matrix equation 4.60 I had to assume that the operator Â is linear, whereas we can
derive this fact for the specific operators introduced in earlier chapters, written in
terms of x and d/dx. The deep lesson here is that the underlying algebraic rules for
inner products and operators are more fundamental than any explicit representation
of those rules in terms of either calculus or matrix arithmetic.

I should also emphasize that all vector components (cn, dn) and matrix elements
(Amn) are relative to a particular orthonormal basis. We’re always free to choose
a different orthonormal basis, in which case the components and matrix elements
will be different. This situation is analogous to the arbitrariness of the choice of
coordinate axes in three-dimensional space: rotating the axes changes the vector
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components, but doesn’t change the equations that relate various vectors to each
other according to the laws of physics.

Problem 4.35. If you haven’t already worked Problems 2.31 and 2.32, go back and
work them now.

Problem 4.36. Consider a particle whose internal quantum states can be represented
by vectors in just two dimensions. In this problem you will work with the following
vectors and matrices:

A =

(
2 0
0 4

)
, B =

(
2 1
1 2

)
, β1 =

(
1
1

)
, ψ =

(√
1/3√
2/3

)
.

(a) What are the eigenvalues and normalized eigenvectors of A? (Call the vectors α1

and α2.)

(b) Show that β1 is an eigenvector of B. Normalize it, and find the corresponding
eigenvalue.

(c) Find and normalize the other eigenvector (call it β2) of B (hint: it’s orthogonal
to β1), and find its corresponding eigenvalue.

(d) Make a large plot of all of these vectors (α1, α2, β1, β2, and ψ) on a single set of
axes, with their tails at the origin. As you work parts (e) through (g), illustrate the
calculations on your plot.

(e) Suppose this particle’s current state is β1, and you measure the physical quantity
whose corresponding matrix is A. What values might you obtain, and with what
probabilities?

(f) Suppose instead that this particle’s current state is ψ, and you measure the physical
quantity whose corresponding matrix is A. What values might you obtain, and with
what probabilities?

(g) Suppose again that this particle’s current state is ψ, but that now you measure the
physical quantity whose corresponding matrix is B. What values might you obtain,
and with what probabilities?

Composite states

The column vectors of the previous subsection describe only the internal states of a
particle. What if we also want to describe its motion through space? For instance,
what if we want to describe both the motion of an electron and its spin?

Often it’s sufficient to just specify the spatial state and the spin state separately.
For instance, an electron in a hydrogen atom might have the spatial wavefunction
e−r/a (where r =

√
x2 + y2 + z2 and a is a constant) and the spin state

(
1
0

)
(con-

ventionally indicating spin up along the z axis). More generally, there is an infinite-
dimensional space of allowed spatial wavefunctions, and for each of these, there is
a two-dimensional space of allowed spin states. (For a particle with a larger spin
magnitude than the electron’s, the spin states would live in a higher-dimensional
space, as discussed in Chapter 7.)

But as you might guess by now, these separately-specified wavefunctions and
spin states are really special cases. We must also allow for the possibility that the
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electron is in a superposition of these separable states, and most superpositions are
not separable. In fact, the most general superposition (to describe an electron’s
motion and spin) has the form

ψ =

(
1
0

)
α(~r) +

(
0
1

)
β(~r) =

(
α(~r)
β(~r)

)
, (4.62)

where α(~r) and β(~r) are arbitrary complex-valued functions that satisfy the nor-
malization condition ∫ (

|α(~r)|2 + |β(~r)|2
)
d3r = 1. (4.63)

When the functions α(~r) and β(~r) are equal up to a constant factor, the overall
state is separable and we can describe the spatial state and the spin separately.
Otherwise, though, the electron’s spin state is “entangled” with its spatial state.
For instance, it’s possible in principle to put an electron into a state that is a 50-
50 mixture of spin-up in Uruguay and spin-down in Denmark. (To actually put
an electron into a state with space and spin entangled, we would subject it to a
spin-dependent force.)

I hope you can see the analogy between these composite motion-spin states and
the two-particle states described in Section 4.3. In each case, the space of all allowed
states consists of all possible separable states, constructed as products of the states
of the subsystems, together with all normalized linear combinations of these product
states. We often call this idea the principle of superposition: If ψ1 and ψ2 are both
allowed states of some quantum system, then any normalized superposition of the
form c1ψ1 + c2ψ2 is also an allowed state.9

I’ve been using spin and spatial motion as examples, but the principle of super-
position applies to all of the degrees of freedom, spatial and internal, of any system
of one or more quantum particles. To conclude this section, let me now show how
to represent arbitrary states involving two different internal degrees of freedom, or
any other two degrees of freedom for which we can represent the states using small
column vectors.

To be specific, consider the internal states of a single quark, which has two inde-
pendent spin states (just like an electron), and also has three independent “color”
states. We can represent its spin state using a two-component column vector, and
its color state using a three-component column vector:

Spin state←→
(
c+

c−

)
, Color state←→

crcg
cb

 . (4.64)

Here + and − indicate the “spin-up” and “spin-down” components of the state,
while r, g, and b represent the “red,” “green,” and “blue” components. (This

9This “principle of superposition” is more fundamental than the dynamical principle of super-
position, mentioned in Section 1.3, which says that a superposition state evolves in time as if each
of its component terms were evolving separately.



4.4. Particles with internal structure 145

“color” terminology is entirely metaphorical, based on a rather imperfect analogy
to the way our eyes perceive three primary colors.)

Each of the quark’s independent spin states can accompany each of its indepen-
dent color states, so we can group these states in pairs to obtain six independent
internal states for this system: + r, + g, + b, − r, − g, and − b. Every normalized
superposition of these six basis states is allowed, so to represent an arbitrary inter-
nal state we can use a six-dimensional column vector. In the special case in which
the state is separable, we can compute this column vector as

(
c+

c−

)
⊗

crcg
cb

 =



c+cr
c+cg
c+cb
c−cr
c−cg
c−cb

 , (4.65)

where the meaning of the symbol ⊗ is defined by the right-hand side. This type
of product is called a tensor product. (The ordering of the six components of the
product vector is actually arbitrary, but it’s important that we be consistent, and
the ordering I’ve used here is conventional. To remember the ordering, imagine
“stretching” the first column vector to fill all six rows, then multiplying both the
top half and the bottom half by the second column vector.)

For example, we would represent the state of a spin-down (along the z axis) red
quark as

(
0
1

)
⊗

1
0
0

 =



0
0
0
1
0
0

 , (4.66)

and we can similarly construct the five other basis states. We can also construct an
infinite variety of other tensor-product states, such as

( √
1/2

−
√

1/2

)
⊗


√

1/3

i
√

2/3
0

 =



√
1/6

i
√

1/3
0

−
√

1/6

−i
√

1/3
0


. (4.67)

This is a state in which a z-spin measurement would yield up or down with equal
probability; a color measurement would yield red with probability 1/3, green with
probability 2/3, and never blue; and, as with any tensor-product state, there would
be no correlations between the spin outcomes and the color outcomes. (The fac-
tors of −1 and i don’t affect these particular probabilities, but they would affect
probabilities for other possible measurements, such as spin along the x direction.)
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But the vast majority of this system’s six-component state vectors cannot be
factored into tensor products. For instance,

√
1/3
0
0
0
0√
2/3

 6=
(
c+

c−

)
⊗

crcg
cb

 (for any c’s). (4.68)

This state describes a quark that is either red and spin-up (with probability 1/3) or
blue and spin-down (with probability 2/3). The spin and color are fully correlated,
so if we prepare a quark in this state and then measure the color and get blue, we
immediately know that the spin is down. The quark’s color is entangled with its
spin.

You might well be wondering how we would actually perform these spin and
color measurements that I keep referring to. In Chapter 7 we’ll study spin in detail,
and I’ll explain one way to measure the spin of a particle. Unfortunately, laboratory
measurements of quark colors are indirect and beyond the scope of this book. But
we could replace the color states in these examples with appropriately chosen states
of orbital angular momentum (which is easier to measure), or with any other particle
property whose measurement can yield just three possible outcomes.

In Chapter 7 I’ll also show how to use tensor products of operator matrices to
construct operators that act in the vector space of a composite, finite-dimensional
system.

Problem 4.37. Evaluate each of the following tensor products:

(a)

(√
3/4
−1/2

)
⊗
(√

1/2

i
√

1/2

)
, (b)

(
2
−3

)
⊗

4
5
6

 , (c)

4
5
6

⊗ ( 2
−3

)
.

Problem 4.38. Each of the six-component vectors below describes a quark’s combined
spin-plus-color state, using the basis of equation 4.65:

(a)


0
1
0
0
0
0

 , (b)



√
1/20
0√
3/20

−
√

1/5
0

−
√

3/5

 , (c)



0√
3/5

−
√

1/20
0√
1/5

−
√

3/20

 .

Interpret each of these vectors in terms of z-spin and color probabilities, as I did for
the vectors in equations 4.66 through 4.68. Factor each vector into a tensor product of
normalized spin and color vectors if possible; if this is not possible, prove it.

Problem 4.39. Prove that if the spin and color column vectors in equation 4.65 are
separately normalized, then their tensor product, representing the overall (internal)
state, is automatically normalized as well.



4.4. Particles with internal structure 147

Problem 4.40. Evaluate the tensor product( √
1/2

−
√

1/2

)
⊗
(√

1/3

i
√

2/3

)
⊗
(

1/2√
3/4

)
for a three-qubit system, and check that you can carry out either of the two products
first (so the tensor product is associative).

Problem 4.41. How large a column vector would you need to represent an arbitrary
state of a system of four qubits? 10 qubits? 100 qubits? A quantum computer is one
that uses entangled qubits (say 50 or 100 of them) for its calculations instead of ordinary
classical bits. In principle, any quantum computer can be accurately simulated using
a classical computer, by storing the N -qubit state as a list of complex numbers. Very
roughly, how large can N be for such a simulation to remain feasible? Explain your
reasoning.



Chapter 5

Working with operators

5.1 More about operators

According to the second principle of quantum mechanics (see Section 3.5), every
observable quantity corresponds to a linear operator that acts in the appropriate
space of functions (or vectors). So, for example, the most important operators for
a structureless particle in one dimension are

x, −i~ d
dx
, and − ~2

2m

d2

dx2
+ V (x), (5.1)

which correspond to position, momentum, and energy, respectively. The eigenvalues
of each such operator are the values that you can obtain when you measure the
corresponding quantity, and the corresponding eigenvectors (or eigenfunctions) are
the quantum states for which the measured quantity has each of those well-defined
values. If you measure the quantity for some other quantum state, the Born rule tells
us that the probability of getting any particular value is the square modulus of the
component of the state vector along the direction of the corresponding eigenvector.

In order for this whole scheme to make sense, these eigenvalues must always be
real numbers. In addition, the corresponding eigenvectors must form a complete,
orthonormal basis (called an eigenbasis) for the space of state vectors (or functions),
so that any other normalized vector in the space can be uniquely resolved into
components whose square moduli (the probabilities) add up to 1. It’s now time
to investigate some of the mathematics of the operators that have these essential
properties.

We say that an operator Â is Hermitian if, for all vectors ψ1 and ψ2,

〈Âψ1|ψ2〉 = 〈ψ1|Âψ2〉. (5.2)

That is, a Hermitian operator can operate on either vector in an inner product with
the same effect.

From this definition, it is easy to prove the following two theorems about Her-
mitian operators:

148
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1. The eigenvalues of a Hermitian operator are real.

2. Eigenvectors of a Hermitian operator that have distinct eigenvalues are or-
thogonal to each other.

I suggest that you take a moment right now to try to prove each of these results,
starting from the definition (5.2). You need to assume that the eigenvectors of your
operator are normalizable, which is not the case when the eigenvalues are continuous
(as they are for x and −i~ d/dx); the textbook by Griffiths has a nice discussion of
how to handle continuous eigenvalues.

Moreover, we can also prove a theorem that is almost the converse of the two
theorems above:

3. If a linear operator has a complete, orthonormal set of eigenvectors and a
corresponding set of real eigenvalues, then it is Hermitian.

This theorem means that any operator that corresponds to an observable quantity
in quantum mechanics must be Hermitian. Here is the proof.

Let’s call the operator Â, its normalized eigenvectors αn, and its eigenvalues an.
Now consider the two arbitrary vectors ψ1 and ψ2 that appear in the inner product
in equation 5.2. Because the set {αn} is complete, we can expand each of these
vectors in the αn basis:

ψ1 =
∑
n

cnαn, ψ2 =
∑
n

dnαn, (5.3)

for some sets of complex coefficients {cn} and {dn}. So let’s insert these expansions
into the left-hand side of equation 5.2:

〈Âψ1|ψ2〉 =
〈
Â
∑
n

cnαn

∣∣∣ ∑
m

dmαm

〉
. (5.4)

(Notice how I’ve used a different index, m, in the second sum, so I won’t confuse
it with the index in the first sum.) Because Â is linear, we can move it inside the
first sum. And because the inner product obeys the algebraic rules that one would
expect of a “complex dot-product,” we can move both of the sums, as well as the
coefficients, outside of the inner product, picking up a ∗ on cn, to obtain

〈Âψ1|ψ2〉 =
∑
n

∑
m

c∗ndm〈Âαn|αm〉. (5.5)

But αn is an eigenvector of Â with real eigenvalue an, and the eigenvectors are
orthonormal, so this becomes

〈Âψ1|ψ2〉 =
∑
n

∑
m

c∗ndman〈αn|αm〉 =
∑
n

∑
m

c∗ndmanδmn =
∑
n

c∗ndnan. (5.6)

Through a completely analogous set of manipulations, you can show that the right-
hand side of equation 5.2 reduces to exactly the same expression, and this completes
the proof that Â is Hermitian.
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Although only Hermitian operators can correspond to observable quantities in
quantum mechanics, we do sometimes work with non-Hermitian operators. It’s then
useful to define the adjoint, Â†, of an operator Â to be the operator that has the
same effect on the left side of an inner product that Â has on the right:

〈Â†ψ1|ψ2〉 = 〈ψ1|Âψ2〉, (5.7)

for any two vectors ψ1 and ψ2. A Hermitian operator, then, is its own adjoint. A
unitary operator is one whose adjoint is the same as its inverse: Û † = Û−1, where
Û−1Û is the identity operator.

Problem 5.1. Consider the rather trivial operator that consists of a simple constant
c (which multiplies whatever vector it acts on). Under what condition is this operator
Hermitian? Explain carefully.

Problem 5.2. Prove that, for the system consisting of a single particle in one dimen-
sion, the operators x̂ and p̂ = −i~ d/dx are Hermitian.

Commuting and noncommuting operators

Often, in quantum mechanics, we will want to discuss two or more operators at
the same time. For example, if two Hermitian operators Â and B̂ correspond to
two observable quantities for a particular system, we might want to know whether
these two quantities can be simultaneously well defined. As we shall later see,
this question turns out to be closely related to the question of whether Â and B̂
commute, that is, whether their order matters when they operate, successively, on
a vector:

ÂB̂ψ = Â(B̂ψ)
?
= B̂(Âψ) = B̂Âψ. (5.8)

If ÂB̂ψ = B̂Âψ for all ψ, then we say that operators Â and B̂ commute. And
whether they commute or not, we define their commutator, denoted [Â, B̂], as the
difference

[Â, B̂] = ÂB̂ − B̂Â, (5.9)

where it is understood that both sides need to give the same result when acting on
an arbitrary vector ψ. So if Â and B̂ commute, then their commutator is zero.

Problem 5.3. Evaluate the commutator [x̂, p̂] of the position operator, x̂, and the
momentum operator, p̂ = −i~ ∂/∂x.

Problem 5.4. Consider all the possible commutators of the position operators x̂, ŷ,
ẑ and the momentum operators p̂x, p̂y, and p̂z, in three dimensions. Which of these
operators commute with each other and which don’t? What are the commutators for
the pairs that don’t commute?

Problem 5.5. Prove that, for any three operators A, B, and C (I’m omitting the
hats because they’re getting cumbersome), (a) [A + B,C] = [A,C] + [B,C], and (b)
[AB,C] = A[B,C]+ [A,C]B. (c) What are the analogous expansions of [A,B+C] and
[A,BC]?
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Matrix representations

We’ve already seen in Sections 2.3 and 4.4 how to express operators in matrix form.
With respect to a given set of basis vectors {αn}, any operator Â can be represented
by the matrix whose elements are

Amn = 〈αm|Âαn〉. (5.10)

Representing operators as matrices in this way has the advantage of being concrete
and vivid. For spin and other internal degrees of freedom for which the dimension of
the vector space is finite and small, we normally express everything in matrix form
from the start. But even when the dimension of the vector space is infinite, it’s often
useful to think of state vectors as columns of components, and to think of operators
as matrices. Moreover, as we saw in Section 2.3, you can often get accurate results
by keeping only a finite (and manageable) number of rows and columns.

From equation 5.10 you can prove the following further properties of operator-
matrices:

• The adjoint matrix A† is the conjugate transpose, AT∗.

• A Hermitian matrix is its own conjugate transpose, so its real part is sym-
metric and its imaginary part is antisymmetric.

• The matrix for a Hermitian operator in its own eigenbasis is diagonal, with
entries equal to its eigenvalues.

I suggest that you now spend a few minutes trying to prove each of these statements.

5.2 Ladder operators for the harmonic oscillator

Operators in quantum mechanics aren’t merely a convenient way to keep track of
eigenvalues (measurement outcomes) and eigenvectors (definite-value states). We
can also use them to streamline calculations, stripping away unneeded calculus (or
explicit matrix manipulations) and focusing on the essential algebra.

As an example, let’s now go back to the one-dimensional harmonic oscillator,
and use operator algebra to find the energy levels and associated eigenfunctions.

Recall that the harmonic oscillator Hamiltonian is

Ĥ =
1

2m
p̂2 +

1

2
mω2

cx
2, (5.11)

where p̂ is the momentum operator, p̂ = −i~d/dx. As in Section 2.4, it’s easiest
to use natural units in which we set the particle mass m, the classical oscillation
frequency ωc, and ~ all equal to 1. Then the Hamiltonian is simply

Ĥ =
1

2
p̂2 +

1

2
x2, (5.12)
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with p̂ = −id/dx.

The basic trick, which I have no idea how to motivate, is to define two new
operators that are linear combinations of x and p̂:

â− =
1√
2

(x+ ip̂), â+ =
1√
2

(x− ip̂). (5.13)

These are called the lowering and raising operators, respectively, for reasons that
will soon become apparent. Unlike x and p̂ and all the other operators we’ve worked
with so far, the lowering and raising operators are not Hermitian and do not rep-
resent any observable quantities. We’re not especially concerned with their eigen-
values or eigenfunctions; instead we’ll focus on how they mathematically convert
one energy eigenfunction into another. (Note: I’m going to drop the cumbersome
ˆ notation from here on. Also, most authors use the notation a and a† instead of
a− and a+, but the book by Griffiths uses the −/+ notation, and I too think it’s
more appropriate. In conventional units, by the way, we would insert factors of m,
ωc, and ~ into these definitions as needed to make a− and a+ dimensionless. It’s a
good exercise to figure out exactly how to do this, especially if you’re even a little
uncomfortable with my use of natural units.)

The first thing to notice about a− and a+ is that if you multiply them together,
you almost get the Hamiltonian:

a−a+ = 1
2

(
x2 + p2 − i(xp− px)

)
= H − i

2
[x, p]

= H + 1
2 , (5.14)

where I’ve used the basic commutator relation [x, p] = i~ (with ~ = 1) that you
worked out in Problem 5.3. Similarly, multiplying them together in the other order
gives a+a− = H − 1

2 . We can therefore write the Hamiltonian as

H = a−a+ − 1
2 = a+a− + 1

2 . (5.15)

Now suppose that ψ is any energy eigenfunction, so that Hψ = Eψ for some E.
Then I claim that if we act on ψ with either the raising or the lowering operator,
we get another energy eigenfunction. To prove this, I need to check what happens
when the Hamiltonian operator acts on this new function. Here’s what happens in
the case of a+ψ:

H(a+ψ) = (a+a− + 1
2)(a+ψ)

= a+(a−a+ + 1
2)ψ

= a+(H + 1)ψ

= a+(E + 1)ψ

= (E + 1)(a+ψ). (5.16)
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So a+ψ is an energy eigenfunction, and its eigenvalue is exactly one unit greater
than that of ψ itself. (Remember that our unit of energy is ~ωc.) This is why
a+ is called the raising operator: it mathematically raises any energy eigenstate
ψ up the quantum ladder by one rung, to the next-highest energy eigenstate (see
Figure 5.1). There’s no limit to how many times we can apply the raising operator,
so this proves that a quantum harmonic oscillator has an infinite ladder of energy
eigenstates, with equally spaced levels separated in energy by ~ωc.

By a completely analogous calculation (see Problem 5.6) you can show that a−
lowers any energy eigenstate ψ by one rung down the quantum ladder:

H(a−ψ) = (E − 1)(a−ψ). (5.17)

This is why a− is called the lowering operator. This result would seem to imply
that our infinite ladder of energy eigenstates continues downward in energy without
limit—but that can’t possibly be the case, because there can’t be any states with
negative energy when the potential energy is positive everywhere. The only way
out is if, when a− acts on the lowest-energy eigenstate (call it ψ0), it gives zero:

a−ψ0 = 0. (5.18)

Then equation 5.17 can still be true for ψ0 even though there’s no lower-energy
state. And from this simple equation we immediately see that Hψ0 = 1

2ψ0, so the
ground-state energy is half a unit, or 1

2~ωc. The remaining energies are integer steps
above this, so we’ve proved that the energies of a quantum harmonic oscillator are
as claimed in Section 2.4:

En = (n+ 1
2)~ωc, n = 1, 2, 3, . . . . (5.19)

(If you’re reading carefully you may have noticed a couple of loopholes in the
logic I just described. How do we know the quantum ladder goes up indefinitely,
rather than ending with a state ψmax for which a+ψmax = 0? And how do we know
that the ladder that starts with ψ0 includes all the states? Could there be others

1

2

3

4

5

Figure 5.1: When the raising operator a+ acts on a harmonic oscillator energy eigenstate,
the result is the next eigenstate up on the quantum ladder. When the lowering operator
a− acts on an energy eigenstate, the result is the next eigenstate down on the ladder.
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that we’ve missed, perhaps lying in between the ones we’ve found? These loop-
holes are actually pretty easy to close, and I’d encourage you to think about them,
but only after you’re comfortable with the rest of the calculations and reasoning
described here.)

To find the energy eigenfunctions that correspond to the eigenvalues En, we still
need to use calculus—but at least the method is intuitive and straightforward. To
find the ground-state eigenfunction we can use equation 5.18, which becomes an
ordinary differential equation for ψ0(x) when we express the lowering operator in
terms of the explicit momentum operator, p = −id/dx. The solution to the differ-
ential equation is ψ0(x) = Ae−x

2/2, just as we saw in Section 2.4 (see Problem 5.7).
Then, to find the first excited state, just apply the raising operator, also written
in terms of p = −id/dx, to the ground state (see Problem 5.8). Keep applying the
raising operator to work your way up the quantum ladder until the novelty wears
off. As you might guess, it gets pretty tedious to work out more than the first few
eigenfunctions by hand.

I hope you agree that the ladder-operator method is by far the most elegant way
of solving the TISE for the harmonic oscillator. The bad news, though, is that no
such elegant method exists for solving the TISE for other one-dimensional potential
functions; the method worked here only because the Hamiltonian is quadratic in
both p and x, allowing it to be factored, aside from an additive constant, into the
product a−a+. So why spend time learning a method—however elegant—whose
applicability is so restricted? There are two reasons.

The first reason is that harmonic oscillators really are ubiquitous in nature,
from vibrating molecules to elastic solids to the electromagnetic field and other
fundamental fields of elementary particle physics. In continuous vibrating systems
we refer to the units of excitation energy as particles, such as photons in the case of
the electromagnetic field, or as quasiparticles, such as phonons in the case of elastic
vibrations. The study of these continuous vibrating quantum systems is called
quantum field theory, and ladder operators are a fundamental tool of quantum field
theorists. But I won’t digress to explore quantum field theory in this book.

The second reason, though, is that ladder operators will come up again in this
book in a somewhat different context: angular momentum. Instead of adding and
removing energy, the ladder operators in that case will add and remove units of
angular momentum (along the z axis). They will therefore be an extremely useful
tool in our study of systems with spherical symmetry, especially atoms.

Problem 5.6. Show that if ψ is a harmonic oscillator energy eigenfunction with energy
E, then when the Hamiltonian operator H acts on the state (a−ψ), the result is an
energy eigenfunction with energy E−1 (in natural units).

Problem 5.7. Write equation 5.18 explicitly as a differential equation for ψ0(x), and
solve it. Also work out the normalization constant for ψ0(x).

Problem 5.8. Starting with the harmonic oscillator ground-state wavefunction ψ0(x),
apply the raising operator repeatedly to find the first three excited states, ψ1(x), ψ2(x),
and ψ3(x). Feel free to use natural units, and don’t worry about normalization.
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Problem 5.9. The calculation in equation 5.16 shows that a+ψn = c+ψn+1 for some
constant c+, and Problem 5.6 shows that a−ψn = c−ψn−1 for some constant c−. In
this problem you will determine the constants c+ and c−.

(a) First prove that a− and a+ are adjoints of each other: a†− = a+ and a†+ = a−. (You
may assume that the operators x and p are Hermitian, as you proved in Problem 5.2.)

(b) Now evaluate the inner product 〈ψn|Hψn〉 in three different ways: first by letting
H act directly on ψn, then by expressing H in terms of a+a−, and finally by expressing
H in terms of a−a+. In each of the last two cases you can move the leftmost ladder
operator to the other side of the inner product by converting it to its adjoint. Then
compare the three results to determine c+ and c−. There is an undetermined phase
factor eiφ, but you can set it to 1 (that is, take c+ and c− to be real and positive)
without harm, because the phase factor doesn’t affect the normalization of ψn. You
should end up with the relations

a−ψn =
√
nψn−1, a+ψn =

√
n+ 1ψn+1. (5.20)

(c) Look up (or recall) the explicit expressions for the normalized harmonic oscillator
energy eigenstates ψ2(x) and ψ3(x), then check the results of part (b) by applying
the raising operator, expressed in terms of d/dx, to ψ2(x), and the lowering operator,
similarly expressed, to ψ3(x).

Problem 5.10. For the simple harmonic oscillator, using the energy eigenfunctions as
a basis, write each of the following operators explicitly in matrix form, showing enough
rows and columns of each matrix to make the patterns clear: H, a−, a+, x, and p. (I
suggest doing them in the order listed. Notice that you can express x and p as linear
combinations of a− and a+.)

5.3 Compatible and incompatible observables

Suppose you measure the position of a quantum particle, and then you measure
its momentum, and then you measure its position again. Chances are that your
second position measurement will be quite different from your first, because the
intervening momentum measurement put the particle into a momentum eigenstate,
spread out widely in space, effectively erasing all memory of the outcome of your
first position measurement. We therefore say that position and momentum are
incompatible observables.

An example of compatible observables would be momentum and kinetic energy:
measuring one of these quantities will have no effect on subsequent measurements of
the other. In general, two observables are compatible if you can measure one, then
measure the other, then measure the first again, and be guaranteed of getting the
same result in the final measurement that you got in the first one. In Chapter 6 we’ll
see that the magnitude of a particle’s angular momentum is compatible with any one
component of its angular momentum, and that both of these are compatible with
energy whenever a particle is subject to a spherically symmetric potential energy
function.

Mathematically, there are two ways to characterize whether observables are
compatible (or incompatible). First, we can ask whether the operators for the two
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observables possess a common eigenbasis (that is, a common set of eigenvectors
that form a complete basis). Second, we can ask whether the operators themselves
commute with each other. In summary, the following three statements are all equiv-
alent:

1. A and B are compatible observables.

2. The A and B operators possess a common eigenbasis.

3. The A and B operators commute.

I won’t try to write out a mathematician’s proof of these equivalencies, but it’s not
hard to understand the basic ideas. I’ll first explain why (1) and (2) are equivalent,
then why (2) and (3) are equivalent.

Suppose, first, that A and B are compatible observables, and imagine measuring
A first, then B, and then A again. The first measurement puts the system into one
of the A eigenstates, and the second measurement (of B) must leave the system
in an A eigenstate with the same eigenvalue, so that the final measurement is sure
to yield the same outcome as the first. But this means that this A eigenstate is
also a B eigenstate. In the simplest cases this final eigenstate will be the same
one that the initial measurement of A put the system into. There’s a complication,
though, if the obtained value of A is degenerate, so that more than one linearly
independent eigenvector of A has this eigenvalue. Then if B lacks this degeneracy,
the B measurement will usually change the state to a different vector in the subspace
of A-degenerate eigenstates. In any case, however, we can find some set of basis
vectors that are eigenvectors of both A and B.

Conversely, if A and B have the same eigenvectors, then measuring A puts the
system into an eigenstate of both, so a subsequent measurement of B doesn’t change
this state and therefore doesn’t affect a subsequent measurement of A. Degeneracy
again complicates this picture somewhat, but doesn’t alter the conclusion that the
two observables must be compatible.

Once we know that A and B have a common eigenbasis, we can see that they
must commute by applying them in succession to an arbitrary vector ψ that is
expanded in terms of this common eigenbasis. If the basis vectors are {αn} and the
expansion coefficients are {cn}, then

ABψ = AB
∑
n

cnαn =
∑
n

cnABαn =
∑
n

cnanbnαn, (5.21)

where an and bn are the associated eigenvalues of A and B, respectively. But
applying A and B to ψ in the other order (that is, BAψ) would give exactly the
same expression, and therefore A and B commute.

Conversely, if we assume that A and B commute, then we can prove that if α
is an eigenvector of A with eigenvalue a, then Bα is also an eigenvector of A with
the same eigenvalue:

A(Bα) = B(Aα) = B(aα) = a(Bα). (5.22)



5.3. Compatible and incompatible observables 157

If the eigenvalue a is nondegenerate, then this means that Bα must be proportional
to α itself, so α is also an eigenvector of B. In the degenerate case the vector Bα
could lie along some different direction in the subspace of degenerate eigenvectors
of A, but there must always be a set of basis vectors in this subspace that are also
eigenvectors of B.1

Problem 5.11. Consider a quantum system with two observable quantities F and G,
represented by the following operator matrices:

F =

2 0 0
0 2 0
0 0 1

 , G =

0 1 0
1 0 0
0 0 0

 . (5.23)

(a) Show that [F,G] = 0, and conclude that these two observables must be compatible.

(b) What are the eigenvalues and eigenvectors of F? (Be careful here, since one of the
eigenvalues is degenerate.)

(c) Which of the eigenvectors of F are also eigenvectors of G? (A bit of trial and error
should suffice to answer this question.)

(d) Suppose that this system is initially in the state ψ = (
√

1/2, 0,
√

1/2). You then
measure F , and obtain 2 as a result. What is the state vector after your measurement?
(Hint: See Figure 4.4 and the accompanying discussion.)

(e) Continuing the experiment described in part (d), suppose that you now measure G.
What values might you obtain, and what will be the system’s state vector after your
measurement in each case?

(f) Still continuing this experiment, suppose that you now measure F again. Will you
obtain the same result (2) as before? Will this measurement cause any further change
to the state vector? Explain.

The uncertainty principle

When two observables are incompatible, we might still wonder how much a measure-
ment of one of them interferes with measuring the other. After all, in the classical
limit there is no such thing as incompatibility: measurements don’t affect the state
of the system at all.

To quantify the degree of incompatibility, however, it’s useful to rephrase the
question. Instead of considering a succession of measurements (A then B then A
again), let’s ask whether we can find at least some states for which A and B are
both approximately well defined. More precisely, imagine preparing a large number
of identical systems in the same state, then measuring A for half of these systems
and B for the other half. Each set of measurements will have some average value,
〈A〉 or 〈B〉, and will also have some amount of spread about the average, which we
can characterize by the standard deviation, σA or σB. We say that a quantity is
approximately well defined if its standard deviation is small.

1For a proof of this statement, see F. Mandl, Quantum Mechanics (Wiley, Chichester, 1992),
Section 3.1.
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There is never any limit on how small we can make σA or σB: either could be
zero, if the state in question is an eigenstate of that observable. And if A and B
are compatible, then we can find simultaneous eigenstates for which both σA and
σB are zero. But when A and B are incompatible, there is generally a limit on how
small we can simultaneously make σA and σB. Specifically, one can prove that the
product σAσB must obey the inequality

σAσB ≥
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣ . (5.24)

This is the most general version of the famous uncertainty principle. It says that
there is no state for which the product of standard deviations is smaller than the
right-hand side. Notice that the right-hand-side involves the average value of the
commutator of the operators A and B; for compatible observables, of course, this
commutator would be zero so there would be no constraint on σAσB.

The proof of the generalized uncertainty principle is rather technical, so I won’t
present it here. You can find it in most traditional textbooks.2

For the special case of position and momentum (in one dimension), the commu-
tator is simply i~ (see Problem 5.3) so the generalized uncertainty principle reduces
to

σxσp ≥
~
2
. (5.25)

This is the original uncertainty principle that we all know and love. For macroscopic
objects, the smallness of ~ implies that the uncertainty principle puts no practical
constraint on precision with which position and momentum can be simultaneously
well defined.

5.4 The principles of quantum mechanics

In Section 3.5 I laid out the five principles of quantum mechanics as applied to a
single, structureless particle in one dimension. Now is a good time to pause and
restate these principles for an arbitrary quantum system.

Principle 1: The states of a system correspond to vectors in a vector
space.

In one-dimensional wave mechanics, these “vectors” are normalizable complex-
valued functions of a single variable. The space of all such functions is infinite
dimensional, since a complete basis for it has infinitely many basis functions. But
the states of other quantum systems can live in even larger vector spaces, or in
smaller ones. In many cases it suffices to use a finite-dimensional vector space, in
which we can represent the vectors by simply listing their components.

2See, for example, Griffiths, Section 3.5.
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In all cases, though, the vector space is complex, in the sense that the scalars,
and the vector components, can be complex numbers.

If one vector is a scalar multiple of another, then those vectors represent the
same physical state.

The essential property of a vector space is that any linear combination of two
of its vectors is also a vector in the space. This means that in principle, we can put
a composite system into an arbitrary entangled state.

Although any state vector is allowed, this doesn’t mean that every state vector is
easy to realize in the laboratory. Entangled states of a composite system sometimes
arise naturally, but in other cases they require specialized preparation that may be
difficult or even impractical.

Principle 2: Observable quantities correspond to Hermitian opera-
tors.

The eigenvalues of a Hermitian operator are real numbers, and these correspond to
the possible outcomes when you measure the corresponding observable quantity.

The corresponding eigenvectors, in turn, correspond to states of the system for
which this observable quantity is well defined. Eigenvectors with distinct eigenvalues
are always orthogonal to each other.

If two observable quantities are compatible then their corresponding operators
commute, and these operators have a common eigenbasis.

Principle 3: Measurement probabilities are given by the Born rule.

Suppose that a system’s normalized state vector is ψ, and we measure an observ-
able quantity whose operator is Â, with eigenvalues ai and corresponding normalized
eigenvectors αi. Then the possible outcomes of the measurement are the various
eigenvalues ai, but in general we can predict only the probability of obtaining each
of these outcomes. When the eigenvalues are discrete, the probability of obtain-
ing a particular eigenvalue ai equals the square of the component of ψ along the
corresponding eigenvector αi:

(Probability of ai) = |〈αi|ψ〉|2. (5.26)

This equation is called the Born rule. In the special case where ψ is one of the
eigenstates αi, the inner product equals 1, giving a probability of 100%, for obtaining
that particular outcome ai, while the probability of getting any other outcome is
zero, because that corresponding eigenvector will be orthogonal to ψ (inner product
equal to zero).

If two or more orthogonal eigenvectors are degenerate, with the same eigenvalue
ai, then on the right-hand side of equation 5.26 we must sum over all of these
eigenvectors, as in equation 4.10.

When the eigenvalues are continuous, the probability of obtaining any one of
them is infinitesimal, so we have to integrate this squared magnitude over some range
of desired values as in equation 1.6 for position and equation 3.10 for momentum.
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Principle 4: A measurement causes the state to collapse.

Whatever the result of a measurement, the measurement process causes the system’s
state to abruptly “collapse” to become whatever eigenstate corresponds to the value
obtained. This means that if you immediately measure the same physical quantity
again, you will always get the same result that you got the first time.

If the measured value is degenerate, with more than one orthogonal eigenstate,
then the measurement causes the state to collapse to its projection in the degenerate
subspace, as illustrated in Figure 4.4.

Principle 5: The TDSE governs time evolution.

As time passes, the state vector changes smoothly according to the time-dependent
Schrödinger equation (TDSE),

i~
∂ψ

∂t
= Ĥψ, (5.27)

where Ĥ is the Hamiltonian operator, that is, the operator that corresponds to
the system’s total energy. If we can find the eigenfunctions of the Hamiltonian
(by solving the time-independent Schrödinger equation, Ĥψ = Eψ), then we can
expand any initial ψ in terms of them and write down the solution to the TDSE
by inserting the corresponding wiggle factors, as in equation 1.24. In the special
case in which the initial ψ is an energy eigenfunction, the TDSE tells us that its
time dependence is a simple wiggle factor, e−iEt/~, and therefore all measurement
probabilities are independent of time.



Chapter 6

Central forces

6.1 Spherical coordinates

We now turn to the important special case of a single quantum particle in three
dimensions, subject to a potential energy function V that is spherically symmetric—
that is, V depends only on the distance r from some fixed center. It is natural in
this case to use spherical coordinates (see Figure 6.1), in which case we can write

V (r, θ, φ) = V (r) (independent of θ and φ). (6.1)

The most important example of a spherically symmetric potential is the attractive
Coulomb potential, proportional to −1/r, between an atomic nucleus (which we’ll
treat as a fixed center of force) and an electron. But there are other interesting
central potentials as well, and we can get pretty far in our analysis without assuming
a specific formula for V (r).

As in Chapter 2, our goal is to solve the time-independent Schrödinger equa-
tion to find the allowed energy levels and the associated wavefunctions. Once we

Figure 6.1: Definitions of the spherical coordinates r, θ, and φ. Note that θ is the polar
angle. Also shown is an infinitesimal volume element whose dimensions are dr, r dθ, and
r sin θ dφ.
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have these, it is a straightforward exercise to combine these wavefunctions with
their associated wiggle factors to build solutions to the time-dependent Schrödinger
equation.

Even though V depends only on r, we’ll need to consider wavefunctions that
also depend on θ and φ. So let me pause a moment to summarize some basic facts
about spherical coordinates.

Note from Figure 6.1 that θ is the polar angle, measured down from the z
axis and ranging from 0 to π, while φ is the azimuthal angle, projected onto the
xy plane, measured counter-clockwise when viewed from above, starting from the
positive x axis, and ranging from 0 to 2π. This naming convention for the two
angles is universal in physics, but differs from what you might find in some math
textbooks.

If you need to convert from spherical to rectangular coordinates, the needed
relations are

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (6.2)

as you can easily show using basic trigonometry. It’s equally easy to derive the
reverse relations for the spherical coordinates in terms of x, y, and z, but I won’t
bother to write those down.

When setting up integrals in spherical coordinates, you need to know that the
infinitesimal volume element is (dr)(r dθ)(r sin θ dφ), as shown in Figure 6.1 (note
that r sin θ is the projection of the length r onto the xy plane).

We can express vectors in spherical coordinates by writing them in terms of
three orthogonal unit vectors r̂, θ̂, and φ̂, shown in Figure 6.2. (In this chapter I
will use the ˆ symbol only for unit vectors, never to denote an operator.) One way
to write the relations between spherical and rectangular unit vectors is

r̂ = sin θ cosφ ı̂+ sin θ sinφ ̂+ cos θ k̂,

θ̂ = cos θ cosφ ı̂+ cos θ sinφ ̂− sin θ k̂,

φ̂ = − sinφ ı̂+ cosφ ̂,

(6.3)

where ı̂, ̂, and k̂ are the unit vectors in the x, y, and z directions, respectively.
In three dimensions there are three independent momentum operators, which

we can express all at once using the gradient symbol:

~p = −i~
(
ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

)
= −i~∇. (6.4)

To express this operator in spherical coordinates, we can write the gradient operator
as

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
. (6.5)

Notice that the extra factors in the denominators are the same as those in the
volume element.
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Figure 6.2: The unit vectors r̂, θ̂, and φ̂ are each defined to point in the direction in
which the corresponding coordinate is increasing. Note that r̂ points radially outward; θ̂
is perpendicular to r̂ in the plane defined by r̂ and the z axis; and φ̂ is in the xy plane,
perpendicular to both r̂ and θ̂.

Finally, to write down the time-independent (or time-dependent) Schrödinger
equation, we also need to express the Laplacian operator, ∇2, in spherical coor-
dinates—and this is somewhat more difficult. First note that the naive guess is
wrong :

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂y2
6= ∂2

∂r2
+

∂2

∂θ2
+

∂2

∂φ2
. (6.6)

(How can you tell?) The correct expression still has three terms: one with two r
derivatives, one with two θ derivatives, and one with two φ derivatives. However,
again there are various stray factors of r and sin θ. Here it is:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (6.7)

If you want to see a derivation of this expression, you can look in any textbook on
mathematical methods in physics, or on classical electromagnetism.1

The kinetic energy operator is the Laplacian times −~2/2m, so the TISE for a
single particle subject to a central potential is

− ~2

2mr2

[
∂

∂r

(
r2∂ψ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
+ V (r)ψ = Eψ, (6.8)

where ψ is a function of r, θ, and φ.
At this point, in order to solve the TISE, there are two ways to proceed. The

more mathematical approach is to solve this partial differential equation by the
method of separation of variables, looking for solutions ψ(r, θ, φ) that factor into
a function of r times a function of θ times a function of φ. (There will be other

1See, for example, D. J. Griffiths, Introduction to Electrodynamics, 4th edition (Pearson, 2013,
reprinted by Cambridge University Press, 2017).
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solutions that don’t factor in this way, but the separable solutions form a basis,
so we can build the other solutions as linear combinations of them.) This method
works fine, but it requires a fair amount of labor with little reward in the form of
physical insight.2

The alternative is to realize that in any problem with spherical symmetry we ex-
pect the solutions to have a physical interpretation in terms of angular momentum.
Recall that in classical mechanics, when a particle moves under the influence of a
central potential V (r), its angular momentum vector ~L = ~r× ~p must be conserved.
The quantum mechanical counterpart to this conservation law is more subtle, but
we can ultimately find the separable solutions to the TISE (or more precisely, their
angular dependence) by focusing first on the three components of the angular mo-
mentum operator, and by looking for their eigenfunctions and eigenvalues. This
approach is just as laborious as the purely mathematical approach described above,
but we’ll gain much more physical understanding along the way.

Problem 6.1. Derive equations 6.2 for x, y, and z in terms of r, θ, and φ.

Problem 6.2. Draw a picture or pictures to show where the factors of r and r sin θ in
the spherical coordinates volume element come from.

Problem 6.3. Derive equations 6.3 for the unit vectors in spherical coordinates.

Problem 6.4. Give one obvious reason why the Laplacian operator in spherical coor-
dinates can’t be simply ∂2/∂r2 + ∂2/∂θ2 + ∂2/∂φ2.

Problem 6.5. Prove that the three-dimensional TISE with a central potential V (r)
is separable in spherical coordinates.

6.2 Angular momentum

So we’re looking for solutions to the TISE in spherical coordinates, for the case
of a particle subject to a potential energy function V that depends only on r.
We expect angular momentum to play an important role in this problem, because
angular momentum would be conserved for a classical particle subject to such a
potential energy function.

Let’s start with the definition of angular momentum:

~L = ~r × ~p =

∣∣∣∣∣∣
ı̂ ̂ k̂
x y z
px py pz

∣∣∣∣∣∣ , (6.9)

where ı̂, ̂, and k̂ are unit vectors in the x, y, and z directions. More explicitly, the
three components of the ~L vector are

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx. (6.10)

2See, for example, D. J. Griffiths, Introduction to Quantum Mechanics, Section 4.1.
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In quantum mechanics we reinterpret every quantity in these definitions as an op-
erator. Even so, we don’t (yet) have to worry about the order in which we write
the symbols, because y commutes with pz, and so on.

But the three angular momentum operators do not commute with each other.
As you can easily show (see Problem 6.6),

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly. (6.11)

This means that the three angular momentum operators do not have a common
eigenbasis: states with well-defined Lx, for instance, do not have well-defined Ly
or Lz. When we look for angular momentum eigenfunctions, we’ll need to specify
which of the three components we want the eigenfunctions of. By convention, we
ordinarily work with eigenfunctions of Lz.

There is, however, another related operator that commutes with all three angular
momentum components. That operator is what we call L2, the sum of the squares
of the three angular momentum components:

L2 = L2
x + L2

y + L2
z. (6.12)

Any eigenfunction of this operator has an angular momentum vector whose magni-
tude is well defined, equal to the square root of the corresponding eigenvalue. (We
can take the square root of the eigenvalue, but not of the operator itself!) The proof
that L2 commutes with Lz (and with Lx and Ly) is a purely algebraic calculation
that makes use of equations 6.11 (see Problem 6.8). The result, in any case, is
important enough to display:

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0. (6.13)

The fact that L2 commutes with Lz means that these two operators have a
common eigenbasis, so our goal will be to find their common eigenstates and the
corresponding eigenvalues. Again, these eigenstates will not have well-defined values
of Lx or Ly. Although it’s hard to imagine a vector with a well-defined magnitude
and well-defined z component, but undefined x and y components, that’s what
quantum mechanics forces us to do.

The good news is that we can find all the eigenvalues that go with these eigen-
states without doing any calculus—by using the raising and lowering operators

L+ = Lx + iLy, L− = Lx − iLy. (6.14)

These definitions should vaguely remind you of the ladder operators for the harmonic
oscillator, equation 5.13. In this case, however, instead of adding and removing units
of energy, L+ and L− will add and remove units of angular momentum—specifically,
units of Lz. To prove this, it’s helpful to first work out the commutators

[Lz, L+] = ~L+, [Lz, L−] = −~L− (6.15)

(see Problem 6.9).
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With these relations in hand, the proof goes as follows. Suppose that ψ is an
eigenfunction of Lz, and, without loss of generality, suppose that its eigenvalue is
m~, where m is a unitless constant (nothing to do with mass). Then the function
L+ψ is also an eigenfunction of Lz, because

Lz(L+ψ) = ([Lz, L+] + L+Lz)ψ

= ~L+ψ + L+m~ψ
= (m+ 1)~(L+ψ). (6.16)

The key step here is in the first line, where I effectively interchanged Lz and L+, at
the cost of an additional commutator term that was easy to evaluate. In conclusion,
L+ψ is indeed an eigenfunction of Lz, and moreover, its eigenvalue is (m + 1)~,
greater than the eigenvalue of ψ itself by one unit of Planck’s constant.

In the same way (see Problem 6.10), you can show that

Lz(L−ψ) = (m− 1)~(L−ψ), (6.17)

in other words, L−ψ is an eigenfunction of Lz with eigenvalue (m− 1)~, less than
the eigenvalue of ψ itself by one unit of Planck’s constant. We have discovered
a quantum ladder of Lz eigenstates, equally spaced by units of ~, and we have
raising and lowering operators L+ and L− that take us up a rung and down a rung,
respectively.

Because L2 commutes with Lz, we can also assume that ψ is an eigenfunction
of L2 (because L2 and Lz must have a common eigenbasis). But L2 also commutes
with the raising and lowering operators, so it follows that L+ψ and L−ψ are also
eigenfunctions of L2, with the same eigenvalue as ψ (see Problem 6.11). So the
ladder operators change only the eigenvalue of Lz, not the eigenvalue of L2. There
must be a separate ladder of states for each eigenvalue of L2. The rung spacing is
the same on each ladder, but as we’ll see, the ladders have different lengths.

Let’s consider just one of these ladders, whose rungs all have the same L2

eigenvalue—that is, the same angular momentum magnitude. The z component
of a vector can’t be bigger than the vector’s magnitude, so there must be highest
rung on the ladder, that is, a state ψtop whose Lz eigenvalue is as high as possible
for this particular ladder. Let’s call this state’s Lz eigenvalue l~, where l is another
unitless number:

Lzψtop = l~ψtop. (6.18)

What happens if we use L+ to try to raise this state? There can’t be a higher-Lz
state, so the only possible value of L+ψtop is zero:

L+ψtop = 0. (6.19)

Similarly, the z component of a vector can’t be smaller than minus the vector’s
magnitude, so there must be a lowest possible rung on the ladder, that is, a state
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ψbot whose Lz eigenvalue is as low as possible for this particular ladder. Let’s call
this state’s Lz eigenvalue l′~, where l′ is another unitless number:

Lzψbot = l′~ψbot. (6.20)

And what happens if we use L− to try to lower this state? There can’t be a lower-Lz
state, so the only possible value of L−ψbot is zero:

L−ψbot = 0. (6.21)

I now want to prove that l′ = −l, and also relate l to the eigenvalue of L2, but
to do so I need two more tricky algebraic relations among the various L operators.
To derive these relations we just need to fiddle around with products of the raising
and lowering operators, for instance,

L+L− = (Lx + iLy)(Lx − iLy)
= L2

x + L2
y − i[Lx, Ly]

= L2 − L2
z − i(i~Lz)

= L2 − L2
z + ~Lz. (6.22)

And if you put L+ and L− in the other order, you get (see Problem 6.12)

L−L+ = L2 − L2
z − ~Lz. (6.23)

Now if you apply this last equation to ψtop, you get

0 = L2ψtop − l2~2ψtop − l~2ψtop, or L2ψtop = l(l + 1)~2ψtop. (6.24)

Similarly, if you apply equation 6.22 to ψbot, you get

0 = L2ψbot − (l′)2~2ψbot + l′~2ψbot, or L2ψbot = l′(l′ − 1)~2ψbot. (6.25)

But ψtop and ψbot are on the same quantum ladder, all of whose rungs have the
same L2 eigenvalue, so

l′(l′ − 1) = l(l + 1). (6.26)

This is a quadratic equation for l′ in terms of l, so it has two solutions, which you
can easily verify to be l′ = l + 1 and l′ = −l. The first solution would be nonsense,
since the bottom rung can’t be higher than the top rung! Therefore it must be the
case that l′ = −l, that is, the ladder of Lz eigenvalues is symmetrical with respect
to zero, descending just as far below as it ascends above Lz = 0.

One way to build a symmetrical ladder is to put the central rung at m = 0.
Then every m value, including l, is an integer. In this case the ladder has an odd
number of rungs. The other possibility is to put zero half-way between two rungs,
so that every m value, including l, equals an integer plus 1/2. In this case the ladder
has an even number of rungs. In summary, the allowed l values are 0, 1/2, 1, 3/2,
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Figure 6.3: A way to visualize the allowed Lz eigenstates for l = 2. The magnitude of the
angular momentum vector is well defined and equal to

√
6~, the radius of the gray sphere in

this three-dimensional space of ~L vectors. For these states Lz is also well defined and equal
to either −2~, −~, 0, ~, or 2~. But Lx and Ly are not well defined, so we cannot visualize
~L as a particular vector in this space; the best we can do is to picture a cone made of all
the vectors with a given |~L| and Lz.

2, and so on. Each of these l values has its own ladder, with m values running from
−l to +l in integer steps.

For a given angular momentum ladder, the eigenvalue of L2 is (according to
equation 6.24) l(l + 1)~2, and therefore the magnitude of the angular momentum
vector is

√
l(l + 1)~. Again, we’re working with states for which this magnitude is

well defined, as is the z component of ~L, but not the x and y components. Although
I can’t really visualize a “vector” with only one well-defined component, Figure 6.3
shows how you can visualize the set of all possible vectors with a given |~L| and Lz
as a cone. For a given l there are 2l + 1 different allowed m values, so you can
visualize these states as a collection of 2l + 1 cones, as shown in the figure.

In the next section I’ll show how to find the eigenfunctions that go with these
angular momentum eigenvalues. The eigenfunctions are functions of the angular
variables θ and φ, and the standard symbol for them is Y m

l (θ, φ), so we can write

L2 Y m
l = l(l + 1)~2 Y m

l and Lz Y
m
l = m~Y m

l . (6.27)

Oddly, we’ll find that half-integer values of m are inconsistent with the existence
of such functions. But we will find a use for half-integer m values in the following
chapter.

Problem 6.6. Derive equations 6.11 for the commutators of the three angular momen-
tum component operators. (Hint: Use the definitions 6.10 and the basic commutator
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[x, px] = i~ to derive one of the angular momentum commutators, then cyclically per-
mute the indexes to obtain the other two.)

Problem 6.7. Prove that the operators Lx, Ly, Lz, and L2 are Hermitian.

Problem 6.8. Prove that [L2, Lz] = 0, and hence argue that [L2, Lx] = [L2, Ly] = 0.
(Hint: You may wish to use the result of Problem 5.5(b).)

Problem 6.9. Derive the commutator relations in equation 6.15 for [Lz, L+] and
[Lz, L−].

Problem 6.10. Derive equation 6.17, proving that L− is indeed a lowering operator.

Problem 6.11. Prove that [L2, L+] = [L2, L−] = 0, and then use these relations to
prove that if ψ is an eigenfunction of L2, then L+ψ and L−ψ are also eigenfunctions
of L2, with the same eigenvalue as ψ.

Problem 6.12. Derive equation 6.23 for the product L−L+ in terms of L2 and Lz.

Problem 6.13. The operators L+ and L− convert one Lz eigenstate into another, but
(like the harmonic oscillator ladder operators) they do not preserve the normalization
of the states. Designating the eigenstates as Y ml , the correct relations are

L+Y
m
l = ~

√
l(l + 1)−m(m+ 1)Y m+1

l ,

L−Y
m
l = ~

√
l(l + 1)−m(m− 1)Y m−1

l .
(6.28)

Use equations 6.22 and 6.23 to derive these relations, referring to the analogous Prob-
lem 5.9 for additional guidance. Also check that these relations give the expected
results when you apply L+ to the m = l state or L− to the m = −l state.

Problem 6.14. Draw accurately scaled and labeled cone diagrams, similar to Figure
6.3, for visualizing the allowed Lz eigenstates for l = 1 and l = 3.

Problem 6.15. Imagine a diatomic molecule made of two different atoms, such as CO
or NO or HCl. In this problem you will explore the rotational states of this molecule,
neglecting any translational motion, vibrational excitations, or electronic excitations.
Then the configuration of the molecule can be described entirely by the direction of a
vector drawn from the center of one atom to the center of the other, and this direction
can be specified by the usual spherical coordinates θ and φ. In quantum mechanics,
therefore, the wavefunction of this system is a function of these two angles (and no
other variables). Please assume that the molecule’s moment of inertia I, about its
center of mass, is a given constant.

(a) Recall (or look up) the classical formula for the rotational kinetic energy of a rigid
object in terms of its angular momentum and moment of inertia. Use this formula to
write down the Hamiltonian operator of this system. (There is no potential energy.)

(b) Explain why the energy eigenfunctions of this system are the same as the angular
momentum eigenfunctions. What are the corresponding energy eigenvalues? Please
assume that only integer l values are allowed. Draw an energy level diagram, with a
linear vertical scale, showing the lowest four energy levels and their degeneracies.

(c) For carbon monoxide (CO), the difference in energy between the rotational ground
state and the first excited level is approximately 0.00048 eV. What frequency of elec-
tromagnetic radiation should you use to induce a transition from the ground state to
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the first excited level? What frequency should you use to induce a transition from the
first to the second excited level? What part of the electromagnetic spectrum are we
talking about here?

(d) Use this measured energy difference to find the approximate distance between the
C and O nuclei.

6.3 Spherical harmonics

Now that we know the eigenvalues of L2 and Lz, it’s time to figure out the corre-
sponding eigenfunctions. They’re functions of the angles θ and φ (but not of r), so
in order to find them, we need to express each of the angular momentum operators
in terms of spherical coordinates.

Again we start with the definition ~L = ~r × ~p, but this time we write ~p as a
differential operator, −i~∇, and use equation 6.5 to express the gradient in spherical
coordinates:

~L = ~r × ~p = −i~~r ×
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
. (6.29)

When we take the cross product the r̂ term drops out, and the factors of r cancel
in the other two terms. Referring to Figure 6.2 and using the right-hand rule to get
the signs right, we’re left with

~L = −i~
(
φ̂
∂

∂θ
− θ̂ 1

sin θ

∂

∂φ

)
. (6.30)

This is a correct expression for ~L in spherical coordinates, and it’s remarkably
simple, but it’s not what we want! Instead, we want the rectangular components of
~L, expressed in terms of θ and φ. So the next step is to express θ̂ and φ̂ in terms of
the rectangular unit vectors, using equations 6.3. When we do this and gather up
the terms, we obtain

Lx = i~
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (6.31)

Ly = i~
(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
, (6.32)

Lz = −i~ ∂

∂φ
. (6.33)

These are the formulas we need to find the angular momentum eigenfunctions.

We can put the Lz operator to immediate use. As in the previous section,
I’ll denote its eigenvalues as m~ and its eigenfunctions as Y (θ, φ). Then the Lz
eigenvalue equation is

− i~∂ Y
∂φ

= m~Y, (6.34)
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Figure 6.4: Representations of the φ dependence of the Lz eigenfunctions, equation 6.35,
using color hues to indicate complex phases. In each image the x axis points to the right
and the y axis points up, so we are looking “downward” from the positive z direction.

and the solution is
Y (θ, φ) = f(θ) eimφ, (6.35)

where f(θ) is an integration constant as far as φ is concerned, but still an undeter-
mined function of θ. So the φ dependence of any Lz eigenfunction is simply a pure
complex phase factor, which changes with φ at a rate proportional to the quantum
number m. And this is why m must be an integer, as I mentioned at the end of the
previous section. For φ = 0 and φ = 2π are just two names for the same place, so
Y must have the same value at both—but equation 6.35 has this property only if
m is an integer. Figure 6.4 shows how we can visualize the φ dependence of the Lz
eigenfunctions using color hues to represent phases.

We still need to find the θ dependence of the Lz eigenfunctions, specifically for
those that are also eigenfunctions of L2. One way to do this would be to work out
the L2 operator in spherical coordinates and then solve its eigenvalue equation as
a differential equation in terms of θ. A much easier approach, however, is to use
ladder operators. From equations 6.31 and 6.32 it’s just a short step to obtain

L+ = Lx + iLy = ~ eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
, (6.36)

L− = Lx − iLy = ~ e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
. (6.37)

These operators must give zero when they act on the top and bottom rungs, respec-
tively, of an Lz ladder. For the top rung, this condition says

0 = L+Y
l
l =

(
∂

∂θ
+ i cot θ

∂

∂φ

)
Y l
l (θ, φ). (6.38)

If you plug in equation 6.35 for Y , with m = l, you get an ordinary differential
equation for f(θ) that’s easy to solve (see Problem 6.16). The full solution for Y l

l is

Y l
l (θ, φ) ∝ (sin θ)l eilφ, (6.39)

where I’ve omitted a normalization constant that I’ll discuss in a moment. Next, to
find the eigenfunctions with m = l− 1 (one rung down from the top of the ladder),
just apply the lowering operator L− to this expression. Continue on down the ladder
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in the same way—though at this point it’s a lot easier to pick a particular l rather
than trying to work them all out at once. Eventually you’ll come to the bottom
rung, m = −l, whose θ dependence also happens to be (sin θ)l. Of course you
could also have obtained this expression by starting at the bottom rung, solving the
differential equation L−Y

−l
l = 0.

The eigenfunctions Y m
l (θ, φ) are called spherical harmonics. They form a com-

plete basis, in the sense that any function of θ and φ can be expressed as a linear
combination of them. Table 6.1 shows all the spherical harmonics up to l = 3. You
can easily work out others using the ladder operators if you like, or generate them
in Mathematica with the instruction SphericalHarmonicY[l,m,theta,phi]. The
θ dependence of the spherical harmonics can also be expressed in terms of so-called
associated Legendre functions of cos θ, and you can look up those functions if you
ever need them. The normalization constants of the spherical harmonics are defined
by the arbitrary (but natural) condition that when you take the square modulus
and integrate over all directions, you get 1:∫ π

0
sin θ dθ

∫ 2π

0
dφ |Y m

l (θ, φ)|2 = 1. (6.40)

There is still an arbitrary overall phase factor in each Y m
l function; we always take

these phases to be real, but the most common convention inserts some surprising
(though utterly unimportant) minus signs, as you can see in Table 6.1.

The best way to visualize the spherical harmonics is to draw them on the surfaces
of spheres, as shown in Figure 6.5. Please spend some time looking at the patterns—
especially how the number of nodes (black bands) varies as you move horizontally or
vertically from one spherical harmonic to another. Can you predict the appearances
of the l = 4 spherical harmonics?

Even though we’ve now found the eigenfunctions of the L2 operator, I still
haven’t written down the operator itself. You can work out its formula in spher-
ical coordinates either from the definition L2 = L2

x + L2
y + L2

z and equations 6.31
through 6.33, or from one of the tricky formulas for L+L− and L−L+, equations
6.22 and 6.23, along with equations 6.36 and 6.37. Either method takes about a
page of algebra, and when the smoke clears, you obtain

L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (6.41)

I hope this expression looks vaguely familiar to you. In fact, it has exactly the
same angular dependence as the angular terms in equation 6.7 for the Laplacian
operator. This means we can write the kinetic energy operator, −(~2/2m)∇2, in a
pretty simple way in terms of L2. Adding on a central potential energy function
gives us an extremely useful formula for the Hamiltonian:

H = − ~2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+

L2

2mr2
+ V (r). (6.42)
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m l = 0 l = 1 l = 2 l = 3

3 −
√

35
64π sin3 θ e3iφ

2
√

15
32π sin2 θ e2iφ

√
105
32π cos θ sin2 θ e2iφ

1 −
√

3
8π sin θ eiφ −

√
15
8π cos θ sin θ eiφ −

√
21

64π (5 cos2 θ − 1) sin θ eiφ

0
√

1
4π

√
3

4π cos θ
√

5
16π (3 cos2 θ − 1)

√
7

16π (5 cos3 θ − 3 cos θ)

−1
√

3
8π sin θ e−iφ

√
15
8π cos θ sin θ e−iφ

√
21

64π (5 cos2 θ − 1) sin θ e−iφ

−2
√

15
32π sin2 θ e−2iφ

√
105
32π cos θ sin2 θ e−2iφ

−3
√

35
64π sin3 θ e−3iφ

Table 6.1: Formulas for the spherical harmonics Y ml (that is, the eigenfunctions of L2 and
Lz) for l ≤ 3, including normalization constants and some conventional but unimportant
minus signs. Each column is a “quantum ladder” for a given l value, so the ladder operators
L+ and L− convert each function into the one above or below it, respectively (aside from
a change in normalization, given by equations 6.28). Notice that the θ dependence of Y −ml

is the same as that of Y ml .

Because L2 depends on θ and φ but not on r, it is now easy to see that L2 commutes
with H (for central potentials), and therefore we know that L2 and H have a
common eigenbasis. Both H and L2 also commute with Lz, so in fact we can find
a common eigenbasis of all three of these operators. Specifying the eigenvalues of
these three operators will be sufficient to determine the eigenfunctions uniquely
(aside from an overall constant), so we refer to this set of operators as a complete
set of commuting observables. We have already seen that the eigenfunctions of L2

and Lz are the spherical harmonics, Y m
l (θ, φ). Next we turn to the radial portion

of the Hamiltonian and its eigenfunctions.

Problem 6.16. Solve the differential equation 6.38 to obtain formula 6.39 for Y ll (θ, φ).
Then apply the lowering operator to obtain a general formula for Y l−1

l (θ, φ), and use
Table 6.1 to check your results for l = 1, 2, and 3. Don’t worry about normalization
constants.

Problem 6.17. Derive the normalization constants for the l = 0 and l = 1 spherical
harmonics.

Problem 6.18. Derive equation 6.41, using either of the methods described in the
text just above it. (Hint: It’s helpful to write a test function, f(θ, φ), to the right of
each term, so you’ll remember to correctly use the product rule wherever a derivative
acts on a nontrivial product.)

Problem 6.19. After studying Figure 6.5, sketch (using colored pencils or the like)
the expected appearance of each of the l = 4 spherical harmonics. Then check your
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Figure 6.5: Spherical harmonics (that is, eigenfunctions of L2 and Lz) for l ≤ 3, shown
as color-phase density plots on the surfaces of spheres. Unfortunately, only the front half
of each sphere is visible. The z axis points up, the x axis points out of the page, and the
y axis points to the right. Black indicates a function value of zero (that is, a node). The
arrangement is the same as in Table 6.1.

sketches—especially the node locations—against the explicit formulas, obtained from
Mathematica or another method of your choice.

Problem 6.20. Which spherical harmonics are nonzero on the z axis? What is the
physical explanation for your answer?

6.4 The radial equation

Now that we know all about angular momentum, let’s go back to the time-independent
Schrödinger equation, in spherical coordinates, for a particle subject to a potential
energy function that depends only on r. Writing the Hamiltonian in terms of L2 as
in equation 6.42, we obtain for the TISE[

− ~2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+

L2

2mr2
+ V (r)

]
ψ = Eψ. (6.43)
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As explained at the end of the previous section, we can find solutions to this equation
that are also eigenfunctions of L2 and Lz—and the angular dependence of these
solutions is that of the spherical harmonics, Y m

l (θ, φ). More precisely, we can find
solutions that factor into a spherical harmonic times a function of r alone. I’ll call
these r-dependent functions R(r), so we can write

ψ(r, θ, φ) = R(r)Y m
l (θ, φ). (6.44)

Plugging this separable solution into the TISE, replacing L2 with its known eigen-
value, and canceling the factor of Y m

l , we obtain the radial Schrödinger equation,[
− ~2

2mr2

d

dr

(
r2 d

dr

)
+

~2l(l + 1)

2mr2
+ V (r)

]
R(r) = ER(r). (6.45)

The radial Schrödinger equation simplifies somewhat if we make a change of
variables from R(r) to the function

u(r) = rR(r), (6.46)

which is sometimes called the reduced radial wavefunction. Notice that

d

dr

(
r2 d

dr

(
r−1u(r)

))
=

d

dr

(
r2
(
−r−2u(r) + r−1du

dr

))
=

d

dr

(
−u(r) + r

du

dr

)
= −du

dr
+
du

dr
+ r

d2u

dr2

= r
d2u

dr2
. (6.47)

Plugging this simplification into the radial Schrödinger equation and multiplying
through by r, we obtain the reduced radial equation,[

− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ V (r)

]
u(r) = Eu(r). (6.48)

The first term in brackets now looks just like the familiar one-dimensional kinetic
energy operator. The second term, for any fixed l value, is a known function of r,
which we can group with the potential energy to form the effective potential energy
function,

Veff(r) =
~2l(l + 1)

2mr2
+ V (r), (6.49)

just as we often do in classical mechanics problems with central forces. Then the
reduced radial equation becomes simply[

− ~2

2m

d2

dr2
+ Veff(r)

]
u(r) = Eu(r), (6.50)
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which is identical to the one-dimensional TISE but with x replaced by r, ψ replaced
by u, and V replaced by Veff.

Because of this mathematical similarity, we can analyze and solve the reduced
radial equation using all of the techniques that we learned for the one-dimensional
TISE in Chapter 2. We can sketch qualitative graphs of the solutions. In a few
cases we can find exact solutions. And we can solve the equation numerically using
the shooting method or the matrix diagonalization method. The only mathematical
difference is that whereas x normally ranges from −∞ to ∞, negative r values are
not allowed. In fact, u(r) must equal zero at r = 0, as is almost obvious from
the definition u(r) = rR(r). (The only question that requires thought is whether
R(r) can ever be infinite at r = 0, and the answer is “no” in all the examples we’ll
encounter.) There’s also a big difference when we interpret the solutions, because
the full wavefunction is u(r)/r times the applicable spherical harmonic. And we
need to remember that Veff depends on l, so we get to solve the reduced radial
equation separately for l = 0, l = 1, l = 2, and so on.

The l-dependent term in Veff is called the centrifugal term (as it is in classical
mechanics). It’s zero for l = 0, but for l > 0 it creates an effective repulsive force
that becomes infinite as r → 0, pushing the particle out from the origin. (Of course
this “force” is just a useful fiction that we invent so we can pretend that this is a
one-dimensional problem; in three dimensions, we would instead say that assuming
a nonzero angular momentum entails assuming that the particle avoids the origin.)

The spherical infinite square well

As a first example of solving the radial Schrödinger equation, consider the spherical
infinite square well, with V (r) = 0 out to some radius a and V = ∞ beyond that.
This potential is a somewhat reasonable model of the environment of a proton or
neutron inside an atomic nucleus. In what follows I will use natural units in which
~ = m = a = 1.

Inside the well, the effective potential energy is just the centrifugal term, l(l +
1)/(2r2). But we have an infinite and infinitely abrupt potential barrier at r = 1,
and we can treat the boundary condition u = 0 at r = 0 as another such barrier.
I’ve plotted Veff(r) for a few different l values in Figure 6.6(a).

The case l = 0 is mathematically equivalent to an ordinary one-dimensional
infinite square well, so we can immediately write down the energy levels and reduced
wavefunctions:

En =
π2n2

2
, un(r) ∝ sin(nπr), n = 1, 2, 3, . . . (for l = 0). (6.51)

These energy levels are plotted in the leftmost column of Figure 6.6(b). Just remem-
ber that the reduced wavefunctions aren’t the same as the actual wavefunctions; to
obtain the latter, we must divide by r and multiply by the appropriate spherical
harmonic. For l = 0 the spherical harmonic is a mere constant, so the energy
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Figure 6.6: (a) The effective potential energy functions for the spherical infinite square well
for l = 0, 1, 2, and 3. Both axes use natural units in which ~ = m = a = 1. (b) The
resulting low-lying energy levels for l = 0, 1, and 2, plotted on the same vertical scale. Note
that the levels with nonzero l are degenerate, with 2l + 1 possible values of the quantum
number m. There are no degeneracies between different values of l.

eigenfunctions are

ψn(r, θ, φ) ∝ sin(nπr)

r
(for l = 0). (6.52)

Unlike un(r), these functions do not go to zero at the origin; in fact they reach their
maximum values there.

For l > 0 the solutions are not so elementary, but they’re still easy to find using
the technology of Chapter 2. Qualitatively, we can see from Figure 6.6(a) that the
centrifugal term will effectively push the wavefunctions away from the origin and
up against the barrier at r = 1, reducing the wavelength and therefore increasing
the energy, as l increases, for a wavefunction with a given number of radial bumps.
Near the origin, any l > 0 state will have a classically forbidden region at small
r values, where u(r) will have exponential-like behavior (with a graph that curves
away from, rather than toward, the r axis). In fact one can show that u(r) goes to
zero sufficiently rapidly as r → 0 that even when we divide by r to obtain ψ, we
find that the wavefunction goes to zero at the origin. A quantum particle with well-
defined energy and nonzero angular momentum will never be found at the origin.
This behavior is the quantum counterpart to the fact that a classical particle with
a given energy and nonzero angular momentum, subject to a central force, cannot
come closer to the origin than a certain minimum distance.

To find the l > 0 energies and wavefunctions quantitatively, we can use either
the shooting method or the matrix diagonalization method. A few of the resulting
energies are plotted in Figure 6.6(b). As expected, the energies increase as l in-
creases. As indicated in the figure, the energy levels with nonzero l are degenerate,
but there are no degeneracies between levels with different values of l.
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In this and other spherically symmetric problems, it is customary among physi-
cists (and chemists) to refer to the l = 0 states as s waves, the l = 1 states as
p waves, the l = 2 states as d waves, and the l = 3 states as f waves. (Still higher-l
states are labeled alphabetically starting with g.) The original meanings of these
letters are of only historical interest, but we’re stuck with them, so please learn
them if you haven’t already.

Problem 6.21. Make qualitatively accurate sketches of u(r) for each of the three l = 1
levels shown in Figure 6.6. Use the same horizontal scale as for the graph of Veff(r).

Problem 6.22. Use colored pencils (or something similar) to make qualitatively accu-
rate sketches of several of the wavefunctions for the spherical infinite square well. Start
with the three lowest-energy l = 0 wavefunctions, then sketch the six lowest-energy
l = 1 wavefunctions (three at each of the two lowest levels, corresponding to three
different Lz eigenvalues). Rather than trying to make three-dimensional sketches, it
is probably better to sketch two-dimensional slices, say in the xz plane, being sure to
label the z direction and to make notes to indicate what changes in the third dimension.

Problem 6.23. Use either the shooting method or the matrix diagonalization method
to determine all of the l > 0 energy levels shown in Figure 6.6(b), to at least four
significant figures, and to plot the reduced wavefunctions.

Problem 6.24. Consider a particle of mass m confined by an attractive central po-
tential in three dimensions that is directly proportional to the distance from the origin:
V = αr, for some constant α. Plot the effective potential energy functions for l = 0,
1, and 2, then use either the shooting method or the matrix diagonalization method
to find the low-lying energies and wavefunctions for these l values. Use units in which
~2/m = 1 and α = 1. Plot or sketch an accurate energy-level diagram showing a few
of the lowest levels for each of these l values (separating the different l values hori-
zontally). Also plot both the reduced radial wavefunctions u(r) and the actual radial
wavefunctions R(r) for a selection of the energy levels.

Problem 6.25. It is sometimes reasonable to model the attractive force between
quarks (due to the so-called “strong interaction”) as constant, so the potential en-
ergy is linear. The light quarks that make up protons and neutrons are relativistic, but
the c and b quarks are heavy enough for nonrelativistic quantum mechanics to apply to
their bound states with reasonable accuracy. (Even though these quarks are unstable,
they live long enough to form well-defined bound states.) Figure 6.7 shows a published
energy level diagram for “charmonium,” the system of a c quark and c antiquark. In
the diagram the letters S, P, and D correspond to l = 0, 1, and 2, respectively. The
subscripts and superscripts refer to different spin states, which I’d like you to ignore
for the purpose of this problem, so I’ve added broad gray lines to the diagram to guide
your eye to “average” over the various spin states.

(a) Compare the qualitative features of the charmonium energy level diagram to the
energy levels that you found for a linear potential in the previous problem. Is the linear
potential a reasonable model for this system? Explain in some detail.

(b) Use the two lowest l = 0 levels to make a quantitative estimate of the c quark rest
energy and the strength α of the (approximately) linear potential. Express your answers
in GeV and in GeV/fm, respectively. Hints: First compare the spacing between these
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Figure 6.7: Measured energy levels of the “charmonium” system, consisting of a c quark
and an anti-c quark. From S. Godfrey and S. L. Olsen, “The Exotic XYZ Charmonium-Like
Mesons,” Ann. Rev. Nucl. Part. Sci. 58, 51–71 (2008), arXiv:0801.3867 [hep-ph]. Note that
although the vertical axis is labeld “mass,” it is actually energy, including the rest energies,
mc2, of the quark and antiquark. The gray horizontal bands in the diagram are not from
the original paper; I have drawn them to represent rough averages over the various spin
states.

two levels to what you found for the two lowest l = 0 levels in the previous problem, and
use this comparison to determine where zero on the charmonium energy scale “should”
be; assume that any remaining energy comes from the rest energies of the two particles.
Then determine what one unit of energy, in the previous problem, is in terms of ~, m,
and α. Note that for a system of two moving particles, the mass m that enters the
Schrödinger equation is actually the reduced mass, which in this case is half the actual
mass of either of the particles (see the discussion on page 131). Because m is now
known, you can use the values in the diagram to determine α.

6.5 The hydrogen atom

The most important example of a spherically symmetric potential energy is the
Coulomb potential energy,

V (r) =
1

4πε0

q1q2

r
, (6.53)

between two point charges q1 and q2 separated by a distance r. If one of the two
charges is a heavy atomic nucleus and the other is a much lighter electron, then
to a good approximation we can treat the nucleus as a fixed center of force and
apply quantum mechanics only to the electron’s motion. (See page 131 for a brief
discussion of why this approximation works.) In terms of the fundamental unit of
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charge,
e = 1.602× 10−19 C, (6.54)

the electron’s charge is −e and the nuclear charge is Ze, where Z is the number
of protons. For now we’ll consider only the hydrogen atom, with Z = 1, so the
potential energy is

V (r) = − e2

4πε0

1

r
. (6.55)

Given this potential energy function, we can immediately write down the effec-
tive potential energy,

Veff(r) =
~2l(l + 1)

2mer2
− e2

4πε0

1

r
, (6.56)

where me is the electron’s mass, and then use this Veff in the (reduced) radial
Schrödinger equation, [

− ~2

2me

d2

dr2
+ Veff(r)

]
u(r) = Eu(r). (6.57)

Atomic units

It looks like the TISE for the hydrogen atom involves four different constants: e,
ε0, me, and ~. But they occur in only two different combinations,

e2

4πε0
and

~2

me
, (6.58)

and you can see from equation 6.56 that these combinations have dimensions of
energy times distance and energy times distance squared, respectively. We can
therefore divide the latter by the former to obtain a natural unit of distance,

a0 =
~2/me

e2/(4πε0)
= 0.529× 10−10 m, (6.59)

called the Bohr radius (after Danish physicist Niels Bohr, 1885–1962). And then
we can divide e2/(4πε0) by a0 to obtain a natural unit of energy,

Eh =
e2

4πε0a0
=

~2

mea2
0

=
( e2

4πε0

)2me

~2
= 27.2 eV, (6.60)

called the Hartree energy (after British physicist Douglas Hartree, 1897–1958, who
made important contributions to theoretical and computational atomic physics).

These natural units are called atomic units, often abbreviated a.u. (not to be
confused with AU for astronomical units!). Actually, the atomic unit system sets
all four of the constants me, ~, e, and 1/(4πε0) equal to 1.3

3Occasionally you might encounter a competing atomic unit system in which factors of 2 are
absorbed into some of the units so the energy unit comes out half as large, 13.6 eV. That energy
unit is called the Rydberg energy, and you can distinguish the two systems by saying Hartree atomic
units or Rydberg atomic units. In this book I will use only Hartree atomic units.
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With the understanding that all distances are measured in units of a0 and all
energies are measured in units of Eh, the radial Schrödinger equation becomes[

−1

2

d2

dr2
+
l(l + 1)

2r2
− 1

r

]
u(r) = Eu(r). (6.61)

Problem 6.26. Check the numerical values of the Bohr radius and Hartree energy,
equations 6.59 and 6.60.

Problem 6.27. Find the correct expressions, and the numerical values in SI units, of
the atomic units of time and velocity. Comment briefly on the results.

Qualitative solutions

Figure 6.8 shows the effective potential energy (equation 6.56) for l = 0, 1, and 2. As
you can see, the attractive Coulomb potential always dominates at large r, but when
l > 0 the repulsive centrifugal term sends Veff to +∞ as r → 0. The competition
between the two terms results in a local minimum, which you can easily show to
lie at r = l(l + 1), at which point Veff = −1/(2l(l + 1)) (check this on the graph!).
Any solutions to the Schrödinger equation must have energies at least a little above
this minimum, that is, above −1/4 for l = 1, above −1/12 for l = 2, and so on.
Meanwhile, in order for the electron to be bound to the nucleus (that is, in order
to have a hydrogen atom rather than an ion), its energy must be negative.

With these limits in mind, it’s an instructive exercise to simply guess some en-
ergy levels, draw them on the graph to determine the associated classical turning
points, and then sketch tentative graphs of the one-bump wavefunction, the two-
bump wavefunction, and so on, just as you would do if this were a one-dimensional
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Figure 6.8: The effective potential energy for the electron in a hydrogen atom, for l = 0, 1,
and 2. Both distance and energy are measured in atomic units.
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problem. There is a separate set of solutions for each l value, and these “wavefunc-
tions” will actually be u(r), which you have to divide by r to obtain R(r). The
widths of the “bumps” will grow as you go outward (away from the minimum of
Veff), and the centrifugal term pushes the wavefunctions farther and farther out as
l increases. It’s not obvious what happens near the origin in the case l = 0, but
it’s reasonable to guess that even then the reduced wavefunction must go to zero as
r → 0, and this guess turns out to be correct.

One other thing that isn’t obvious is how many bound states this system has
for each l value. On one hand the potential wells for l > 0 don’t look especially
deep, so you might guess that there aren’t very many bound states. But on the
other hand, for values of E that are only slightly negative there is a great deal of
horizontal space in which to fit plenty of bumps. It turns out that this second effect
dominates, so the number of bound states is actually infinite for each l value, no
matter how large.

Problem 6.28. Working from Figure 6.8, sketch a copy of the Veff graph for l = 1,
expanding the vertical scale somewhat. Guess three reasonable values for the three
lowest energies for this l value, and show these three levels on the graph. Then, using the
same horizontal scale, draw qualitatively reasonable sketches of the three corresponding
reduced radial wavefunctions. Label the important features of your sketches.

Numerical solutions

The matrix diagonalization method isn’t well suited to the Coulomb potential, be-
cause the wavefunctions extend out to rather large r values, forcing you to use a
wide “box” to enclose them, and for such a wide box you need to use a lot of sine
waves (large nMax) to accurately fit the short-wavelength, small-r portions of the
wavefunctions. You can still get a few of the lowest-energy states, but it’s compu-
tationally inefficient.

The shooting method, on the other hand, works just fine. For this purpose it’s
a little easier to rewrite the radial equation with d2u/dr2 by itself on the left:

d2u

dr2
= −2

(
E − l(l + 1)

2r2
+

1

r

)
u(r). (6.62)

Because of the r’s in the denominators, you need to start the integration a little
away from the origin, say at rmin = 0.0001. For l = 0 the functions u(r) turn
out to be linear near the origin, so it works well to use the boundary conditions
u(rmin) = rmin and u′(rmin) = 1. For l > 0 the functions u(r) die out more rapidly
near the origin, so it’s best to set u(rmin) = 0 and u′(rmin) = rmin (or any other
small value). You’ll find that you need to go out to surprisingly large maximum
values of r.

You probably won’t be surprised to learn that the energy eigenvalues follow a
simple pattern. For l = 0, still using atomic units, they are −1/2, −1/8, −1/18,
−1/32, and so on, that is, −1/(2n2), where n = 1, 2, 3, . . . is the number of bumps.
Then an amazing (though perhaps familiar) thing happens for l = 1: The energy
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values turn out to be exactly the same, except that the list omits −1/2 and instead
starts at −1/8, so the one-bump l = 1 wavefunction is degenerate with the two-
bump l = 0 wavefunction, while the two-bump l = 1 wavefunction is degenerate
with the three-bump l = 0 wavefunction, and so on. And the list of energies for
l = 2 is similarly degenerate with the others, but starting with −1/18. Please recall
that there is no such degeneracy for the spherical infinite well. The degeneracy
seems like a total coincidence! Of course it’s not a coincidence, but the reason for
it is rather difficult to understand so I won’t go into it here.4

Because of this degeneracy, it’s conventional to define the quantum number n
so that the energy formula −1/(2n2) works even for l > 0. In conventional units,

En = − Eh
2n2

= −13.6 eV

n2
. (6.63)

This definition of n is confusing, because it means (for instance) that the wavefunc-
tion with l = 1 and n = 2 has only one bump (in the r direction). In general, the
number of bumps in u(r) equals n − l. Figure 6.9 shows an energy-level diagram
with the values of l and n (but not the number of bumps) labeled. Of course it’s
also important to remember that for any given n and l values, there are still 2l+ 1
degenerate states with different values of the quantum number m (also called ml

when a plain m would be ambiguous). So in Figure 6.9, each l = 1 state is actually
triply degenerate, each l = 2 state is five-fold degenerate, and so on.

Problem 6.29. Use the shooting method to verify the energies, and to plot the reduced
radial wavefunctions, for the following states of a hydrogen atom: (a) the three lowest-
energy states for l = 0; (b) the two lowest-energy states for l = 1; and (c) the lowest-
energy state for l = 2. Use atomic units.

Analytic solutions

As with the one-dimensional harmonic oscillator, the existence of a simple formula
for the energy eigenvalues is a sure sign that it must be possible to solve the TISE
analytically. For the full analytic solution (via the power-series method) you can
look in any traditional quantum mechanics textbook.5 Here I’ll focus on the general
form of the solutions and the specific formulas for a few of the simplest ones.

One key observation is that in the limit of large r, both V (r) and the centrifugal
term go to zero so the radial equation becomes simply

d2u

dr2
≈ −2E u(r) =

1

n2
u(r) (for r � 1), (6.64)

where in the last expression I’ve used the formula E = −1/(2n2) that we inferred
from the pattern of the numerical solutions. The solutions to this differential equa-

4The “coincidental” degeneracy of the quantum Coulomb problem is related to the fact that
bound orbits are closed in the classical Coulomb problem. If you’d like to learn more, look up the
so-called Laplace-Runge-Lenz vector.

5For instance, Griffiths, Section 4.2.
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Figure 6.9: Energy levels of the hydrogen atom. Note the remarkable degeneracies between
states with different l values. Also note that the l > 0 states have additional degeneracies,
not shown here, due to the multiple allowed values of Lz.

tion are exponential functions, er/n and e−r/n, but the former isn’t normalizable so
we’re left with the latter.

The (reduced) wavefunctions must also go to zero at r = 0, and most of them
have multiple bumps and nodes. The simplest functions that have these properties
are polynomial functions of r, so it’s reasonable (and correct) to guess that the
general formula for u(r) is a polynomial in r times e−r/n. There can be no constant
terms in these polynomials, because they must go to zero at the origin.

The next thing to notice is that the l = 0 reduced wavefunctions are approxi-
mately linear near the origin (as you can see from the numerical solutions), so in
these cases the polynomial must have a linear r1 term. For the ground state this
term is sufficient, while each additional node requires a term in the polynomial with
the next-higher power of r.

For l = 1 the wavefunctions are concave-up near the origin, so a reasonable
guess is that u(r) begins with an r2 term, again adding a term with the next-higher
power of r for each additional node. For l = 2, the u(r) functions begin with r3,
and so on. This pattern is actually easier to remember for the unreduced radial
wavefunctions, R(r) = u(r)/r, which begin with the power rl.

Of course you can verify this pattern, at least for the one-bump wavefunctions,
by simply plugging the formula into the radial Schrödinger equation and showing
that it works. For the two-bump wavefunctions, you can make up a letter for the
coefficient of the next polynomial term, plug in the formula, and solve for the value
of the coefficient that works. Working out the polynomials for wavefunctions with



6.5. The hydrogen atom 185

R10 = 2 e−r

R20 = 1√
2

(1− 1
2r) e

−r/2

R21 = 1√
24
r e−r/2

R30 = 2√
27

(1− 2
3r + 2

27r
2) e−r/3

R31 = 8
27
√

6
(1− 1

6r) r e
−r/3

R32 = 4
81
√

30
r2 e−r/3

R40 = 1
4(1− 3

4r + 1
8r

2 − 1
192r

3) e−r/4

R41 =
√

5
16
√

3
(1− 1

4r + 1
80r

2) r e−r/4

R42 = 1
64
√

5
(1− 1

12r) r
2 e−r/4

R43 = 1
768
√

35
r3 e−r/4

Table 6.2: Radial wavefunctions Rnl(r) for the hydrogen atom, in atomic units. To translate
these expressions into conventional units, replace r with r/a0 wherever it appears, and

multiply each expression by a
−3/2
0 , where a0 is the Bohr radius, equation 6.59.

more than two bumps is rather tedious, so at that point you’re probably better
off just plowing through the full power-series solution, which leads to a recursion
relation for the polynomial coefficients.

These polynomials have names, by the way: After factoring out the overall
powers of r, the remaining polynomials (suitably normalized) are called associated
Laguerre polynomials. They’re denoted in general by the letter L and labeled by
a pair of integers, one written as a subscript and the other written as a super-
script. But awkwardly, for our purposes, the polynomial that appears in Rnl(r) is
L2l+1
n−l−1(2r

n ). The full formula for Rnl(r), normalized and everything, is6

Rnl(r) =

√
(n− l − 1)!

(n+ l)!

2

n2

(2r

n

)l
L2l+1
n−l−1(2r

n ) e−r/n. (6.65)

Traditionally one would use this formula, together with a table of the associated
Laguerre polynomials, to obtain formulas for the hydrogen radial wavefunctions.
Nowadays it’s easier to use Mathematica, in which you can invoke the needed poly-
nomials as LaguerreL[n-l-1,2l+1,2r/n]. I often find it most convenient, though,
to simply work from an explicit table of the radial wavefunctions, so I’ve provided
one (going up to n = 4) in Table 6.2.

6There are competing conventions for the normalization of the associated Laguerre polynomials,
so the formula for the normalized Rnl may appear different in other textbooks. Here I’m following
the normalization convention used by Mathematica.
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You can find a marvelous web app for visualizing hydrogen wavefunctions at
http://falstad.com/qmatom/.

Problem 6.30. Look up the exact formula for the n = 3, l = 0 hydrogen radial
wavefunction in Table 6.2, and (a) plot it using atomic units. (b) Also plot the cor-
responding reduced radial wavefunction and check that this plot agrees (aside from
normalization) with the one you made in Problem 6.29. (c) Show (either by hand or
using Mathematica) that this exact function is normalized.

Problem 6.31. Look up the formula for the n = 3, l = 1 hydrogen radial wavefunction
in Table 6.2, and then write down the corresponding reduced function u(r). You may
omit the overall normalization constant. Check explicitly, by hand, that this u(r)
satisfies the reduced radial Schrödinger equation.

Problem 6.32. Use Mathematica to produce density plots showing a slice, in the xz
plane (with x horizontal and z vertical), through the probability density function for
each of the n = 2 hydrogen wavefunctions (there are four of them). Note that you’ll
need to express θ in terms of x and z (and set y = 0 for your slice). Then use colored
pencils (or something similar) to sketch three-dimensional “cloud” diagrams of each of
these wavefunctions, using colors to represent phases as usual. It’s difficult to draw the
wavefunctions accurately in this way, but do the best you can. Take the z axis to point
upward, with the viewer’s location somewhat above the xy plane for perspective.

Problem 6.33. Repeat the previous problem for the n = 3 hydrogen wavefunctions.

6.6 The helium atom

On a scale of 0 to 10 in difficulty, the infinite square well is a 1. The one-dimensional
harmonic oscillator is a 3. The hydrogen atom is an 8. And the helium atom is
a 99.

But let’s take a crack at it anyway, and see how far we can get.

I’ll attack the problem by starting with the known solutions for the hydrogen
atom, then introducing three changes, one at a time:

1. Increase the nuclear charge from e to 2e.

2. Introduce a second electron that’s also attracted to the nucleus, but neglect
the repulsive force between the two electrons.

3. Finally, try to calculate the effects of the electron-electron repulsion.

Increasing the nuclear charge

For a single electron in the vicinity of a nucleus containing Z protons, the potential
energy function becomes

V (r) = − Ze
2

4πε0

1

r
. (6.66)

http://falstad.com/qmatom/
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Everything else in the Schrödinger equation is the same as for hydrogen, so there’s
no need to solve it from scratch; we can simply modify the hydrogen solutions by
slipping in a factor of Z wherever e2 appears. So the Bohr radius,

a0 =
4πε0~2

e2me
= 0.529× 10−10 m, (6.67)

gets divided by Z, meaning that all the wavefunctions get pulled in closer to the
nucleus by a factor of Z. Meanwhile the hydrogen energy levels,

En = −1

2

( e2

4πε0

)2me

~2

1

n2
= −13.6 eV

n2
, (6.68)

get multiplied by a factor of Z2, meaning that all the levels become much more
negative as Z increases.

We could simply modify our natural unit system to absorb these factors of Z,
but nobody does that. We will continue to use atomic units, with distances in units
of a0 and energies in units of Eh = 27.2 eV. In the formulas for the wavefunctions
(see Table 6.2), we’ll need to replace every a0 with a0/Z to transition from hydrogen
to a heavier one-electron ion.

Helium, of course, has Z = 2, so for the He+ ion, with only one electron, the
wavefunctions are half as large as for hydrogen and the energies are four times as
negative.

Adding a second electron

Now imagine that we start with a He+ ion and bring in a second electron, but
magically turn off the repulsive force between the two electrons. Then each of the
two electrons behaves more or less independently, feeling the same force from the
nucleus and having the same energy levels and definite-energy wavefunctions.

I say “more or less,” because electrons are identical fermions, so even if they
don’t exert any forces on each other, their combined wavefunction still needs to be
antisymmetric under the hypothetical operation of interchanging them with each
other. However, this combined wavefunction also includes their spin states. As I’ll
explain in Section 7.4, the spin state alone, for a system of two spin-1/2 particles,
can be either symmetric or antisymmetric. This means that the position-dependent
part of the wavefunction can be, respectively, either antisymmetric or symmetric
under interchange. The bottom line is that the antisymmetrization requirement
doesn’t affect the number of available spatial wavefunctions.

Moreover, as you’ll see in a moment, all we’re really looking for here is a set of
orthonormal basis functions to use in our subsequent calculations. For this purpose
we don’t even need to use symmetric or antisymmetric wavefunctions; we can simply
multiply a wavefunction for electron 1 by a wavefunction for electron 2. Our basis,
therefore, looks something like this:

ψ100(~r1)ψ100(~r2), ψ100(~r1)ψ200(~r2), ψ200(~r1)ψ100(~r2), ψ100(~r1)ψ210(~r2), . . . , (6.69)
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where the subscripts are the quantum numbers n, l, and m, respectively. (Remem-
ber that these ψ functions are all “squeezed” by a factor of 2 compared to those
for hydrogen, as discussed above.) Still ignoring the repulsion between the two
electrons, the energies of these wavefunctions are, in atomic units,

En1,n2 = − 2

n2
1

− 2

n2
2

= −4, −2.5, −2.5, −2.5, . . . , (6.70)

where n1 and n2 are the principal quantum numbers associated with ~r1 and ~r2,
respectively. Note that, as with hydrogen, the difference in an electron’s energy
between n = 1 and n = 2 is greater than the difference between n = 2 and n =∞;
this means that if both electrons are in excited states, the atom has enough energy
to ionize itself, ejecting one electron while the other drops to the ground state.

Electron-electron repulsion

The Hamiltonian for the hypothetical system I’ve just described, with two electrons
but no repulsion between them, is (in atomic units)

H0 = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
, (6.71)

where ∇1 is the ∇ operator with derivatives taken with respect to r1, and similarly
for ∇2. To put in the electrostatic repulsion between the two electrons, we add one
more term to the Hamiltonian:

∆V = +
1

|~r2 − ~r1|
. (6.72)

This simple-looking addition makes it impossible to find exact formulas for the
eigenfunctions and eigenvalues. My approach, therefore, will be to construct the
Hamiltonian matrix (or at least a significant part of it) in the basis of “unperturbed”
two-particle wavefunctions described above, and then diagonalize this matrix to
obtain the new energy levels and their associated eigenfunctions.7

Notice that the basis functions (6.69) are already eigenfunctions of H0, with the
eigenvalues listed in equation 6.70. This means that the H0 matrix is diagonal, with
entries equal to the H0 eigenvalues. Our only task, then, is to evaluate the matrix
elements of ∆V , so we can add this matrix onto H0.

A typical matrix element of ∆V looks like this:∫
d3r1

∫
d3r2 ψ

∗
n1l1m1

(~r1)ψ∗n2l2m2
(~r2)

1

|~r2 − ~r1|
ψn3l3m3(~r1)ψn4l4m4(~r2). (6.73)

Yep, it’s a six -dimensional integral. Unfortunately, you can’t just type such an
expression into Mathematica and tell it to NIntegrate. We’ll have to do at least
some of the integrals by hand.

7The rest of this section is based on R. C. Massé and T. G. Walker, “Accurate energies of
the He atom with undergraduate quantum mechanics,” Am. J. Phys. 83 (8), 730–732 (2015),
https://doi.org/10.1119/1.4921821.

https://doi.org/10.1119/1.4921821
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Figure 6.10: Coordinates for carrying out the integrals over φ2 and θ2 in equation 6.73.

I’ll simplify the problem enormously by restricting my attention to the l = 0
matrix elements. These are sufficient to obtain the helium states that have zero
orbital angular momentum, including the ground state, with pretty good accuracy.
(There are sophisticated tricks, involving spherical harmonics and angular momen-
tum algebra, for handling the higher-l states.) Each of the l = 0 wavefunctions
consists of a radial wavefunction, Rnl(r), multiplied by the trivial spherical har-
monic Y 0

0 = 1/
√

4π. The only angular dependence in the integrand is then in ∆V
itself, and this we can handle.

Taking ~r1 to be temporarily fixed, we orient the ~r2 coordinates with the z2 axis
pointing along ~r1 (see Figure 6.10). Then the integrand is independent of φ2, so the
φ2 integral gives a trivial factor of 2π. The θ2 integral is nontrivial, but evaluates
to a delightfully simple result:∫ π

0

sin θ2

|~r2 − ~r1|
dθ2 =

∫ π

0

sin θ2√
r2

1 + r2
2 − 2r1r2 cos θ2

dθ2

=
1

r1r2

[√
r2

1 + r2
2 − 2r1r2 cosπ −

√
r2

1 + r2
2 − 2r1r2 cos 0

]
=

1

r1r2

[
(r1 + r2)− |r1 − r2|

]
=

2

r>
, (6.74)

where r> is the greater of r1 and r2. (The sin θ2 in the numerator of the integrand
comes from the measure of the integral in spherical coordinates.)

Now let’s do some mental cleanup. We can combine the 2 in the numerator
of equation 6.74 with the 2π from the φ2 integral to cancel two of the factors of
1/
√

4π from the spherical harmonics. The θ1 and φ1 integrals give a trivial factor
of 4π to cancel the other two spherical harmonics. The measures of the integrals
in spherical coordinates also contain two factors of r1 and two factors of r2, but
we can absorb these into the radial wavefunctions to obtain the reduced radial
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wavefunctions, unl(r). Our generic l1 = l2 = 0 matrix element is therefore

∆Vn1n2n3n4 =

∫
dr1

∫
dr2 un10(r1)un20(r2)

1

r>
un30(r1)un40(r2). (6.75)

We’ve reduced a six-dimensional integral to a two-dimensional integral. What’s
more, this two-dimensional integral can be done either analytically or numerically.

The paper cited in footnote 7 provides some Mathematica code to evaluate these
matrix elements and then construct a truncated Hamiltonian matrix from just the
following basis states (listing n1 and n2, respectively, for each):

1, 1 1, 2 2, 1 1, 3 3, 1 1, 4 4, 1 (6.76)

(Notice that at least one of the electrons is always in the ground state, so none
of these states have enough energy to self-ionize.) When we diagonalize this 7 × 7
matrix, we obtain for the three lowest eigenvalues, still in atomic units, −2.841,
−2.171, and −2.137. For comparison, the experimentally measured energies of the
three lowest-energy states of helium are −2.903, −2.175, and −2.146. So all of our
values are a little too high, but we’re off by only 2.1% for the ground state, and
0.2% and 0.4%, respectively, for the excited states.

The eigenvectors associated with these three lowest eigenvalues are (to three
decimal places) 

0.954
−0.198
−0.198
−0.068
−0.068
−0.041
−0.041


,



0
0.620
−0.620
−0.335

0.335
−0.063

0.063


,



0.116
0.469
0.469
−0.521
−0.521
−0.047
−0.047


, (6.77)

where I’ve listed the components in the same order as the basis states (6.76). No-
tice that the first and third eigenstates are symmetric under interchange of the two
particles, while the second is antisymmetric. Mentally squaring the vector compo-
nents, we see that the ground state overlaps the 1,1 basis state by about 90%, but
includes about 4% each of the 1,2 and 2,1 states, plus smaller admixtures of the
higher-energy basis states. Meanwhile, electron-electron repulsion splits the degen-
eracy of the two lowest excited states, with the antisymmetric state having a lower
energy because it puts the two electrons farther apart on average. About 77% of
this antisymmetric state comes from the 1,2 and 2,1 states, with most of the rest
coming from 1,3 and 3,1. The symmetric excited state actually contains more of
1,3 and 3,1 than it does of 1,2 and 2,1. The true energy eigenstates would also
contain small admixtures of l > 0 states (creating angular correlations between the
electrons), and of positive-energy “continuum” states.

As we’ll see in the following chapter, the symmetric and antisymmetric states of
helium have different spin configurations. The ground state and the other spatially
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symmetric states are called parahelium, while the spatially antisymmetric states
are called orthohelium. You can find a diagram of the energy level structure in
Introduction to Quantum Mechanics by Griffiths, or at http://hyperphysics.

phy-astr.gsu.edu/hbase/quantum/helium.html.

Problem 6.34. In this problem you will try to get a feel for the approximate size of
the electron-electron interaction energy in a helium atom. Please express your answers
in atomic units.

(a) Calculate the average value of r (that is, the average distance from the nucleus) for
an electron in the ground state of a hydrogen atom.

(a) Repeat part (a) for an electron in the ground state of a He+ ion. (Don’t start over;
just modify your previous answer and justify the modification.)

(a) Given your answer to part (b), what would be a reasonable guess for the average
distance between the two electrons in the ground state of neutral helium? (Explain
your answer.)

(a) Use your answer to part (c) to estimate the average energy of repulsion between
the two electrons. Compare to the actual difference between the ground-state energy
of helium and what the energy would be without electron-electron repulsion.

Problem 6.35. Use either Table 6.2 or equation 6.65 to obtain explicit formulas for
each of the seven two-particle helium basis states listed in 6.76. Be sure to reduce
the horizontal scale by a factor of 2 to account for the doubled nuclear charge, and
adjust the normalization constants accordingly. Check the normalizations. Make some
plots (density, contour, or surface) of these functions, showing how they depend on r1

and r2. Also plot the symmetric and antisymmetric linear combinations of the (1,2)
and (2,1) wavefunctions. Finally, plot the combinations defined by each of the three
eigenvectors listed in 6.77. Comment on the effects of inter-electron repulsion on these
three lowest-energy wavefunctions.

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/helium.html
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/helium.html


Chapter 7

Spin

Chapter 6 treated the angular momentum associated with a particle’s motion through
space—often called orbital angular momentum. But a particle can also have inter-
nal angular momentum, called spin, which contributes just as legitimately to its
total angular momentum. This chapter is all about spin.

To distinguish spin angular momentum from orbital angular momentum, we use
the symbol S in place of L. So we have component operators Sx, Sy, and Sz, which
we now postulate to obey the commutation relations

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy, (7.1)

in analogy to equation 6.11. From these operators we then define a squared magni-
tude operator S2, along with raising and lowering operators S+ and S−, precisely
in analogy to what we did with L in Section 6.2. Therefore it follows that every
algebraic relation in Section 6.2 is still valid if we change every L to an S. We write
the eigenvalues of S2 as s(s+ 1)~2, replacing the symbol l with s for spin. We still
write the eigenvalues of Sz as m~, or as ms~ if there is a risk of confusion with other
m symbols.

With spin, however, we can no longer argue that half-integer values of s are pro-
hibited by the requirement that the wavefunction be single-valued (see page 171).
That’s because there isn’t any spatial wavefunction that goes with spin angular
momentum—or at least there needn’t be. Sometimes we can look inside a particle
and see how its spin is due to the relative motion of its constituents. But nobody
has ever managed to look inside an electron or a neutrino or a quark, and we’re
pretty confident that these particles’ spins are not due to internal motions of con-
stituents, because they all have s = 1/2, which wouldn’t be allowed for orbital
angular momentum.

The allowed values of s, therefore, are 0, 1/2, 1, 3/2, and so on, with the half-
integer values fully allowed. The allowed values of ms, according to the analysis of
Section 6.2, run from −s to s in steps of 1.

Even in those cases where spin is due to the motion of constituent particles,
there’s often no need to keep track of those particles’ relative motions through

192
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space. It’s much easier to just treat spin states algebraically—and when there are
no constituents, an algebraic treatment is our only choice. In this chapter I’ll show
how to express all of the algebra in terms of finite-dimensional vectors (called spinors
in this case) and matrices.

Because the case s = 1/2 is so common among the fundamental particles, and
because it is the simplest possible case (other than the trivial s = 0), with just two
rungs on the Sz “ladder,” we will focus on this case in detail as we begin our study
of spin.

7.1 Spin 1/2

If we know that a particle has s = 1/2 (“spin 1/2” for short), then the magnitude
of its spin angular momentum vector is fixed at

|~S| =
√
s(s+ 1) ~ =

√
3
4 ~ ≈ 0.87 ~. (7.2)

On the other hand, any particular component of its spin, such as the z component,
has two possible values:

Sz = m~ = 1
2~ or −1

2~. (7.3)

Figure 7.1 shows a “cone diagram” for visualizing these two Sz eigenstates. As
usual, these are states in which the x and y components of the angular momentum
are undefined.

Spinors and spin matrices

The Sz eigenstates must form a complete basis, and since there are just two of them,
we can represent all of the states of this system using a vector space with just two
dimensions. I will use the symbol χ (Greek chi) for a generic two-dimensional

Figure 7.1: We can visualize each Sz eigenstate as a cone made of all vectors with a given
|~S| and Sz. For a particle with s = 1/2, these values are |~S| =

√
3/4 ~ and Sz = ±(1/2)~.

When a particle is in one of these states it does not have a well-defined value of Sx or Sy.
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“spinor” that lives in this space. We conventionally stick with the Sz eigenstates as
our basis, with the conventional assignments

χ+ =

(
1
0

)
, χ− =

(
0
1

)
, (7.4)

where + and − are abbreviations for the m values +1/2 and −1/2, and I’ve written
them as superscripts for consistency with the notation Y m

l . Using this basis, we
can immediately write down the 2× 2 matrices that represent Sz and S2, which are
diagonal since they have these spinors as eigenspinors:

Sz =
~
2

(
1 0
0 −1

)
, S2 =

3~2

4

(
1 0
0 1

)
. (7.5)

(Check that these matrices give the correct results when they act on χ+ and χ−.)

The spin operators and eigenspinors for directions other than z are more inter-
esting. To find them, we can start with the raising and lowering operators—and to
find those, we can use equations 6.28, which I’ll rewrite here using spin notation:

S+χ
m
s = ~

√
s(s+ 1)−m(m+ 1)χm+1

s ,

S−χ
m
s = ~

√
s(s+ 1)−m(m− 1)χm−1

s .
(7.6)

Here χms is a generic Sz eigenspinor, for any value of s. In the special case s = 1/2,
these equations reduce to

S+χ
− = ~χ+, S−χ

+ = ~χ−, S+χ
+ = S−χ

− = 0. (7.7)

These four matrix equations, each of which is really two ordinary equations, suffice
to determine the eight elements of the raising and lowering matrices:

S+ = ~
(

0 1
0 0

)
, S− = ~

(
0 0
1 0

)
. (7.8)

But S+ = Sx + iSy and S− = Sx − iSy, so

Sx =
1

2
(S+ + S−) =

~
2

(
0 1
1 0

)
, Sy =

1

2i
(S+ − S−) =

~
2

(
0 −i
i 0

)
. (7.9)

Note that both of these matrices are Hermitian, with a symmetric real part and an
antisymmetric imaginary part. Also, you can easily check (see Problem 7.1) that,
together with the Sz matrix above, they obey the angular momentum commutation
relations.

If you were to measure the x or y component of this particle’s spin angular
momentum, the possible outcomes would be +~/2 and −~/2, just as for the z com-
ponent. And indeed, the Sx and Sy matrices both have eigenvalues ±~/2. The



7.1. Spin 1/2 195

corresponding eigenspinors represent the quantum states in which these spin com-
ponents have well defined Sx or Sy. I’ll label these spinors with an extra superscript
x or y, that is,

Sx χ
x+ = +

~
2
χx+, Sx χ

x− = −~
2
χx−, (7.10)

and similarly for Sy χ
y+ and Sy χ

y−. (We can then think of the symbols χ+ and
χ− as shorthand for χz+ and χz−.) To actually find these eigenspinors, we can just
introduce symbols for their two components and write out the eigenvalue equation
explicitly. For instance, writing the components of χx+ as c1 and c2, we have

~
2

(
0 1
1 0

)(
c1

c2

)
=

~
2

(
c1

c2

)
. (7.11)

The top row of this matrix equation says simply c2 = c1, while the bottom row
says redundantly c1 = c2. Any spinor whose two components equal each other is
therefore an eigenspinor of Sx with eigenvalue +~/2. And a completely analogous
construction shows that any spinor with c2 = −c1 is an eigenspinor with eigenvalue
−~/2. By convention we usually work with spinors whose top components are real
and positive, so that the normalized Sx eigenspinors are

χx+ =
1√
2

(
1
1

)
, χx− =

1√
2

(
1
−1

)
. (7.12)

You can work out the eigenspinors of Sy in exactly the same way (see Problem 7.2).
Figure 7.2 shows the Sz and Sx eigenspinors plotted as two-dimensional vec-

tors. Notice that, aside from the change in labeling, this diagram is identical to
Figure 2.21 for the double-well two-state system. These two different systems are
mathematically equivalent, or what mathematicians call isomorphic: each has just
two basis states, with an infinite variety of complex mixtures of these states also
allowed. Any such system is called a qubit.

Problem 7.1. Check that the 2 × 2 matrices for Sx, Sy, and Sz obey the angular
momentum commutation relations, equations 7.1.

Problem 7.2. Find the normalized eigenspinors χy+ and χy− of the Sy matrix. Use
the (arbitrary) convention that the first component of each be real and positive. Show
that they are orthogonal, being careful to complex-conjugate one of them when you
take the inner product (see equation 4.53).

Problem 7.3. Use the methods of this section to work out the matrices and eigen-
spinors for s = 1 (a so-called spin-1 particle). In this case there are three possible
values of the spin angular momentum along any direction, so the spinors live in a
three-dimensional vector space and the matrices measure 3× 3. As usual, work in the
basis of the Sz eigenspinors. It is conventional to order them so that

χ1 =

1
0
0

 , χ0 =

0
1
0

 , χ−1 =

0
0
1

 , (7.13)
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Figure 7.2: The spinors χz+, χz−, χx+, and χx−, with the component c1 plotted horizontally
and c2 plotted vertically. An overall factor of −1 has no physical effect on a quantum state,
so the negated spinors represent the same four physical states. A normalized spinor has
unit length on this diagram, but the diagram cannot show spinors whose components are
complex.

where the superscripts indicate the values of ms. Start by writing down the Sz and
S2 matrices, then work out the matrices for S+ and S−, and use these to find Sx
and Sy. Check that the commutation relations, equations 7.1, are satisfied. Finally,
find the normalized eigenspinors of Sx and Sy, following the convention that the first
nonzero component of each spinor is real and positive. (You could, of course, repeat
this exercise for s = 3/2, s = 2, and so on. Mathematicians call this process working
out the finite-dimensional representations of the rotation group.)

Measurement probabilities

If a spin-1/2 particle is initially in some arbitrary state,

χ =

(
c1

c2

)
, (7.14)

and we then measure1 its spin along a particular axis, we can calculate the probabil-
ity of each possible outcome as the square of the component along the corresponding
eigenstate, according to the Born rule.

For measurements of Sz this calculation is especially simple: The probabilities

1Don’t worry for now about exactly how you would make such a measurement. I’ll describe
one way of doing it in Section 7.2.
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of getting the results +~/2 and −~/2, respectively, are

P (+~/2) = |χ+ · χ|2 =

∣∣∣∣(1 0)

(
c1

c2

)∣∣∣∣2 = |c1|2,

P (−~/2) = |χ− · χ|2 =

∣∣∣∣(0 1)

(
c1

c2

)∣∣∣∣2 = |c2|2.
(7.15)

Here I’m assuming that χ is normalized, that is, |c1|2 + |c2|2 = 1. So, for example,
if the system is initially in one of the Sx eigenstates, which have |c1|2 = |c2|2 = 1/2,
then we have a 50-50 chance of measuring Sz to be either +~/2 or −~/2.

As a more interesting example, consider the initial state

χ =

(
1/2√
3/4

)
=

(√
1/4√
3/4

)
. (7.16)

If we measure this particle’s Sz value, the two outcome probabilities are P (+~/2) =
1/4 and P (−~/2) = 3/4. Figure 7.3 shows this spinor and its projections onto the
Sz eigenspinors. If, instead, we measure the x component of the spin for this same
initial state, the corresponding probabilities would be

P (+~/2) = |χx+ · χ|2 =

∣∣∣∣ 1√
2

( 1 1 )

(
1/2√
3/4

)∣∣∣∣2 =
2 +
√

3

4
≈ 0.933,

P (−~/2) = |χx− · χ|2 =

∣∣∣∣ 1√
2

(1 −1)

(
1/2√
3/4

)∣∣∣∣2 =
2−
√

3

4
≈ 0.067.

(7.17)

Figure 7.3 also shows these projections, and we plainly see that χ has a much larger
component in the χx+ direction than in the χx− direction. The χx− component

Figure 7.3: Projections of the spinor χ (equation 7.16) onto the eigenspinors of Sz (long-
dashed lines) and Sx (short-dashed lines).
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happens to be negative in this case, but the minus sign has no physical consequence
because we square the vector component to get the measurement probability.

All of the spinor components in the preceding examples have been real, but
complex-valued spinor components are perfectly permissible and often unavoidable.
Unfortunately, Figures 7.2 and 7.3 suffer from the serious drawback that they cannot
show spinors with complex components. Fortunately, the algebraic formula for the
Born rule works fine whether or not the spinor components are real; just be sure
to complex-conjugate one of the two spinors whenever you take the dot product, as
prescribed by equation 4.53.

Problem 7.4. Suppose that a spin-1/2 particle is in the state

χ =

( √
3/5

−
√

2/5

)
.

If you now measure the z component of its spin, what are the possible outcomes and
their probabilities? What if instead you measure the x component of its spin? Plot
this spinor on a diagram like Figure 7.3, showing its decomposition into components in
both the Sz and Sx eigenbases. Does the diagram seem consistent with your calculated
answers?

Problem 7.5. In the text above I argued that if a spin-1/2 particle is in either Sx
eigenstate and you measure Sz, you have a 50-50 chance of getting +~/2 or−~/2. Argue
that the same is true if the particle is initially in an Sz eigenstate and you measure Sx.
Then use the Sy eigenspinors from Problem 7.2 to determine the probabilities of Sx
and Sz outcomes when the particle is in an Sy eigenstate, and vice-versa.

Problem 7.6. Suppose that a spin-1/2 particle is in the state

χ =
1√
3

(
1

1 + i

)
.

Check that this spinor is normalized. Then find the probability of each possible outcome
for measurements of the x, y, and z components of this particle’s spin.

Problem 7.7. Run the Spins Laboratory web app at http://physics.weber.edu/

schroeder/software/Spins.html. This app simulates a beam of spin-1/2 particles
that enter an “analyzer,” which splits them into two beams based on whether a par-
ticular spin component has the value +~/2 (labeled ↑) or −~/2 (labeled ↓). Simulated
counters then record the particles’ arrival, counting how many are in each of the sep-
arated beams. Thus, this experiment effectively measures the spin of each particle
along the chosen direction. You can change the direction by clicking/tapping on the
large letter X on the analyzer. The particle gun, on the left, can prepare the particles
randomly (R) or in one of four specific initial states (labeled 1 through 4). Use the
simulation to find the normalized spinors corresponding to each of these four initial
states. To do this, you’ll need to make measurements of Sx, Sy, and Sz. To resolve
the overall phase ambiguities, follow the convention that the first component of each
spinor is real and positive. Be sure to document your work and make your reasoning
clear.

http://physics.weber.edu/schroeder/software/Spins.html
http://physics.weber.edu/schroeder/software/Spins.html
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The Bloch sphere

Although you can’t plot spinors with complex components directly on Figure 7.2
or 7.3, there is an alternate visualization tool that doesn’t suffer from this drawback.

The trick is to recognize that any normalized two-component spinor can be
written in the form

χ =

(
cos θ2
eiφ sin θ

2

)
, (7.18)

for some angles θ and φ. To see why this is always possible, recall first that an
overall phase factor eiδ has no physical consequence, so if the top component of our
spinor is negative or complex, then without loss of generality we can always multiply
by some eiδ (that is, rotate both components by some angle δ in the complex plane)
to make the top component real and positive. Then, because the top component
must be between 0 and 1, we can write it as the cosine of some angle between 0
and π/2, or equivalently, cos(θ/2) where θ is between 0 and π. Once we write the top
component in this form, normalization requires that the bottom component have
magnitude sin(θ/2), and the phase factor eiφ then allows for the bottom component
to have any complex phase, where φ can vary from 0 to 2π.

We now interpret the angles θ and φ as the usual polar and azimuthal angles in
a spherical coordinate system, plotting our spinor as a point on the unit sphere, as
shown in Figure 7.4. This sphere is called the Bloch sphere, after Swiss-American
physicist Felix Bloch, 1905–1983. Every two-component spinor χ corresponds to a
unique point on the Bloch sphere, and every point on the Bloch sphere corresponds
to a unique physical state (though not to a unique χ, because eiδχ, for any δ, would

Figure 7.4: Representation of spin-1/2 states on the Bloch sphere. An arbitrary state χ
is located on the sphere using the coordinates θ and φ defined by equation 7.18. The six
eigenstates of Sx, Sy, and Sz are in their natural locations, where the rectangular coordinate
axes intersect the sphere.
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correspond to the same point on the Bloch sphere).

To build some intuition for the Bloch sphere, let’s interpret some particular
points on it. At the “north pole” θ = 0, so according to equation 7.18 the cor-
responding spinor is

(
1
0

)
= χz+. At the “south pole” θ = π, so the spinor’s top

component is 0 and its bottom component is eiφ; this is a χz− eigenstate for any φ,
but we might as well set φ = 0 and say it’s

(
0
1

)
. On the “equator,” at θ = π/2, the

spinor’s top component is 1/
√

2; its bottom component has this same magnitude
but varies in phase with φ, so this component is 1/

√
2 on the +x axis, i/

√
2 on the

+y axis, −1/
√

2 on the −x axis, and −i/
√

2 on the −y axis. By equation 7.12 and
Problem 7.2, these states are therefore χx+, χy+, χx−, and χy−, respectively.

By now you’ve probably figured out the overall pattern:

• Any point (θ,φ) on the Bloch sphere corresponds to the “up” or +~/2 eigen-
state for the spin component along that particular direction.

• The “down” or −~/2 eigenstate for the same spin component is at the point
antipodal to the “up” state, precisely on the opposite side of the Bloch sphere.

Problems 7.8 and 7.9 ask you to prove these statements in general.

I hope you agree that the Bloch sphere provides a delightfully intuitive represen-
tation of the states of a spin-1/2 particle. In fact it’s so intuitive that you may be
wondering why we even bother with the representation in terms of two-component
spinors, or with pictures like Figures 7.2 and 7.3. The answer is that the Bloch
sphere has a couple of serious limitations. First, the Bloch sphere doubles the an-
gle between any given pair of states in the actual vector space, so you can’t use
it directly to construct projections of one state onto another (e.g., for calculating
measurement probabilities) as in Figure 7.3. Second, the Bloch sphere does not
readily generalize to higher spin (s = 1, s = 3/2, etc.), so we need spinor technology
for those cases.

One other thing the Bloch sphere can do, however, is represent other two-state
systems (qubits) besides spin-1/2 particles. Once you’ve expressed the state of any
such system as a two-component column vector, you can use equation 7.18 to plot
that state on the Bloch sphere. One good example is the double-well two-state
system from the end of Chapter 2. Other examples include the polarization states
of a photon (see Section 7.3), certain other photon properties, and the states of a
superconducting Josephson junction. Despite the striking physical differences be-
tween these systems, we can represent them all with exactly the same mathematics
(whether complex two-component vectors or points on the Bloch sphere). In the
growing discipline of quantum information science, it is now common to ignore the
qubits’ physical manifestations and focus instead on mathematical algorithms for
manipulating collections of qubits of any type—just as traditional computer scien-
tists rarely worry about whether their classical bits are realized as transistors or
magnetic domains or fiber-optic light pulses.
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Problem 7.8. What if you measure the spin of a particle along an axis that’s not x,
y, or z? If we define the axis by an arbitrary unit vector

n̂ = ı̂ sin θ cosφ+ ̂ sin θ sinφ+ k̂ cos θ

(see equations 6.2), then the corresponding spin operator is

Sn̂ = ~S · n̂ = Sx sin θ cosφ+ Sy sin θ sinφ+ Sz cos θ. (7.19)

We can also call this operator Sθφ. Write this operator, for a spin-1/2 particle, explicitly
as a 2× 2 matrix (in terms of θ and φ). Then prove that the spinor χ of equation 7.18
is an eigenspinor of this matrix with eigenvalue +~/2. (You’ll need to use some trig
identities. I suggest writing everything in terms of sin(θ/2) and cos(θ/2).)

Problem 7.9. For a given θ and φ on the Bloch sphere, what are the angles that
define the antipodal direction? Write the spinor for this antipodal direction in the
form of equation 7.18, then prove that it is orthogonal to the spinor for the original
direction (θ, φ). Conclude by interpreting this antipodal spinor as an eigenspinor of
the Sθφ operator of Problem 7.8.

Problem 7.10. For the special case where φ = 0, we can refer to the general spin
operator of equation 7.19 simply as Sθ. What are the eigenspinors of this operator, in
terms of θ? Plot these eigenspinors, for a generic choice of θ, on a copy of Figure 7.2.
How do the angles on this diagram relate to the physical angle θ?

Problem 7.11. For the special case where φ = 0, we can refer to the general spin
operator of equation 7.19 simply as Sθ. Suppose that a spin-1/2 particle is in the state
χz+, and you measure Sθ for θ = 2π/3 = 120◦. What are the probabilities of the
outcomes +~/2 and −~/2?

Problem 7.12. Draw a Bloch sphere for the double-well two-state system of Sec-
tion 2.5, working in the basis where the states ψ1 and ψ2 are represented by

(
1
0

)
and(

0
1

)
, respectively. Label these states on the sphere, and also label the states ψL, ψR,

ψ+, and ψ− of equations 2.33 and 2.34.

7.2 Spins in magnetic fields

When a particle with spin also has an electric charge (as does an electron or proton
or any nucleus), or has electrically charged constituents (as does an atom or a
neutron), the spin gives rise to a magnetic dipole moment. That is, the particle acts
as a tiny bar magnet, feeling a torque when it’s placed in an external magnetic field.

The dipole moment is a vector, denoted ~µ, which we define to point in the
direction of a bar magnet’s north-seeking pole (picture a compass needle). If the
external magnetic field is ~B, then the torque causes the dipole’s energy to be lowest
when it’s aligned parallel to ~B, and highest when it’s antiparallel. In general, the
energy is

Edipole = −~µ · ~B. (7.20)

So ~µ has SI units of joules per tesla, and its magnitude is the amount of work required
to twist the dipole from pointing parallel to the field to pointing perpendicular, or
from perpendicular to antiparallel, per unit field strength.
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For any given particle, ~µ will be directly proportional to the spin vector:

~µ = γ~S, (7.21)

where γ is a constant of proportionality, called the gyromagnetic ratio, which de-
pends on the type of particle. In the case of a classical spinning object, it’s straight-
forward to calculate γ if you know how the object’s mass and charge are distributed;
if the mass m and charge q are distributed identically, then γ = q/(2m). Notice
that if q is negative, ~µ and ~S point in opposite directions. For a quantum particle,
a first-principles calculation of γ is beyond the scope of this book. But the total
charge divided by the total mass is still a good order-of-magnitude guess, at least
for charged particles. For an electron, γ is very close to, but not exactly, −e/m
(where e = 1.6× 10−19 C).

Combining equations 7.20 and 7.21, we can write the Hamiltonian for a spinning
particle in a uniform magnetic field as

H = −γ ~B · ~S. (7.22)

This Hamiltonian will give different energies to different spin states, and we can
now calculate those energies and the splittings between them. This Hamiltonian
will also govern the time evolution of an arbitrary initial spin state, analogously to
the Hamiltonian for a particle moving through space.

Without loss of generality, let’s take ~B to point along the z axis. Then the
Hamiltonian is simply a constant times Sz:

H = −γBSz. (7.23)

The eigenvalues of H are −γBms~, and since ms varies by increments of 1, the
splitting between adjacent energy levels is γ~B. The corresponding eigenstates are,
by the usual convention, our basis spinors. In the specific case s = 1/2, these
eigenstates are

χ+ =

(
1
0

)
with E = −γB~

2
, and χ− =

(
0
1

)
with E = +

γB~
2

. (7.24)

If the particle is initially in one of these eigenstates, then its time dependence is sim-
ply an overall wiggle factor, exp(±iγBt/2), which has no effect on any measurement
outcomes.

Suppose, however, that this spin-1/2 particle is initially in some other state—say
χx+ (equation 7.12):

χ(t = 0) = χx+ =
1√
2

(
1
1

)
=

1√
2

[(
1
0

)
+

(
0
1

)]
. (7.25)

This state is a mixture of the two Sz eigenstates, each of which, in the presence of
the magnetic field pointing in the z direction, evolves with a different wiggle factor:

χ(t) =
1√
2

[(
1
0

)
eiγBt/2 +

(
0
1

)
e−iγBt/2

]
=

1√
2

(
eiγBt/2

e−iγBt/2

)
. (7.26)
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To interpret this time-dependent spinor we can plug in some particular t values and
see what we get. For instance, when γBt = 4π (or any multiple of 4π), it comes back
to simply χx+. So it’s tempting to conclude that the particle’s spin state oscillates
with a period of 4π/(γB).

In fact, the spin state does oscillate, but the period isn’t really 4π/(γB). For
notice that after just half this time, that is, when γBt = 2π, each of the two wiggle
factors equals eiπ = −1, so χ = −χx+, which is physically the same state as at
t = 0. The physical oscillation period, therefore, is only 2π/(γB), corresponding to
an angular frequency of

ωL = γB, (7.27)

called the Larmor frequency (after Irish physicist Joseph Larmor, 1857–1942).
To see what happens at intermediate times during this oscillation, it’s a bit

easier if we factor out the unphysical phase factor once and for all. Notice that we
can write χ(t) in the form

χ(t) = eiγBt/2 · 1√
2

(
1

e−iγBt

)
, (7.28)

so that the part of the spinor in the parentheses matches our usual convention of
making the top component real and positive. The overall factor eiγBt/2, because it is
common to both spinor components, is an unphysical phase that we can ignore. We
can now recognize that when γBt = π (that is, after half the physical oscillation
period), χ(t) is physically equivalent to χx−. Also, as you might expect, after a
quarter of the physical oscillation period, χ(t) is physically equivalent to one of the
Sy eigenstates (which one depends on the sign of γ).

The oscillation of particle’s spin state in an external magnetic field is called
Larmor precession, and you can easily work out other examples—with other initial
states, other field directions, or higher values of s. Although I usually find it easiest
to write the time dependence in terms of explicit wiggle factors, we can also express
it using the time-dependent Schrödinger equation:

i~
∂χ

∂t
= Hχ. (7.29)

Although the H operator is very different here than for the spatial wavefunctions
that we worked with in earlier chapters, the TDSE has exactly the same form as
long as we write it abstractly in terms of H.

Larmor precession plays a critical role in current research into quantum com-
puting. If we use a spin-1/2 particle to represent each qubit of information, then
we can change the value of a qubit by briefly turning on a magnetic field to rotate
its state by some desired amount. For example, if we use χz+ to represent the
number 0 and χz− to represent the number 1, we can turn a 0 into a 1, or a 1 into
a 0, by turning on a magnetic field in a direction perpendicular to z (for example,
the x or y direction) for just enough time to accomplish half of a full oscillation.
Similarly, by turning on the field for half as long as that—a quarter of an oscillation
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period—we can put the qubit into a superposition state that contains equal parts 0
and 1. Our choice of the direction of ~B will determine exactly which superposition
state this is (that is, the relative phase of the 0 and 1 contributions). As long as we
have precise control over the direction of ~B and the time it remains turned on, we
can put the qubit into any state we like.

Problem 7.13. Consider a spin-1 (that is, s = 1) particle in a magnetic field ~B that
points in the +z direction.

(a) What are this particle’s energy eigenvalues (in terms of γ and B) and the corre-
sponding eigenspinors?

(b) If the particle has γ > 0 and starts out in the state with Sx = +~ (that is, in the
state χx+

1 ), what is the sequence of Sx and Sy eigenstates that it oscillates through,
and what are the period and angular frequency of its Larmor precession, in terms of
γB?

(c) What happens if instead the particle starts in the state with Sx = 0?

The Stern-Gerlach experiment

So far in this section I’ve been assuming that the external magnetic field ~B is
uniform (in space). If the field is nonuniform, then in addition to exerting a torque
on our spinning dipole it also exerts a net force: ~F = ∇(~µ · ~B). You’ve felt this type
of force every time you’ve held two bar magnets near each other.

The net force from a nonuniform ~B field gives us a way to separate particles
with different values of, say, µz. The typical procedure is to put the particles into
a horizontal beam, moving in the y direction, that passes through a nonuniform
magnetic field pointing in the z direction (see Figure 7.5). If the z component
of the field is also nonuniform, then the particles are deflected in the z direction
by varying amounts, depending on their µz values. Such experiments were first
performed with silver atoms by Stern and Gerlach in the mid-1920s.

A Stern-Gerlach magnet “entangles” a particle’s spin state with its spatial wave-
function, allowing us to determine the spin by measuring the position. Although

Figure 7.5: Left: End view of a Stern-Gerlach magnet, with poles shaped to produce an
upward magnetic field that is nonuniform—in this case stronger as you go up. Right:
Particles passing through such a magnet feel a vertical force proportional to their µz values,
so a beam of particles is split into multiple beams, one with each possible value of µz.
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we often speak as if the magnet “measures” the particle’s spin, that’s not quite
right because we still need a separate detector of some sort to measure the par-
ticle’s position. In fact, we could use a succession of similar magnets to recom-
bine the beams, and if no record is kept of which path a particle follows, then
no measurement is performed and the particle’s original spin state (before it en-
tered the device) is unchanged. You can use the Spins Laboratory web app, at
http://physics.weber.edu/schroeder/software/Spins.html, to explore a va-
riety of scenarios involving successive Stern-Gerlach devices with varying orienta-
tions.

7.3 Photon polarization

The photon is a “spin-1” (s = 1) particle, so we might expect it to have three
independent polarization states. In fact there are only two, for reasons related to
how photons always travel at the speed of light. We ordinarily measure a photon’s
angular momentum about an axis parallel to its direction of motion, and when
we do we obtain either +~ or −~, corresponding to right-handed and left-handed
circularly polarized light. The ms = 0 “middle rung” of the ladder of angular
momentum states is missing.

Because it has only two independent polarization states, we normally abandon
the usual conventions for angular momentum and instead treat a polarized photon
as any other two-state (qubit) system, using two-component complex vectors. In
this context the vectors are called Jones vectors (after American physicist R. Clark
Jones, 1916–2004). For our basis states we use not the circularly polarized states
but rather the states of horizontal and vertical linear polarization, measured relative
to some arbitrary reference direction:(

1

0

)
↔ horizontal,

(
0

1

)
↔ vertical. (7.30)

The real linear combinations of these vectors then represent diagonally polarized
states, for instance,

1√
2

(
1

1

)
↔ +45◦ diagonal,

1√
2

(
1

−1

)
↔ −45◦ diagonal. (7.31)

The left- and right-handed circularly polarized states are represented by the complex
vectors

1√
2

(
1

i

)
↔ left-handed,

1√
2

(
1

−i

)
↔ right-handed. (7.32)

Unfortunately there is some ambiguity in these correspondences, because positive
and negative angle definitions depend on whether one is viewing the photon from
ahead or behind. If you study optics further you’ll need to get these conventions
straight, but for our purposes here we can live with the ambiguity.

http://physics.weber.edu/schroeder/software/Spins.html
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Figure 7.6: Representation of photon polarization states on the Bloch sphere. Horizontal
and vertical polarizations are at the north and south poles, respectively, while diagonal
polarizations are along the circle in the xz plane. The two circular polarizations are where
the ±y axis intersects the sphere, and everywhere else on the sphere corresponds to a type
of elliptical polarization.

Figure 7.6 shows the full set of allowed photon polarization states, represented
as points on the surface of the Bloch sphere (also called the Poincaré sphere in this
context). As with a spin-1/2 particle, the Bloch sphere has the advantage of being in
one-to-one correspondence with the full set of physical states. But unlike spin 1/2,
here the correspondence between directions on the Bloch sphere and the associated
directions in physical space is rather arbitrary and unnatural. That correspondence
is much more direct, at least for the diagonal polarizations, when we simply plot
the Jones vector components on a pair of rectangular axes (see Problem 7.14).

Photons are often easier to work with in the laboratory than spin-1/2 parti-
cles. Instead of fancy magnets, atomic beams, and vacuum systems, you can do
equivalent experiments with inexpensive lasers, polarizing filters, and other opti-
cal components. A common calcite crystal will split an unpolarized beam of light
into separate vertically and horizontally polarized beams, analogous to the role of
a Stern-Gerlach device for beams of spin-1/2 atoms. Half-wave plates and quarter-
wave plates, also made of so-called birefringent materials, can change one polar-
ization state into another, in analogy to Larmor precession of a spin-1/2 particle
in a magnetic field. Finally, because photons travel at the speed of light, they are
handy for sending messages and for performing fascinating experiments in which
two entangled particles are separated by a great distance before being measured.

Problem 7.14. Plot the Jones vectors for vertical, horizontal, and ±45◦ diagonal
polarizations on a pair of rectangular axes, with the top component on the horizontal
axis and the bottom component on the vertical axis, as I did for spin-1/2 spinors in
Figure 7.2. Discuss the relative advantages and disadvantages of this visualization,
compared to the Bloch sphere in Figure 7.6.
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7.4 Addition of angular momenta

Often we work with composite systems—atoms, nuclei, and so on—whose total
angular momentum is the combination of multiple contributions from constituent
particles. Even a single constituent particle can contribute both orbital and spin
angular momentum, and with multiple constituents there can be many contributions
to the total. In these cases we need to know how the various eigenstates of the total
angular momentum are related to the eigenstates of the constituents’ individual
angular momenta.

The simplest such case is when there are just two spin-1/2 particles, such as the
electron and proton in a hydrogen atom (assuming for simplicity that there is no
orbital angular momentum). This system’s spin state lives in a four-dimensional
vector space, for which the most natural basis consists of the states in which each
particle has well-defined Sz. One way to write these states is

χ+χ+, χ+χ−, χ−χ+, χ−χ−, (7.33)

where my notational convention is that the spinor on the left is for particle 1 (per-
haps the electron) and the spinor on the right is for particle 2 (perhaps the proton).
These juxtapositions of spinors are actually tensor product states, as described in
Section 4.4 and in Appendix A.4. In a little while I’ll show how to represent them
as four-component spinors, but that isn’t actually necessary for now.

The system’s total angular momentum vector ~S is simply the sum of ~S for each
particle, so we can write the operator relation

~S = ~S(1) + ~S(2), (7.34)

where the superscripts in parentheses indicate particles 1 and 2, respectively, while
an operator without a superscript is for the system as a whole. The same relation
holds for each component of ~S, including Sz, so we can easily show that each of the
states in 7.33 is an eigenstate of total Sz:

Sz χ
(1)χ(2) = (S(1)

z + S(2)
z )χ(1)χ(2)

= (S(1)
z χ(1))χ(2) + χ(1)(S(2)

z χ(2))

= (m1 +m2)~χ(1)χ(2), (7.35)

where m1 and m2 are the individual Sz quantum numbers and I’ve used the fact

that S
(1)
z acts only on the state of particle 1, while S

(2)
z acts only on the state of

particle 2. Thus, the total Sz values of the four states listed in 7.33 are, respectively,
~, 0, 0, and −~.

This list of Sz values is that of a system with s = 1, although such a system
would have just one m = 0 state, and we instead have two. But the states with
m = ±1 are unambiguous:

χ1
1 = χ+χ+, χ−1

1 = χ−χ−, (7.36)
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where on the left I’ve written the spinor for the combined system, using the notation
χms in analogy with Y m

l . Now, to find the state χ0
1, we can just act on one of these

with a ladder operator. For instance, the lowering operator applied to the first of
these states gives

S−χ
1
1 = (S

(1)
− + S

(2)
− )χ+χ+

= (S
(1)
− χ+)χ+ + χ+(S

(2)
− χ+). (7.37)

Applying equation 7.6 to both sides of this equation, we obtain

√
2 ~χ0

1 = (~χ−)χ+ + χ+(~χ−), (7.38)

or

χ0
1 =

1√
2

(χ−χ+ + χ+χ−). (7.39)

Here again it’s understood, in each term, that the χ on the left is for particle 1
and the χ on the right is for particle 2. If we apply the lowering operator again to
equation 7.39 we get χ−1

1 as expected. Alternatively, we could start with the state
χ−1

1 = χ−χ− and apply the raising operator once to get equation 7.39, and again
to get χ1

1.
The χ0

1 state is therefore a 50-50 mixture of the basis states χ+χ− and χ−χ+.
Meanwhile, there is still an orthogonal mixture in which the + sign in equation 7.39
is replaced with a −. That state also has m = 0, but it’s not part of the s = 1
quantum ladder at all. In fact it constitutes a one-rung quantum ladder of its own,
that is, a state with s = 0:

χ0
0 =

1√
2

(χ−χ+ − χ+χ−). (7.40)

You can easily check that if you act on this state with either the raising or the
lowering operator, you get zero.

The three states with s = 1 (equations 7.36 and 7.39) are collectively called the
triplet states of the combined system, while the s = 0 state (equation 7.40) is called
the singlet. In summary:

χ0
0 =

1√
2

(χ−χ+ − χ+χ−) “singlet” (7.41)

χ1
1 = χ+χ+

χ0
1 =

1√
2

(χ−χ+ + χ+χ−)

χ−1
1 = χ−χ−

 “triplet” (7.42)

To be fully confident of the s values I’ve assigned to these states, you can also
construct the S2 operator for the combined system and check that it gives 2~2

when acting on any of the triplet states, and 0 when acting on the singlet.
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Notice that the three triplet states are all symmetric (unchanged) under the
operation of interchanging the two particles, while the singlet is antisymmetric.
These properties are critical for understanding the behavior of identical particles.
For example, the two electrons in a helium atom are identical fermions, so their
overall quantum state must be antisymmetric under interchange. This overall state
includes both a spin state and a spatial wavefunction. If the spatial wavefunction
is symmetric (the ground state or the other “parahelium” states discussed in Sec-
tion 6.6), then the spin state must be the antisymmetric singlet. On the other hand,
if the spatial wavefunction is antisymmetric (“orthohelium”), then the spin state
must be one of the three triplet states or some linear combination thereof.

Also notice that both the singlet χ0
0 state and the triplet χ0

1 state are entangled.
We can’t factor either of them into an unambiguous state for one particle and an
unambiguous state for the other. Rather, to describe the state of either particle we
must describe the state of both, including the implied correlations. For either of
these states, for instance, if you were to measure Sz for particle 1 you could obtain
either +~/2 or −~/2, with equal probability, and the same is true if you were to
measure Sz for particle 2. But if you measure Sz for both particles, you’re 100%
certain to obtain opposite results. The system’s total Sz is well defined (even before
any measurements), even though Sz for either particle individually is not. For the
singlet state (but not for χ0

1), this is also true for the spin component along any
other axis.

The numerical coefficients 1/
√

2, −1/
√

2, and so on, which relate the individual-
particle basis states to the system states with well-defined total s, are called Clebsch-
Gordan coefficients. When the individual particles have spins higher than 1/2, these
coefficients can be more intricate—but you can work them out using ladder operators
just as in the example above (see Problem 7.19). Alternatively, you can look them
up in tables. In general, if the individual particles have quantum numbers s1 and
s2, then the combined system can have s = s1 + s2, or s = s1 + s2 − 1, and so on
down to s = 0 or s = 1/2, depending on whether s1 +s2 is an integer or half-integer.

Problem 7.15. Apply the lowering operator again to the state χ0
1 of equation 7.39,

and check that you get the expected result.

Problem 7.16. Apply the raising operator to the state χ−1
1 = χ−χ−, and check that

you get the same result as in equation 7.39. Then apply the raising operator again,
and check that you get the expected result.

Problem 7.17. Check that applying either the raising or the lowering operator to the
singlet state, equation 7.40, gives zero.

Problem 7.18. Rewrite the singlet state, equation 7.40, in terms of the two-component
Sx eigenspinors χx+ and χx−. Do this by brute-force substitution, but comment on
why the result was, aside from a possible overall minus sign, inevitable.

Problem 7.19. Consider a system consisting of two spin-1 particles, that is, two
particles that each have s = 1. (Alternatively, the two particles could each have one
unit of orbital angular momentum, in which case we would use the symbol l instead
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of s.) In this problem you will “add” these two spins, working out all of the Clebsch-
Gordan coefficients for this system.

(a) List all of the basis states of the combined system for which the z component of
each individual particle’s spin is well defined. For instance, one of these states is χ1

1χ
1
1,

in which each particle’s Sz value is +~. As usual, the spinor on the left applies to
particle 1, and the spinor on the right applies to particle 2.

(b) Now list all of the states of the combined system for which the magnitude and z
component of the total (spin) angular momentum are well defined. Denote each of these
states with a single χ symbol, using appropriate subscripts and superscripts. Check
that this list has the same number of entries as the list in part (a).

(c) Two of the states in your first list are in one-to-one correspondence with two of the
states in the second list. Which ones? Why?

(d) Starting with either of the two states that you just identified, apply the (total)
raising or lowering operator repeatedly to find expressions for the remaining states
that have the same total s value, in terms of the part (a) basis states. (You’ll need to
repeatedly use equations 7.6.)

(e) To work out the expressions for the remaining part (b) states, use the fact that
each of these states must be orthogonal to all of the others, along with occasional use
of a raising or lowering operator.

(f) Check your answers using the table of Clebsch-Gordan coefficients at https://en.
wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients.

Matrix representations

Addition of angular momenta is a pretty abstract idea, so it may be helpful to con-
firm the above analysis using explicit representations of the states as four-component
column spinors, and of the operators as 4×4 matrices. For variety I’ll also show how
to avoid using raising and lowering operators, focusing instead on the S2 matrix.

First let’s (arbitrarily) assign spinors to our four original basis states:

χ+χ+ =


1
0
0
0

 , χ+χ− =


0
1
0
0

 , χ−χ+ =


0
0
1
0

 , χ−χ− =


0
0
0
1

 . (7.43)

Notice that these spinors are tensor products, computed according to the rule

(
c1

c2

)
⊗
(
d1

d2

)
=


c1d1

c1d2

c2d1

c2d2

 , e.g.,

(
1

0

)
⊗
(

0

1

)
=


0
1
0
0

 , (7.44)

as in equation 4.65. By convention the left component spinor, corresponding to
particle 1, gets “expanded” into the high-level “block” structure of the product,

https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients
https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients
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and then the right component spinor, corresponding to particle 2, is inserted into
each block and multiplied by whichever component of the left spinor is there.

By an analogous construction, we can build the 4 × 4 versions of operator ma-
trices. The Sz matrix for particle 1 is

S(1)
z =

~
2

(
1 0
0 −1

)
⊗ 1 =

~
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (7.45)

where 1 is the 2 × 2 identity matrix. The idea here is that each 2 × 2 block of
the product comes from multiplying a single entry of the first matrix by the entire
second matrix. Similarly, the Sz matrix for particle 2 is

S(2)
z = 1⊗ ~

2

(
1 0
0 −1

)
=

~
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (7.46)

Adding these two matrices then gives the total Sz matrix,

Sz = S(1)
z + S(2)

z =
~
2


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 . (7.47)

You can easily check that this matrix has the correct action on each of the four
basis spinors in equation 7.43: They are all eigenspinors, with eigenvalues ~, 0, 0,
and −~, respectively.

Now let’s do the Sx matrix. For particle 1 we have

S(1)
x =

~
2

(
0 1
1 0

)
⊗ 1 =

~
2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (7.48)

while for particle 2 we have

S(2)
x = 1⊗ ~

2

(
0 1
1 0

)
=

~
2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (7.49)

Adding these matrices gives the total Sx matrix,

Sx = S(1)
x + S(2)

x =
~
2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 . (7.50)
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By an entirely analogous construction (see Problem 7.20) you can obtain the Sy
matrix,

Sy =
~
2


0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

 . (7.51)

Now it’s an utterly mindless operation (see Problem 7.20) to square each of the
three spin component matrices, then add up the results to obtain S2:

S2 = S2
x + S2

y + S2
z = ~2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 . (7.52)

And this is the matrix we need. Notice that when it acts on the basis spinors
χ+χ+ and χ−χ−, it returns these same spinors multiplied by 2~2. So these are
eigenspinors of S2, with eigenvalues s(s + 1)~2, for s = 1. But the other two basis
spinors are not eigenspinors of S2, due to the 1’s in the off-diagonal 2-3 and 3-2
places. Instead, the other two eigenspinors of S2 are simple linear combinations of
χ+χ− and χ−χ+. One of these linear combinations is the sum:

S2(χ+χ− + χ−χ+) = ~2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




0
1
1
0

 = 2~2


0
1
1
0

 . (7.53)

This combination is therefore a third eigenspinor of S2 with eigenvalue 2~2, that
is, the state with s = 1 but m = 0 (no angular momentum along the z axis). (To
normalize this spinor we would multiply it by 1/

√
2, but this isn’t necessary to check

that it is an eigenspinor.) On the other hand, the orthogonal linear combination
with a relative minus sign gives

S2(χ+χ− − χ−χ+) = ~2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




0
1
−1
0

 = 0


0
1
−1
0

 , (7.54)

so this combination has eigenvalue zero, or s(s+ 1)~2 for s = 0. This is the singlet
state, with no angular momentum at all, along any axis. (Again, to normalize it we
would multiply by 1/

√
2.)

In summary, the normalized eigenspinors of Sz and S2 for this system are

χ0
0 =

1√
2


0
1
−1
0

 , χ1
1 =


1
0
0
0

 , χ0
1 =

1√
2


0
1
1
0

 , χ−1
1 =


0
0
0
1

 . (7.55)

The first is the singlet, while the other three make up the triplet.
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Problem 7.20. Fill in the steps omitted above to obtain the Sy and S2 matrices,
equations 7.51 and 7.52. (You may wish to use Mathematica for this; Appendix B.5
shows how to work with matrices and take tensor products using the KroneckerProduct
function.)

Problem 7.21. Find the 4 × 4 matrix representations of the raising and lowering
operators for a system of two spin-1/2 particles, by taking tensor products as in the
text above. Then check that these operators are related to Sx and Sy in the correct
ways, and that they act correctly on each of the four basis states.

Problem 7.22. Take tensor products to find the four-component column spinor rep-
resentations of the four Sx eigenstates for a system of two spin-1/2 particles: χx+χx+,
χx+χx−, and so on. Then check that each of them is an eigenspinor of the two-particle
Sx matrix, equation 7.50, with the expected eigenvalue. Which of these states are
eigenstates of S2? For those that aren’t eigenstates of S2, find linear combinations
that are.



Appendix A

The mathematics of quantum
mechanics

Quantum mechanics describes a physical world that is radically different from the
world of classical mechanics. So naturally, in order to express the principles of
quantum mechanics, we need some mathematical concepts that go beyond the cal-
culus and differential equations that we use to express the laws of classical physics.
These further concepts include probability and statistics, the Dirac delta function,
complex numbers, and linear algebra.

All of these mathematical ideas get at least some use in classical physics, and
most of them are also taught in standard math courses, so you may already know
enough about them to skip this appendix and dive into the main text of this book.
On the other hand, if your comfort level with some or all of these mathematical
concepts is low, then this appendix is for you. Here I’ve tried to provide a concise
but systematic presentation of each of them, emphasizing the details that matter
most in quantum mechanics.1

A.1 Probability and statistics

Imagine that you have a stack of playing cards (perhaps a bridge hand) consisting
of three 9’s, two each of 2’s, 5’s, and 10’s, and one each of the numbers 3, 6, 7,
and 8. If we denote the card denomination by i and the number of such cards by
n(i), then.

n(i) =


3 for i = 9,

2 for i = 2, 5, 10,

1 for i = 3, 6, 7, 8,

0 otherwise.

(A.1)

1Much of the inspiration for this appendix comes from Chapter 2 of Daniel T. Gillespie, A
Quantum Mechanics Primer (International Textbook Co., Scranton, PA, 1970).

214
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Figure A.1: A histogram of the card counts and probabilities for the example in the text.

Now if you shuffle these cards and draw one at random, the probability P of getting
a card of denomination i (never mind the suit) is n(i) divided by the total number
of cards, N = 13:

P (i) =
n(i)

N
=


3/13 for i = 9,

2/13 for i = 2, 5, 10,

1/13 for i = 3, 6, 7, 8,

0 otherwise.

(A.2)

Figure A.1 shows a histogram of these card counts and probabilities. Notice that
the sum of all the probabilities must equal 1:∑

i

P (i) = 1. (A.3)

The average (or mean) of the values of the cards is the sum of all their values,
divided by the total number of cards:

〈i〉 =
2 + 2 + 3 + 5 + 5 + 6 + 7 + 8 + 9 + 9 + 9 + 10 + 10

13
=

85

13
≈ 6.54

=
1

N

∑
i

i n(i) =
∑
i

i P (i). (A.4)

Notice that we can compute the average as the sum over all the i values, weighted by
their probabilities. Similarly, if we wish, we can compute the average of the squares
of the i values by summing these squares, weighted by their probabilities:

〈i2〉 =
∑
i

i2P (i). (A.5)

In fact, we can compute the average of any function f(i) by adding up all its values,
weighted by their probabilities:

〈f(i)〉 =
∑
i

f(i)P (i). (A.6)
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To estimate the width or “spread” of this distribution of i values, we can subtract
each of them from the average, and then average these differences. Well, we could
do that, but we’d get zero, because some of the differences are positive and others
are negative, and the average is defined so that these differences average out! So
instead, we square the differences, average these squares (which are never negative),
and then take the square root. The result is the root-mean-square (rms) deviation
or standard deviation, σi:

σi =

√∑
i(i− 〈i〉)2 n(i)

N
. (A.7)

With a bit of algebra (see Problem A.1) you can show that this definition is equiv-
alent to

σi =
√
〈i2〉 − 〈i〉2, (A.8)

which is usually the more convenient formula for calculating σi.

Problem A.1. Derive the more convenient formula for computing the standard devi-
ation, equation A.8, from the definition A.7.

Problem A.2. For the example described in the text (and depicted in Figure A.1),
compute 〈i2〉 and then use equation A.8 to compute the standard deviation. Mark the
points on the histogram that correspond to the average and one standard deviation to
either side of the average. Are most of the card numbers within one standard deviation
of the average? Discuss.

Problem A.3. Using only the numbers 2 through 10, find a collection of numbers for
which the standard deviation is as large as possible. Also find a collection for which
the standard deviation is as small as possible.

Problem A.4. Find two different collections of numbers, each with the same N , the
same average, and the same standard deviation. What is the minimum N for which
this is possible?

Problem A.5. The median of a set of numbers is the number for which half of those
in the set lie above it and half lie below it. (a) What is the median of the set of
card numbers described in the text and depicted in Figure A.1? (b) Give at least two
examples of other sets for which the median is ambiguous or otherwise problematic.

Continuous distributions

Now suppose that instead of a discrete variable i, our cards are labeled with a
continuous range of real numbers x. Also our deck contains infinitely many cards,
labeled with infinitely many different x values, although certain values (or ranges
of values) may still occur more frequently than others. Then n and N are no longer
well defined, and the probability P (x) for any exact value of x will ordinarily be
infinitesimal, but we can still define a probability density, ρ(x), so that ρ(x) dx is
the probability of obtaining (when you select one card at random) a value between
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x and x+ dx, for infinitesimal dx. More generally, for an arbitrary interval running
from x = a to x = b, the probability is

(Probability of a < x < b) =

∫ b

a
ρ(x) dx. (A.9)

The probability density is a function whose purpose in life is to be integrated. Nat-
urally, ρ(x) must be normalized so that its integral over all x equals 1:∫ ∞

−∞
ρ(x) dx = 1, (A.10)

in analogy with equation A.3.
Furthermore, we can calculate the average value of x by “adding up” (integrat-

ing) all the x values, weighted by their probabilities, in analogy with equation A.4:

〈x〉 =

∫ ∞
−∞

x ρ(x) dx. (A.11)

This is what you would get if you drew many cards from the infinite deck and
averaged their numerical values, in the limit of infinitely many trials.2

Similarly, we can calculate the average of the square of x,

〈x2〉 =

∫ ∞
−∞

x2 ρ(x) dx, (A.12)

and the average of any other function of x,

〈f(x)〉 =

∫ ∞
−∞

f(x) ρ(x) dx, (A.13)

in analogy with equations A.5 and A.6. And as a measure of the spread of the
distribution, we can calculate the standard deviation,

σx =

√∫
(x− 〈x〉)2ρ(x) dx =

√
〈x2〉 − 〈x〉2, (A.14)

in analogy with equations A.7 and A.8.

Problem A.6. Consider a uniform probability distribution: ρ(x) = ρ0 (a constant)
between x = −a and x = +a, and ρ(x) = 0 elsewhere. (a) What is ρ0 in terms of a?
(b) Find the standard deviation of this distribution, in terms of a. (c) If you choose
a number according to this probability distribution, what is the chance of it being
within one standard deviation of the average? (d) Draw a sketch of this probability
distribution, labeling the points one standard deviation to either side of the average.

2We also sometimes call 〈x〉 the expectation value of x, but the term can be misleading because
there’s no particular reason why you should “expect” to draw a card with this particular value—and
for some distributions ρ(x), you might never get this particular value.
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Problem A.7. Consider a Gaussian probability distribution: ρ(x) = Ae−(x/a)2 . (a)
What is A in terms of a? (b) Find the standard deviation of this distribution, in terms
of a. (c) If you choose a number according to this probability distribution, what is the
chance of it being within one standard deviation of the average? (d) Draw a sketch of
this probability distribution, labeling the points one standard deviation to either side
of the average. (Look up the needed integrals, or use Mathematica. For part (c), do
the integral numerically.)

Problem A.8. Sketch a probability distribution ρ(x) for which ρ = 0 at x = 〈x〉.

A.2 The Dirac delta function

When a physical object is localized in a very small space, its density (or probability
density or electric charge density) is very large within that space but zero everywhere
else. To express this density as a function of position, we could use a very narrow,
sharply peaked function with some particular shape (perhaps a rectangular function
or a Gaussian bell curve, as shown in Figure A.2). But often we don’t care about
(and perhaps don’t know) the actual shape, or even the actual width. Then we
can make our lives easier by taking the limit in which the density function becomes
infinitely narrow but infinitely tall, holding the area under the graph (that is, the
total mass, or probability, or electric charge) fixed. This limit of a function is called
a Dirac delta function (although it’s technically not a true function, according to
the strict mathematical definition).

In one dimension, we define the Dirac delta function, δ(x), to put the infinite
“spike” at the origin:

δ(x) =

{
∞ at x = 0,

0 elsewhere.
(A.15)

If instead we want the spike at x = a, we just shift the argument as we would for
any other function of x:

δ(x− a) =

{
∞ at x = a,

0 elsewhere.
(A.16)

Either way, we define the integral of the delta function to be exactly 1:∫ ∞
−∞

δ(x) dx =

∫ ∞
−∞

δ(x− a) dx = 1. (A.17)

Here the limits on the integrals don’t actually have to be −∞ and ∞, so long as
they include the point where the δ function is infinite.

Manipulating algebraic expressions involving delta functions is usually pretty
easy, once you get the hang of it. The most common trick is that wherever you see
a delta function multiplying some other function f(x), you can replace this function
with its value at whatever point the delta function has its spike:

f(x)δ(x− a) = f(a)δ(x− a). (A.18)
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Figure A.2: Sequences of rectangular functions (left) and Gaussian functions (right) that
become successively narrower and taller, with the total area under the graph fixed at 1. In
the limit of zero width and infinite height, either sequence becomes the Dirac delta function,
δ(x).

This works because the delta function is zero everywhere except x = a. Often such
expressions occur under integral signs, in which case you can then use equation A.17
to carry out the integral:∫

f(x)δ(x− a) dx =

∫
f(a)δ(x− a) dx = f(a), (A.19)

provided that the region of integration includes the point a. This result also tells
us that if f(x) is itself a delta function with its spike at x = a, then the integral is
infinite (or as the mathematicians say, “undefined”).

A multidimensional delta function is equivalent to a product of one-dimensional
delta functions, one for each dimension. For instance, in three dimensions we can
write

δ(3)(~r − ~a) = δ(x− ax)δ(y − ay)δ(z − az), (A.20)

where the superscript “(3)” simply indicates the dimensionality.

Section 3.1 explains how the delta function comes up in the theory of Fourier
transforms, and presents a cool identity (equation 3.6) that relates δ(x) to the
complex function eikx.

Problem A.9. To better understand the integration formula A.19, let’s approximate
the delta function using a rectangular function of the form shown in Figure A.2 (left).
Let ρa(x) denote such a rectangular function, equal to a constant between x = −a and
x = +a, with a suitable height ρ0. The function ρa(x − b) then has the same shape,
shifted to the right by b. For definiteness, let’s take the arbitrary function f(x) in
equation A.19 to be a power law, xn. Compute the integral∫ ∞

−∞
xnρa(x− b) dx

exactly, then take the limit a→ 0 and check that you get the expected result.
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Problem A.10. Repeat the previous problem but instead use a Gaussian to approx-
imate the delta function: ρa(x) = Ae−(x/a)2 (where A is a normalization constant
that you need to determine). Carrying out the integral for an arbitrary power law
xn is awkward, so just do the case n = 2. Look up the needed integral(s), or use
Mathematica.

A.3 Complex numbers

A complex number is an ordered pair of real numbers: a sort of two-dimensional
number or, if you like, a vector in an abstract two-dimensional space. If c represents
a complex number and a and b are its two components, then for many purposes we
could write simply

c = (a, b), (A.21)

listing the components in order as we would do for any other two-dimensional vector.
We define the magnitude |c| of a complex number (also called its modulus, especially
by mathematicians) in the same way as for any other vector, using the Pythagorean
formula:

|c| =
√
a2 + b2, (A.22)

where a and b are the two components of c. And as with any other vector, we can
add, negate, and subtract complex numbers, component-wise. And we can multiply
a complex number by a real number, just as we multiply vectors by real “scalars.”

The difference between complex numbers and ordinary two-dimensional vectors
is that for complex numbers we also define a new type of multiplication. For any
two complex numbers c1 = (a1, b1) and c2 = (a2, b2) we define the product as

c1c2 = (a1a2 − b1b2, a1b2 + b1a2), (A.23)

where again I’ve listed the two components in order. I’ll try to motivate this strange
formula below. First, however, let me show you how to remember it. Define the
symbol i so that i2 = −1. Then write each complex number c in the symbolic
format

c = a+ ib, (A.24)

so c1 = a1 + ib1 and c2 = a2 + ib2. Using this notation, we can work out the product
c1c2 using the ordinary rules of algebra:

c1c2 = (a1 + ib1)(a2 + ib2)

= a1a2 + ia1b2 + ib1a2 + i2b1b2

= (a1a2 − b1b2) + i(a1b2 + b1a2), (A.25)

where in the last step I substituted −1 for i2. Notice that this result is equivalent
to what I wrote in equation A.23. Similarly, by writing complex numbers in the
form a + ib and then treating i as an ordinary algebraic symbol, we obtain the
correct rules for addition, negation, and subtraction of complex numbers. We can
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also define the operation of division in the natural way, so that c1/c2 is the complex
number that, when multiplied by c2, gives c1.

Because there is no real number whose square is −1, the symbol i is called
the “imaginary” unit. The two components a and b of c = a + ib are called its
real part and imaginary part, respectively. But please don’t take these terms too
literally! Again: A complex number is simply a two-component vector with a funny
rule for multiplication.3 Its so-called “real” and “imaginary” parts are both equally
legitimate. If you’re uncomfortable with the idea of a number whose square is −1 (or
if you ever need to program a computer to do complex arithmetic using a language
that doesn’t already have this feature), just treat a complex number as a pair of
real numbers and use equation A.23 for multiplication.

In mathematical expressions, we denote the real and imaginary parts of a com-
plex number c as Re c and Im c, respectively. We can therefore express any complex
number as

c = (Re c) + i(Im c), (A.26)

avoiding the introduction of new letters of the alphabet such as a and b. If Im c = 0
then we say that c is a pure real number, while if Re c = 0 then we say that c is a
pure imaginary number.

We define the complex conjugate, denoted c∗, as the complex number whose real
part is the same as that of c but whose imaginary part has the opposite sign:

c∗ = (Re c)− i(Im c). (A.27)

This trivial-seeming operation is surprisingly useful, largely because multiplying c∗

by c gives us the squared magnitude of c:

c∗c =
[
(Re c)− i(Im c)

][
(Re c) + i(Im c)

]
= (Re c)2 + (Im c)2 = |c|2. (A.28)

When working with complex conjugates, it is useful to know the identities

(c1 + c2)∗ = c∗1 + c∗2, (A.29)

(c1c2)∗ = c∗1c
∗
2, (A.30)

(c∗)∗ = c. (A.31)

More generally, to evaluate the complex conjugate of a complicated expression, you
just put a ∗ on every symbol that stands for a complex number, “cancel” any double
∗’s, and change i to −i wherever it appears explicitly.

Problem A.11. Prove that multiplication of complex numbers is commutative: c1c2 =
c2c1.

Problem A.12. Prove equations A.29 through A.31.

3See also https://www.xkcd.com/2028/.

https://www.xkcd.com/2028/
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Figure A.3: The complex plane, with some examples of complex numbers plotted as points.
(Alternatively, we could plot them as vectors with their tails at the origin.)

Figure A.4: In polar coordinates, the magnitude (or modulus) of a complex number c is
denoted |c|, and its phase angle (or argument) is often denoted φ.

The complex plane

To visualize a complex number, we plot its two components in a two-dimensional
space, called the complex plane. By convention, we plot the real part along the
horizontal axis and the imaginary part along the vertical axis. Figure A.3 shows
some examples.

Often it is more useful to express the location of a number in the complex
plane using polar coordinates, as shown in Figure A.4. The distance of the plotted
point from the origin (that is, the length of the two-dimensional “vector”) is the
magnitude |c|. The angle, measured counter-clockwise from the real axis, is called
the phase (or among mathematicians, the argument) of the number, and often
denoted φ. We can then write the conversions from polar to rectangular coordinates
as

Re c = |c| cosφ, Im c = |c| sinφ. (A.32)

Using these polar-to-rectangular conversions, we can write any complex number
in terms of its polar coordinates:

c = |c|(cosφ+ i sinφ). (A.33)
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This polar form is often more convenient, and more intuitively helpful, than the
rectangular form, equation A.26. Moreover, we can write the polar form more
compactly using Euler’s formula,

eiφ = cosφ+ i sinφ, (A.34)

so that equation A.33 becomes simply

c = |c|eiφ. (A.35)

If |c| = 1, then we sometimes call the number a pure phase.
It’s best to think of Euler’s formula (equation A.34) as the definition of e to an

imaginary power. But this definition is useful because it implies the same algebraic
rules that apply to ordinary exponential functions:

ei(φ1+φ2) = eiφ1eiφ2 , (A.36)

einφ = (eiφ)n. (A.37)

Another useful identity is
(eiφ)∗ = e−iφ, (A.38)

which again says that to take the complex conjugate, you replace i by −i wherever
it appears.

Polar coordinates are especially helpful for understanding the strange formula
A.23 for multiplication. If we write our two complex numbers as c1 = |c1|eiφ1 and
c2 = |c2|eiφ2 , then their product is

c1c2 = |c1|eiφ1 |c2|eiφ2 = |c1||c2|ei(φ1+φ2), (A.39)

where I’ve used equation A.36 in the last step. This result says that in order to
multiply two complex numbers, we multiply their magnitudes and add their phases
(see Figure A.5). Geometrically, therefore, multiplication by a complex number c
consists of two operations: a stretch by a factor of |c|, and a rotation by the phase
angle of c. (If |c| < 1, as is often the case in quantum mechanics, then the stretch
is actually a shrink.)

Problem A.13. Use the definition A.34 to prove formulas A.36, A.37, and A.38. For
the first and third, you’ll need to use some trig identities. For the second, assume that
n is an integer and use “induction,” first proving that it works for a particular small n
and then showing that if it works for n then it must also work for n+ 1.

Problem A.14. Draw pictures to illustrate, in the complex plane, the operations of
addition, negation, and subtraction of complex numbers.

Problem A.15. Describe geometrically, in the complex plane, the operation of mul-
tiplying an arbitrary complex number by i.

Problem A.16. What is the geometrical interpretation of the operation of division of
two complex numbers? Illustrate the process with a picture similar to Figure A.5, and
describe the process in words.

Problem A.17. Draw a picture in the complex plane that shows how to take the
square root of a complex number. What is

√
i?
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Figure A.5: The geometrical interpretation of the product of two complex numbers. In
order to compute the product, we multiply the magnitudes of the two numbers, while we
add their phase angles. In the example shown here, |c1| = 1.5 and |c2| = 2.0.

Complex-valued functions

A complex-valued function ψ(x) is just a pair of ordinary functions, one for the real
part and one for the imaginary part:

ψ(x) = f(x) + ig(x) = Reψ(x) + i Imψ(x). (A.40)

We can combine such functions algebraically just as you would expect, using com-
plex arithmetic. We can also do calculus on complex-valued functions:

dψ

dx
=
df

dx
+ i

dg

dx
,

∫
ψ(x) dx =

∫
f(x) dx+ i

∫
g(x) dx. (A.41)

All the rules of calculus are what they should be, because derivatives and integrals
are ultimately defined in terms of differences and sums, which we’ve already defined
to operate separately on the two components of a complex number.

There are several ways to visualize a complex-valued function. The most straight-
forward is simply to plot the real and imaginary parts separately. The method I’ve
generally used in this book, however, emphasizes the magnitude and phase of each
function value rather than the real and imaginary parts. The trick is to use color
hues to represent the phases, as shown in Figure A.6. We associate the three
primary colors with three equally spaced directions in the complex plane, conven-
tionally putting red on the positive real axis (φ = 0), green at φ = 120◦, and blue
at φ = 240◦. (This arrangement is also conventional in computer graphics systems.)
The secondary colors (yellow, cyan, magenta) are half-way between the primaries,
with intermediate blends filling in all the other directions. Cyan then falls on the
negative real axis, while the positive imaginary axis corresponds to a yellowish green,
and the negative imaginary axis corresponds to purple. For a function ψ(x) of just
one variable, we can then plot |ψ| or |ψ|2 on the vertical axis and fill the colors in
below the curve to indicate the phases. For a function of two variables we can use
the saturation (or alternatively, the brightness) to indicate |ψ| or |ψ|2, so that zero
corresponds to white (or black), while the most intense colors correspond to some
maximum |ψ| value.
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Figure A.6: The conventional assignment of color hues to indicate phase angles in the
complex plane. Red is on the positive real axis, yellowish green on the positive imaginary
axis, cyan on the negative real axis, and purple on the negative imaginary axis. In this
image I have also made the color saturation proportional to the squared magnitude of the
complex number, so that zero corresponds to white and full saturation corresponds to some
maximum value of the magnitude, at the circle’s outer edge.

A.4 Vector spaces

Sometimes abstraction is a good thing, because it lets us learn a set of concepts just
once, and then apply them to many specific cases. The abstract framework that
applies to every quantum system is that of a vector space.

A vector space is a generalization of the system of ordinary three-dimensional
vectors. It consists of some collection of objects called vectors that we can add,
negate, and subtract, together with a collection of numbers called scalars that we
can multiply the vectors by, in an operation called scalar multiplication. All of these
operations have to obey the usual algebraic rules (commutative law, distributive
law, and so on), and, crucially, a vector space must be closed under all of these
operations, so that adding any two vectors, or multiplying any vector by any scalar,
results in another vector.

The most familiar vectors are simply n-tuples of real numbers, such as (a, b) or
(a, b, c), which we can also represent as arrows with magnitude and direction. If
the vectors are two-dimensional we get the simplest nontrivial vector space; three-
dimensional vectors live in a different vector space. The generalization to dimensions
higher than 3 is straightforward, although the vectors then become hard to draw.

But in quantum mechanics we need to generalize further, to vectors that aren’t
n-tuples at all. For example, we often use certain types of functions as our “vectors,”
with the usual rules for adding functions, negating functions, subtracting functions,
and scalar-multiplying functions. The functions can be defined on the entire real
line, or on just a finite line segment, or on a two-dimensional plane or a higher-
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dimensional space. Don’t confuse the dimension of the function domain with the
dimension of the resulting vector space! Vector spaces of functions (sometimes called
function spaces) are often infinite-dimensional, in a sense that I’ll define below.

The other generalization in quantum mechanics is that our scalars will be com-
plex numbers rather than reals. This makes even the smallest (two-dimensional)
vector space pretty hard to visualize!

In quantum mechanics we also require that our vector space have an inner
product operation, which combines any two vectors to produce a scalar. If we
denote the inner product of vectors α and β as 〈α|β〉, then this operation must have
the following properties:

〈β|α〉 = 〈α|β〉∗, (A.42)

〈α|β1 + β2〉 = 〈α|β1〉+ 〈α|β2〉, (A.43)

〈α1 + α2|β〉 = 〈α1|β〉+ 〈α2|β〉, (A.44)

〈α|cβ〉 = c〈α|β〉, (A.45)

〈cα|β〉 = c∗〈α|β〉, (A.46)

where in the last two equations c is an arbitrary scalar. Aside from the occasional
appearance of a ∗ for complex conjugation, these properties are the same as for
the dot product of ordinary three-dimensional vectors. To summarize the last four
relations we say that the inner product is bilinear.4 The ∗ in equation A.42 ensures
that the inner product of any vector with itself is a real number; we call the square
root of this number the length or norm of the vector. The ∗ in equation A.46 is
required for consistency with equations A.42 and A.45.

If the norm of a vector is 1, we call it a unit vector, or say that it is normalized.
If the inner product of two vectors is 0, we say they are orthogonal. And if we have
a collection of vectors {αi} such that any vector in the space can be written as a
linear combination of them,

β = c1α1 + c2α2 + · · · (A.47)

(for an arbitrary vector β and some set of scalars {ci}), then we say the set {αi}
spans the vector space, or is complete, or forms a basis. We will almost always work
with basis vectors that are normalized and mutually orthogonal; in that case we
call the collection an orthonormal basis.

The dimension of a vector space is the number of mutually orthogonal vectors
needed to form a complete basis. For the vector space of n-tuples of numbers, the
dimension is simply n. But for function spaces the dimension is often infinite.

Examples of vector spaces

I’ll use the standard symbol Cn to represent the vector space of n-tuples of complex
numbers. So C2 is the vector space of all ordered pairs of complex numbers, (c1, c2);

4More precisely, the inner product is linear in its second argument and antilinear in its first
argument, due to the ∗ in equation A.46.
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C3 is the space of all ordered triples of complex numbers, (c1, c2, c3); and so on.
The inner product of two vectors in Cn is simply the familiar dot product, except

that we complex-conjugate each component of the vector on the left. For instance,
if α is the vector (c1, c2, c3) and β is the vector (d1, d2, d3), then

〈α|β〉 = c∗1d1 + c∗2d2 + c∗3d3 =
∑
i

c∗i di. (A.48)

You can easily check that this definition satisfies all the requirements of equations
A.42 through A.46.

The dimension of the space Cn is simply n, as we can check by constructing
the standard orthonormal basis, in which each basis vector has a single component
equal to 1 with the rest of the components equal to 0. For instance, the standard
basis for C3 is

(1, 0, 0), (0, 1, 0), (0, 0, 1). (A.49)

These vectors are normalized, they are mutually orthogonal, and an arbitrary vector
of the form (c1, c2, c3) can be written as a linear combination of them.

You may or may not be surprised to learn that every n-dimensional vector
space with complex scalars (and with the same finite n) is equivalent to Cn. By
“equivalent,” I mean that we can put all the vectors in one-to-one correspondence,
and this correspondence is preserved under addition, scalar multiplication, and so
on. (The technical term for this kind of equivalence is isomorphism.) So once
you understand Cn, you know everything there is to know about finite-dimensional
vector spaces (with complex scalars).

Things get more complicated with vector spaces of infinite dimension.
Our prototype of an infinite-dimensional vector space is the collection of all

“square-integrable” complex-valued functions of x, where x is a (real) variable rang-
ing from −∞ to ∞. The square-integrable condition says that for every function
α(x) in our space, the normalization integral∫ ∞

−∞
|α(x)|2 dx (A.50)

must be finite. (So in quantum mechanics language, this is the space of all normaliz-
able wavefunctions for a particle in one dimension, plus the function α(x) = 0.) This
space is an example of what is called a Hilbert space (a particular type of infinite-
dimensional vector space), so to denote it I will use the (nonstandard5) symbol H1,
where the 1 indicates that we’re talking about functions of just one variable (x).
The space of square-integrable complex-valued functions of n variables would then
be denoted Hn.

5Mathematicians call this space L2, where the 2 indicates that we square a function to take
its norm, and the L indicates that we compute the norm using what’s called Lebesgue integration.
But to us physicists that 2 goes without saying, and the difference between a Lebesgue integral
and an ordinary (Riemann) integral is of no consequence. What we do care about is whether our
functions depend on one variable or several. And for whatever reason, the name Hilbert space has
caught on among physicists.
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In analogy to equation A.48, the inner product of two H1 functions α(x) and
β(x) would be

〈α|β〉 =

∫ ∞
−∞

α∗(x)β(x) dx. (A.51)

The sum becomes an integral, because the discrete index i has become a continu-
ous variable x. Again, it is not hard to show that this definition satisfies all the
requirements of equations A.42 through A.46. The restriction to square-integrable
functions ensures that all inner products are finite.

One set of basis “functions” for H1 would be the Dirac delta functions δ(x− a),
for all possible values of a. These form a complete set, so any H1 function can be
expressed as a linear combination of them. However, they are not actual functions
and are not themselves members of H1. Similarly, the complex exponential functions
eikx, for all real numbers k, form a complete set but are not square-integrable and so
are not themselves members of H1. An example of a basis set of actual H1 functions
would be the harmonic oscillator energy eigenfunctions described in Section 2.4. If
we restrict our vector space to functions that are nonzero only within the finite
interval 0 < x < a, then a convenient set of basis functions is the sine waves
sin(nπx/a), for positive integers n (see Section 1.4). In any case, we need an infinite
number of basis functions to span the vector space, so the dimension of the space
is infinite.

Problem A.18. Find three vectors that form an orthonormal basis for C3, without
using any of the trivial unit vectors listed in A.49.

Problem A.19. The vector space H1 includes all normalizable functions of x. What
about the set of all normalized functions of x, that is, all allowed wavefunctions for a
quantum particle in one dimension: Is this set a vector space? Why or why not?

Combining vector spaces

Suppose we have two vector spaces, not necessarily of the same dimension. We can
then combine them to make a larger vector space by building products of the form
αβ, where α is a vector from the first space and β is a vector from the second. The
new vector space, called a tensor product space, consists of all such products and
all possible linear combinations of these products.

But what kind of “products” am I talking about here? If α and β are functions
(of variables with different names, perhaps x and y), then αβ would just be an
ordinary product, which is now a function of all of the variables on which α and β
depend. Alternatively, if α is a function while β is an n-tuple of complex numbers
(that is, a member of Cn), or vice-versa, then αβ would again be a familiar type
of product, resulting in an n-tuple of functions. But if α is a member of Cm and β
is a member of Cn, then αβ is really the tensor product, often denoted α ⊗ β, and
defined as the list of all possible products of the components of α and β, with one
component taken from each. So, for example, if α = (c1, c2) and β = (d1, d2, d3),
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then

α⊗ β = (c1, c2)⊗ (d1, d2, d3) = (c1d1, c1d2, c1d3, c2d1, c2d2, c2d3). (A.52)

(The order in which I’ve listed the components of the tensor product is actually
arbitrary, but once you pick an order you need to use it consistently.) Again, the
tensor product space consists of all such possible products, and all possible linear
combinations of these products.

As you can see, the dimension of a finite-dimensional tensor product space is
equal to the product of the dimensions of the two original spaces. We write

Cm ⊗ Cn = Cmn, (A.53)

where now the ⊗ symbol has the more abstract meaning of combining the entire
spaces (by taking tensor products of their respective vectors).

If either or both of the two original vector spaces is infinite-dimensional, then
so is the tensor product space. There’s no special symbol for the tensor product of
Cm with Hn, but a tensor product of two H spaces gives a larger H space:

Hm ⊗Hn = Hm+n. (A.54)

So, for example, we can think of H2, the space of all square-integrable functions of
two variables, as a tensor product of two H1 spaces.

A.5 Matrices

A matrix is a rectangular array of numbers, arranged in rows and columns:

A =

A11 A12 · · ·
A21 A22 · · ·

...
...

. . .

 . (A.55)

The individual numbers Aij are called the elements of the matrix. Notice that, by
convention, the first subscript indicates the row number while the second subscript
indicates the column number. If the number of rows equals the number of columns
we say the matrix is square. In quantum mechanics all our matrices are either
square, or have just a single row or a single column. A matrix with just one row is
also called a row vector, while a matrix with just one column is also called a column
vector.

If two matrices have the same dimensions (same numbers of rows and columns),
then we can add them, element by element:

A+B =

A11 +B11 A12 +B12 · · ·
A21 +B21 A22 +B22 · · ·

...
...

. . .

 . (A.56)

Matrix subtraction works in the same way. We can also negate a matrix by negating
each of its elements, and multiply a matrix by a scalar (an ordinary number), by
multiplying each element by that scalar.
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Matrix multiplication

The interesting operation on matrices is matrix multiplication. We define the prod-
uct AB to be the matrix whose ij element is constructed from the ith row of A and
the jth column of B, according to the formula

(AB)ij = Ai1B1j +Ai2B2j + · · ·

=
∑
k

AikBkj , (A.57)

where the sum runs over all the columns of A and all the rows of B. Naturally
this works only if the number of columns in A equals the number of rows in B; if
that’s not the case then the product is undefined. Here is an example in which I’ve
highlighted the row of A and the column of B that contribute to the element of
their product in row 3 and column 2:A11 A12 A13

A21 A22 A23

A31 A32 A33

B11 B12 B13

B21 B22 B23

B31 B32 B33

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 . (A.58)

To carry out this portion of the multiplication, I imagine picking up the second
column of B, rotating it 90 degrees counterclockwise, and laying it along the third
row of A, in order to place the elements that get multiplied next to each other.
Then just insert + signs between the pairs:

A31

B12

A32

B22

A33

B32
→ A31B12 +A32B22 +A33B32 = C32. (A.59)

Matrix multiplication is associative (that is, (AB)C = A(BC)), and it dis-
tributes over matrix addition (for example, A(B + C) = AB + AC). But matrix
multiplication is not commutative: AB 6= BA, except in some special cases, when
we say that A and B commute.

The most common type of matrix multiplication in quantum mechanics is when
we multiply a square matrix by a column vector, to obtain another column vector.
In three dimensions the explicit formula would beA11 A12 A13

A21 A22 A23

A31 A32 A33

c1

c2

c3

 =

A11c1 +A12c2 +A13c3

A21c1 +A22c2 +A23c3

A31c1 +A32c2 +A33c3

 . (A.60)

This operation is also called a linear transformation on the vector (c1, c2, c3), be-
cause each of the resulting vector components is a linear function of the three
components c1, c2, and c3. In general the output vector will differ from the input
vector in both length and direction, so we can think of the transformation as a
combination of a stretch (or shrink) and a rotation.6

6For a marvelously visual explanation of matrices as linear transformations, watch the video
“Linear Transformations and Matrices” by Grant Sanderson, https://www.youtube.com/watch?
v=kYB8IZa5AuE, which is part of the Essence of Linear Algebra series on the 3Blue1Brown YouTube
channel.

https://www.youtube.com/watch?v=kYB8IZa5AuE
https://www.youtube.com/watch?v=kYB8IZa5AuE
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Problem A.20. Consider the following matrices:

A =

(
1 2
2 3

)
, B =

(
0 2
−2 0

)
, C =

(
1 −1
1 1

)
.

(a) Compute the matrix products AB, BA, AC, CA, BC, and CB.

(b) Which of these pairs, if any, commute?

(c) Check the associative law, (AB)C = A(BC).

(d) Check the distributive law, A(B + C) = AB +AC.

Problem A.21. A square matrix A is diagonal if Aij = 0 for all i 6= j. Prove that
any two diagonal matrices (of the same dimension) commute.

Problem A.22. Solve the linear system(
2 3
4 5

)(
x
y

)
=

(
6
8

)
for x and y.

Problem A.23. Consider the following matrices:

A =

(
2 0
0 1/2

)
, B =

(
0 1
−1 0

)
, C =

(
0 3
3 0

)
, D =

(
2 4
1 2

)
.

Interpret each of these matrices as a linear transformation, by determining how it
transforms various vectors. Start with the unit vectors

(
1
0

)
and

(
0
1

)
, but be sure to

check some others as well. Describe or draw the effects of each transformation.

Special types of matrices

The transpose of a matrix, denoted by a superscript T , is what you get when you
interchange the matrix’s rows and columns:

(AT )ij = Aji. (A.61)

If a (square) matrix is its own transpose we say it is symmetric, while if it is minus
its transpose we say it is antisymmetric. For matrices with complex elements we
are usually more interested in the adjoint, denoted by a † (“dagger”) and defined
as the complex conjugate of the transpose:

(A†)ij = A∗ji. (A.62)

If a (square) matrix is its own adjoint we say it is Hermitian; in that case its real
part is symmetric while its imaginary part is antisymmetric. (Sometimes the adjoint
is called the Hermitian conjugate.)

Note that transposing a column vector turns it into a row vector (and vice versa).
Moreover, the adjoint of a column vector,c1

c2
...


†

=
(
c∗1 c∗2 · · ·

)
, (A.63)
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is just what we need to take its inner product with a second column vector via
matrix multiplication, according to equation A.48:c1

c2
...


†d1

d2
...

 =
(
c∗1 c∗2 · · ·

)d1

d2
...

 =
∑
i

c∗i di. (A.64)

(Note that a 1× n matrix multiplied by an n× 1 matrix gives a 1× 1 matrix, that
is, a single number.)

An identity matrix is a square matrix with a 1 in each space along the main
diagonal, and a 0 everywhere else:

Identity matrix =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

 . (A.65)

Multiplying by such a matrix leaves any other matrix unchanged. The inverse of
a matrix, denoted by a superscript −1, is the matrix that we can multiply by to
obtain the identity matrix:

AA−1 = A−1A = 1, (A.66)

where 1 denotes the identity matrix. If the inverse of a matrix is the same as its
transpose, then we say the matrix is orthogonal. For matrices with complex elements
we are usually more interested in the case where the inverse is equal to the adjoint;
we then say the matrix is unitary.

Here is a summary of the four related types of special matrices that I’ve just
defined:

Symmetric: AT = A

Hermitian: A† = A

Orthogonal: AT = A−1

Unitary: A† = A−1

(A.67)

Hermitian is the natural complex generalization of symmetric, and unitary is the
natural complex generalization of orthogonal.

Problem A.24. Compute the matrix products(
2 3

)(4
5

)
and

(
2
3

)(
4 5

)
.

Problem A.25. Consider the following matrices:

A =

(
1 0
0 −1

)
, B =

(
0 −i
i 0

)
, C =

1√
2

(
1 −1
1 1

)
.

Which of these matrices is symmetric? Antisymmetric? Hermitian? Orthogonal?
Unitary?

Problem A.26. Prove that the adjoint of the product of two matrices is the product
of the adjoints, in reverse order : (AB)† = B†A†.
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Eigenvectors and eigenvalues

When a square matrix A acts on a nonzero column vector α via matrix multiplica-
tion, the result is another column vector that can differ from α in both magnitude
and direction. In some special cases, however, the direction might not change—only
the magnitude. We can then write

Aα = kα (A.68)

for some numerical constant k, and we say that α is an eigenvector of A with
eigenvalue k. (The prefix eigen comes from German, and could be translated as
“characteristic” or “particular.”) If k is a real number greater than 1, then the
action of A stretches α by a factor of k; if k is a real number less than 1, then
instead of a stretch it’s a shrink. We also allow k to be negative, in which case A
flips the eigenvector’s direction (in addition to a possible stretch or shrink).

In linear algebra courses they teach you how to find the eigenvalues of a given
matrix A by solving what’s called its characteristic equation. The idea is to slip an
identity matrix (“1”) into the right-hand side of equation A.68, move this term to
the left-hand side, and factor out the α to obtain

(A− k · 1)α = 0, (A.69)

where 0 is technically the zero vector. They also teach you that equations of this
form have solutions if and only if the determinant of the matrix acting on α is zero:

det(A− k · 1) = 0. (A.70)

This is the “characteristic equation” that I promised. When written out for the case
where A is an n×n matrix, it becomes an nth-order polynomial equation, which is
usually hard to solve for n > 2. In the 2×2 case the explicit characteristic equation
is

(A11 − k)(A22 − k)−A12A21 = 0, (A.71)

which you can solve for k using the quadratic formula.

A quadratic equation generically has two solutions, so a 2×2 matrix generically
has two eigenvalues. Often, though, the solutions are complex, while in some special
cases the two solutions can be degenerate, that is, identical to each other.

For larger matrices, solving the characteristic equation is usually impractical.
In quantum mechanics, though, many of the matrices we work with are sufficiently
simple that we can find eigenvalues through physical arguments or through a bit of
trial-and-error. For more complicated matrices, there are iterative algorithms for
finding eigenvalues numerically, and today’s computers can carry out this process
for a remarkably large matrix in a mere fraction of a second. Generically, an n× n
matrix has n eigenvalues, although again there are special cases in which two or
more eigenvalues can be degenerate.
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Regardless of the dimension, if a matrix is Hermitian then it’s not hard to prove
that its eigenvalues must all be real numbers. In quantum mechanics we are almost
never interested in the eigenvalues of non-Hermitian matrices.

Once we know the eigenvalues of a matrix, it’s straightforward (though some-
times tedious) to use equation A.68 to find the eigenvectors. (The iterative algo-
rithms mentioned above find the eigenvalues and eigenvectors simultaneously, so in
that case no further step is even necessary.) Notice that if α is an eigenvector with
eigenvalue k, then so is any constant times α, so every eigenvector really defines
what we might call an eigendirection. For a Hermitian matrix, these directions are
all mutually orthogonal to each other, so we can use the normalized eigenvectors
as an orthonormal basis. (When there are m degenerate eigenvalues we get an m-
dimensional space of eigenvectors, from which we can always choose basis vectors
that are mutually orthogonal.)

Problem A.27. Show that α and β are eigenvectors of A, where

A =

0 1 0
1 0 1
0 1 0

 , α =

 1√
2

1

 , β =

 1
0
−1

 .

What are the corresponding eigenvalues? Because A is Hermitian, its eigenvectors
must be orthogonal (if, as in this case, their eigenvalues are distinct). Check that α is
orthogonal to β, then find a vector that is orthogonal to both α and β, check that it
too is an eigenvector of A, and find the corresponding eigenvalue.

Problem A.28. Find the eigenvalues of each of the matrices in Problem A.20, by
solving the characteristic equation in each case. Comment briefly on the results.

Problem A.29. Find the eigenvectors and eigenvalues of each of the matrices in Prob-
lem A.23, by inspection or trial-and-error if possible (without using the characteristic
equation unless you have to). Explain how the results relate to your descriptions of the
transformations in that problem.

Problem A.30. What can you say in general about the eigenvalues and eigenvectors
of a diagonal matrix?
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Mathematica tutorial

This appendix uses a tutorial format to introduce the features of Wolfram Math-
ematica that are used in this book. If you have never used Mathematica before
then I suggest working through the entire tutorial as early as possible. If you are
already somewhat proficient with Mathematica then you may be able to skip over
some sections, or perhaps use this appendix as a reference for looking up features
of the language as you need them. Either way, you should read this appendix with
your fingers on the keyboard, typing in every displayed instruction as you come
to it. Because I haven’t reproduced any of Mathematica’s output, you’ll get very
little out of merely reading without typing. If you’re using an electronic version
of this book, please resist the temptation to electronically copy and paste the code
fragments; typing every character with your own fingers will provide the practice
you need to make this powerful tool your own.

B.1 Basic plots and basic syntax

There’s no better starting point than a basic plot, of a real-valued function of a
single variable. Here’s an example, for a function that comes up in Section 2.4:

Plot[(4x^4 - 12x^2 + 3)Exp[-x^2/2], {x, -5, 5}]

Type this line into Mathematica now, then hit shift-enter to execute it. The plot
should appear in a moment.

This single line of code illustrates several of Mathematica’s most important
features:

• Mathematica code is built out of functions, such as Plot and Exp. Function
names are case-sensitive, and all of Mathematica’s built-in function names
begin with capital letters.

• Function arguments are enclosed in square brackets and separated by commas.
Here the Plot function has two arguments (both compound structures), while
the Exp function has just one.

235
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• The first argument of Plot is a mathematical expression, built out of the Exp

function and the operators +, -, /, and ^. Multiplication requires no operator
(just as in standard math notation), although you can always use * for clarity.
(In a product of two variables such as a and b you need to write a*b or a b,
so Mathematica won’t think you’re referring to a single variable named ab.)

• In compound math expressions, exponentiation takes precedence over multi-
plication and division, which in turn take precedence over addition and sub-
traction. So -x^2/2 means −(x2)/2, not −x2/2. To override the default
grouping you can use parentheses. The spaces that I’ve inserted around the
+ and - are merely for readability.

• The second argument of Plot is a list, delimited by curly braces, with the
three elements of the list separated by commas. Here the list specifies the
independent variable of the function to plot, followed by the starting and
ending values of this variable. I’ll say more about lists in Section B.2.

Assigning names

For all but the simplest tasks, you’ll want to break up your Mathematica code into
multiple statements, to be executed in sequence. The following three lines produce
the same output as the single line above, but provide more flexibility:

psi = (4x^4 - 12x^2 + 3)Exp[-x^2/2];

xMax = 5;

Plot[psi, {x, -xMax, xMax}]

Here I’ve assigned the names psi and xMax to the function I want to plot and
the maximum x value, so I can more easily modify or reuse these quantities. The
semicolons serve as statement separators, and also suppress any displayed output
of the lines that precede them. Go ahead and test this code now, putting all three
lines into a single Mathematica “cell” (as indicated by the bracket at the window’s
right margin). Again hit shift-enter to execute the code. Then try modifying xMax,
and psi too if you wish, to see how the plot changes.

Because all of Mathematica’s built-in names (such as Plot and Exp) begin with
capital letters, it’s a good habit to begin all your own names (such as psi and
xMax) with lower-case letters. Then you can easily tell at a glance which names are
Mathematica’s and which are yours. You’ll also avoid inadvertent name conflicts,
without having to learn all of Mathematica’s built-in names (about 5000 of them,
as of this writing).

Plot options

If you set xMax too high in the previous example, you’ll notice that Mathematica
expands the vertical scale of the plot and clips off the peaks of the function’s five
“bumps.” This is because Mathematica thinks you want to see more detail in the
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small function values that occur at larger values of |x|. To override this often-
unwanted behavior, you can use the PlotRange option:

xMax = 12;

Plot[psi, {x, -xMax, xMax}, PlotRange->All]

Try this modification now, then try providing an explicit range for the plot, using
a two-element list:

PlotRange->{-5, 5}

Here are a couple of other useful options for modifying the appearance of a Plot:

Plot[psi, {x, -xMax, xMax}, PlotStyle->{Red, Thick},

AspectRatio->0.4]

You can specify options in any order, always separated by commas. For a complete
list of options to use with Plot, use the menus to find the Mathematica docu-
mentation (“Help → Wolfram Documentation” in my version), then use the search
feature to find the Plot function and, on its documentation page, scroll down to
the “Options” section.

Instead of the color Red, you can (of course) specify other pre-defined colors, or
define your own colors using either Hue or RGBColor:

Hue[0.75, 1, 1]

RGBColor[0.5, 0, 1]

Try each of these, varying the numerical values to see how the color changes. All of
the arguments of Hue and RGBColor should be in the range from 0 to 1, although for
the first argument of Hue only the difference from the next-lowest integer is used, so
the hues cycle repeatedly as this argument increases or decreases. The second and
third arguments of Hue are saturation and brightness, and if you omit them you’ll
get the default of 1 for each.

More functions to plot

Besides Exp, Mathematica knows every named math function you’re likely to have
heard of: Sin, Cos, Tan, ArcSin, ArcCos, ArcTan, Sinh, Cosh, Tanh, Sqrt, Abs, Log,
and more. The trig functions take angles in radians, and the logarithm function
defaults to base e, though you can specify any base you want as an additional argu-
ment (see the documentation for examples). Mathematica also knows the constants
Pi and E (note the capitalization!). And Mathematica knows all sorts of special
functions that come up in advanced mathematics, including Bessel functions, the
gamma function, and the orthogonal polynomials described in Sections 2.4, 6.3,
and 6.5.

But I’m really getting ahead of myself here. There’s no need to learn about all
these functions now, as long as you know how to do simple stuff like plotting a basic
sine function:
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Plot[Sin[10x], {x, 0, Pi}]

Another need that arises fairly often is to define (and plot) a function using
different formulas for different ranges of the independent variable. I usually do this
with Mathematica’s If function:

Plot[If[x<0, 0, x^2], {x, -1, 1}]

Notice that If returns its second argument if the condition in the first argument is
true; otherwise it returns its third argument.

If the function you’re plotting is discontinuous, you can use the Exclusions->

None option to connect the segments:

Plot[If[x>-1 && x<1, 0, 1], {x, -2, 2}, Exclusions->None]

(Try this code both with and without the Exclusions option.) This example also
shows how to build a compound condition using && for “and”; the symbol for “or”
is ||. In still more complicated situations you may need to embed one If function
within another, or look up the more versatile Piecewise function.

Function definitions and variable replacements

When you assigned a mathematical expression to the name psi a little while ago,
you were telling Mathematica to replace “psi” with that expression wherever this
name subsequently appears. For more flexibility, though, you can instead define
your own function. Try this example:

gaussian[x_] := Exp[-x^2]

Here there are two differences from simply saying gaussian = Exp[-x^2]. The
first is the replacement of = with :=, which delays Mathematica’s evaluation of the
right-hand side until later, when the gaussian function is actually used. The second
difference is appending [x_] to the name gaussian, indicating that you’re actually
defining a function that takes a single argument, and that on the right-hand side
this argument has the formal name x. When you later use the function you can
insert any expression you like for this argument, and Mathematica will insert your
expression in place of x. Try each of these uses, one at a time:

gaussian[0.5]

gaussian[y]

gaussian[(a-b)/c]

Plot[gaussian[x-5] + gaussian[x+5], {x, -10, 10}]
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It can sometimes be hard to decide whether to define a function in this way,
or to simply assign a name as in the definition of psi above. I usually stick with
a simple name assignment for an expression that I won’t be needing to modify in
the ways illustrated here (e.g., replacing x with y or something more complicated).
And if you do want to make such a replacement in a previously named expression,
you can do it like this:

psi /. x -> 3z (* replace x with 3z wherever it appears *)

I usually pronounce the /. operator as “at the point.” Here I’ve also shown how
to insert brief comments into Mathematica code (but for more lengthy explanatory
comments, see below).

Working with notebooks

By now you’ve executed quite a few Mathematica instructions, many of which are
minor modifications of earlier instructions. You may have typed some of these
modifications in new cells, below your previous work, or you may have simply edited
your previous code and re-executed it in the same cell.

You may be interested to know that as far as Mathematica is concerned, it makes
no difference where you put each new instruction, or whether you delete earlier in-
structions. You can put new instructions into existing cells, or between them, or
below them, or even in a totally separate window. All name assignments will con-
tinue to exist, in Mathematica’s internal state, until you either quit Mathematica,
or quit the so-called Kernel (which you can do using a menu command), or explicitly
erase them using the Clear function. By the same token, when you save your work
and reopen it during a new Mathematica session, you’ll need to re-execute any cells
containing name assignments that you wish to use in your subsequent work.

A Mathematica document, displayed in a single window, is called a notebook,
and will be saved with the file extension .nb. Each notebook’s contents are divided
into cells, as indicated by the brackets at the window’s right margin. Code execution
takes place one cell at a time, so it’s a good idea to put a group of closely related
instructions into a single cell when they should always be executed together.

You can also create non-executable notebook cells that contain explanatory text
and section headings. Go to Format → Style (in the menus) to denote the current
cell as one of these non-executable types. Mathematica will automatically group
cells together, within sections and so on, indicating the group structure with multiple
levels of right-margin brackets. If you wish to delete an entire cell or group of cells,
click on its bracket to select it and then choose Clear from the Edit menu. You can
also “collapse” a cell group, hiding most of its content, by double-clicking on its
bracket. Double-click again to un-collapse the group.

Problem B.1. Plot the function (1 − 2
3r + 2

27r
2)e−r/3, taken from Table 6.2. The

variable r is always positive, and you should show all values where the function isn’t
negligible. Use a non-default color of your choice.
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Problem B.2. Plot the function (5 cos2 θ−1) sin θ, taken from Table 6.1. The variable
θ ranges from 0 to π. There’s no θ key on your keyboard, so either use a variable
name like t or theta, or look up how to input Greek letters in the Mathematica
documentation. Use a non-default color and non-default aspect ratio of your choice.

Problem B.3. Use Mathematica to plot the uppermost curve in Figure 3.11, showing
both the constant portion on the left and the curved portion on the right, given by
equation 3.36. Use the variable name v0 for the constant V0, equal to 0.025. Be sure
that the two portions of the graph are connected in your plot. For the square root
function you can either use Sqrt or just raise to the power 0.5.

Problem B.4. Insert a title cell and several section heading cells into the Mathematica
notebook that you’ve created while working through this tutorial. Use appropriate Style
settings, and practice collapsing and expanding the sections by double-clicking on the
brackets at the right of the window.

B.2 Lists, tables, and animation

To show multiple graphs at the same time, you can plot a list of functions:

Plot[{Sin[x], Cos[x]}, {x, 0, 8Pi}]

Mathematica colors the multiple curves differently by default. To specify your own
colors, provide a list to the PlotStyle option:

Plot[{Sin[x], Cos[x]}, {x, 0, 8Pi},

PlotStyle->{{Red, Thick}, {Blue, Thick}}]

Here I’ve actually used a list of lists, to specify the thicknesses of the curves as well.
Try this code as written, then try it again with simply PlotStyle->{Red, Thick}.

Lists have all sorts of uses besides plotting. You can construct a list using
curly braces, and its elements can be numbers, names, functions, other lists, or any
expressions at all. To extract or modify a particular element of a list, you put that
element’s number (“index”) in double square-brackets:

elements = {hydrogen, helium, lithium, berilium, boron, carbon};

elements[[2]]

elements[[4]] = beryllium; elements

Note that the index numbering starts with 1, not 0 as in some computer languages.
But try typing “elements[[0]]” and see what you get!

Tables

Often you’ll want to work with a list of expressions that’s built from some pattern.
Then, instead of explicitly typing each expression inside curly braces, you can build
the list with Mathematica’s Table function:
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Table[Sin[n*Pi*x], {n, 1, 9}]

Note the syntactical similarity to Plot, with a list that specifies the variable to vary
and its beginning and ending values. With Table this variable changes in increments
of 1 by default, but you can specify any other step size as a fourth element of the
list. Here is an example that plots just five of these sine functions, with vertical
displacements:

Plot[Table[Sin[n*Pi*x] + 1.5(n-1), {n, 1, 9, 2}], {x, 0, 1},

AspectRatio->1]

Another option for multiple graphics is to use Table to produce a list of plots:

Table[Plot[x^n Exp[-x], {x, 0, 10}], {n, 0, 3}]

(To eliminate the curly braces and commas in the output, you can look up how to
use the GraphicsRow, GraphicsColumn, and GraphicsGrid functions.)

Plotting lists of values

To plot individual points rather than curves, use the ListPlot function:

data = Table[{x, Exp[-x^2]}, {x, -3, 3, 0.1}];

ListPlot[data]

This example is necessarily contrived; ordinarily you would use ListPlot only when
you don’t have a simple formula that you could just as well feed to Plot. You can use
the PlotStyle option to change the color of the plotted dots, and the PlotMarkers

option to get other shapes besides dots, but taking full control over the marker
appearance is surprisingly difficult in Mathematica.

More often in theoretical work we simply want to connect the dots to obtain a
continuous curve:

ListPlot[data, Joined->True]

Alternatively, from a collection of data you can create an interpolating function,
which you can then evaluate and plot (within the range spanned by the data) just
as any other function:

interp = Interpolation[data];

Plot[interp[x], {x, -3, 3}]

Manipulating and animating a plot

Another way to show how a plot (or any other Mathematica output) depends on a
parameter is to use the Manipulate function:

Manipulate[Plot[Sin[n*Pi*x], {x, 0, 1}], {n, 1, 100, 1}]
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Note again the syntactic similarity to Plot and Table, with a list that specifies
the variable (here n), its beginning and ending values, and the step size (which you
can omit for a parameter that varies continuously). As you can see, the output of
Manipulate includes a slider that you can drag to vary the parameter interactively,
along with a tiny “+” button that you can click to reveal animation controls and a
text box for fine adjustments. Here is an example that’s nice to animate:

Manipulate[Plot[Sin[x]Cos[t] + Sin[2x]Cos[3t], {x, 0, Pi},

PlotRange->{-2, 2}], {t, 0, 2Pi}]

Notice the use of a fixed PlotRange to prevent Mathematica from rescaling the
graph as t changes.

Problem B.5. The New Zealand $100 banknote famously shows a portrait of Ernest
Rutherford along with a plot of the superimposed functions e−t and 1−e−t, representing
the relative amounts of a radioactive substance and its decay product over time. Use
Mathematica to produce a similar plot of these functions.

Problem B.6. Use Table to make a list of the squares of the first 100 positive integers.
Then tell Mathematica to show just element 42 from this list, on a line by itself.

Problem B.7. The energy levels of a hydrogen atom are −(13.6 eV)/n2, where n is
a positive integer. Use Table to make a list of the first ten energy levels (as numbers
in eV), then plot an energy level diagram, showing each level as a horizontal line. The
name and range of the dummy variable on the horizontal axis are arbitrary (I suggest
simply {x,0,1}). Use the option Ticks->{None,Automatic} to suppress the labeling
of the horizontal axis. Adjust the aspect ratio to make the diagram taller than it is
wide. By default, Mathematica will put each line in a different color; see if you can
figure out how to use PlotStyle to make them all the same color.

Problem B.8. Use Mathematica to reproduce each of the plots in Figure A.2, show-
ing a sequence of rectangular functions and a sequence of Gaussian bell curves. (Don’t
worry about the shading or transparency, unless you have time to dig into the docu-
mentation to figure out how to do those things.) Then use Manipulate to create a plot
of each shape with a slider to control the height and width.

B.3 Complex numbers, functions, and plots

To create complex-valued numbers and expressions in Mathematica you simply use
a capital I for the imaginary unit. Arithmetic then works just as it should:

c = (1 + I)(1 + 2I)

The functions Re and Im extract the real and imaginary parts of an expression,
while Abs gives the modulus (magnitude) of a complex number and Arg gives its
phase angle in radians:

{Abs[c], Arg[c]}
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To take the complex conjugate you can type c* or Conjugate[c].

Moreover, Mathematica knows all about the complex exponential function eiθ.
Here, for example, is a Gaussian wavepacket (see Section 3.2):

psi1 = Exp[-x^2] Exp[I*5*x];

Plot[{Re[psi1], Im[psi1]}, {x, -3, 3}, PlotRange->All]

Plotting phase as color

The preceding example plots the real and imaginary parts of the function separately,
in different colors. Usually, though, the real and imaginary parts are of less concern
to us than the magnitude and phase. We therefore plot the magnitude (or squared
magnitude) of a complex function on the vertical axis, and fill the area beneath
with color hues to indicate the phases. Here is the code to do that:

Plot[Abs[psi1], {x, -3, 3},

PlotPoints -> 300,

Filling -> Axis,

ColorFunction -> Function[x, Hue[Arg[psi1]/(2Pi)]],

ColorFunctionScaling -> False]

The critical option here is the ColorFunction, which uses the Hue function to
generate a color from the phase angle (Arg[psi1]), scaled by 2π to give a value
between 0 and 1. This convention for hue assignments is shown in Figure A.6.
The Function function is one of Mathematica’s trickiest features: it creates an
“anonymous” function that associates the independent variable x (same that I used
in defining psi1) with the desired hue. The ColorFunctionScaling option turns
off the automatic remapping of colors to span the function’s full range (see the
following section for examples of when this is desirable), while the Filling option
extends the coloring down to the x axis. The PlotPoints option ensures that
Mathematica will evaluate the function at enough points to show the full detail of
the color sequence.

Problem B.9. Make a phase-as-color plot of the complex function y = (x + i)−2,
over as wide a range of x values as seems interesting. Briefly explain why both the
magnitudes and the colors have the values they do at a few points.

B.4 Plotting functions of two variables

Mathematica provides three different ways to plot a real-valued function of two
variables. With a little work we can also plot a complex-valued function of two
variables, using colors to show the phases.
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Density plots

A density plot shows the two independent variables along the horizontal and vertical
axes, while using a color scheme to indicate the function value at each point. The
syntax is the same as for Plot, but with a second list specifying the second variable
and its range:

DensityPlot[(x-y)^2 Exp[-(x^2 + y^2)], {x, -2, 2}, {y, -2, 2}]

As with Plot, you’ll often want to use some names for expressions, and add some
non-default options:

psi2 = (x-y)^2 Exp[-(x^2 + y^2)];

xMax = 3;

DensityPlot[psi2, {x, -xMax, xMax}, {y, -xMax, xMax},

PlotRange->All, PlotPoints->50, PlotLegends->Automatic]

Here the PlotRange option is needed to prevent Mathematica from excluding the
largest function values (showing them as ugly white patches); PlotPoints deter-
mines the sampling resolution of the plot in each dimension (with a default value of
only about 15, which you’ll usually want to increase); and PlotLegends->Automatic

adds a legend showing how the colors correspond to numerical function values.
But the most interesting option for density plots is ColorFunction, which de-

termines the color scheme. The easiest way to override the default color scheme is
to use one of Mathematica’s 50 or so named color schemes, such as:

ColorFunction -> "SunsetColors"

Look up “color schemes” in the documentation for a table of these named schemes.
Alternatively, you can create arbitrary color gradients using the Blend function.

The syntax for a basic white-to-black gradient would be:

ColorFunction -> Function[f, Blend[{White, Black}, f]]

Here f is merely a dummy variable, whose name is arbitrary, representing the plot-
ted function’s value.1 The list of colors provided to Blend can include any of
Mathematica’s named colors, or arbitrary colors defined using RGBColor or Hue:

ColorFunction -> Function[f,

Blend[{Hue[.7, 1, .5], Hue[.9, .1, 1]}, f]]

Moreover, the list of colors can be of any length:

ColorFunction -> Function[f,

Blend[{Black, Blue, Cyan, White}, f]]

1The ColorFunction for a DensityPlot is given the value of the function being plotted, unlike
that for an ordinary Plot, which is given the independent variable. To see what variables get
passed to the ColorFunction in different contexts, look it up in the documentation.
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The possibilities are effectively endless.
But just because you can color your density plots in arbitrary ways doesn’t

mean you should. With the power to create arbitrary color schemes comes the
responsibility to use a scheme that will highlight, rather than obscure, what the
plot is actually trying to show. For a function whose values are always positive, it’s
usually best to use a scheme that changes monotonically either from dark colors to
light ones, or from light to dark, but not both. By default, the full range of colors
will be mapped to the full range of function values that occur within the plot. For
a function whose values can be both positive and negative, it’s best to map zero
to either white or black (or some other reasonably neutral color), blending into
different hues for positive and negative values:

DensityPlot[Sin[2*Pi*x] Sin[3*Pi*y], {x, 0, 1}, {y, 0, 1},

PlotPoints -> 50,

ColorFunction -> Function[f, Blend[{Cyan, Black, Red}, f]]]

Note that a three-color blend will map the middle color to zero only when the
plotted function’s minimum value is minus its maximum value. When the function’s
minimum and maximum values are not symmetric about zero, you can shift and
scale its values in the Blend function to map zero to 0.5 and the most extreme value
to either zero or 1, then set ColorFunctionScaling to False, which maps the full
color range to the interval from 0 to 1:

psi3 = Sin[Pi*x] Sin[Pi*y] + Sin[2*Pi*x] Sin[2*Pi*y];

DensityPlot[psi3, {x, 0, 1}, {y, 0, 1},

PlotPoints -> 50,

ColorFunction ->

Function[f, Blend[{Cyan, Black, Red}, f*0.32 + 0.5]],

ColorFunctionScaling -> False]

Alternatively, in cases like this you might find it easier to use the method described
below for complex-valued functions.

Contour plots

In a contour plot, the values of the two independent variables are again plotted
along the horizontal and vertical axes, but now the function values are indicated by
contour lines, each of which connects points of a particular value:

ContourPlot[(x-y)^2 Exp[-(x^2 + y^2)], {x, -2, 2}, {y, -2, 2}]

The syntax is the same as with DensityPlot, so you can switch between one and
the other with just a few keystrokes. Take a moment now to convert some more of
the examples in the previous subsection to contour plots.

One advantage of ContourPlot is that when you hover over a contour line with
the cursor, Mathematica shows the numerical function value to which that line
corresponds.
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By default, a ContourPlot also includes the same coloring as a DensityPlot,
except that it is discretized to show a uniform color between adjacent contour lines.
Naturally there is an option to omit the shading:

ContourShading -> False

You can also add an option to change the total number of contour lines:

Contours -> 20

Surface plots

A surface plot of a function of two variables plots the function values on a third axis,
to produce a three-dimensional surface. This surface is then drawn in perspective
on a two-dimensional screen or printed page. The Mathematica function to produce
such an image is Plot3D:

Plot3D[Sin[2*Pi*x] Sin[3*Pi*y], {x, 0, 1}, {y, 0, 1}]

Here are some options to try (preferably one at a time) that modify the plot’s
appearance:

Mesh -> None,

PlotPoints -> 100,

BoxRatios -> {1, 1, 0.6},

Axes -> False,

Boxed -> False,

ViewPoint -> {-0.5, -2, 1}

Note that you can also rotate the view using the mouse (or other pointing device).

Of course you can also modify the color of the surface, but this can get com-
plicated due to the simulated lighting and surface shininess. Some colors look ok
without any further changes:

PlotStyle -> Hue[.33, .75, 1]

But most colors look odd, at least to my eyes, under the default colored light sources.
The easiest fix is to switch to “neutral” lighting:

Lighting -> "Neutral"

This setting has the side effect of making the surface look too shiny (in my opinion),
so I usually just turn the shininess completely off:

PlotStyle -> {Hue[.75, .25, .85], Specularity[0]}

At this point you can experiment with a variety of different hue, saturation, and
brightness values.
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Complex-valued functions

The trick to making a phase-as-color density plot of a complex-valued function is
not to use DensityPlot at all, but rather to use RegionPlot, which can fill any
region in the plane using an arbitrary ColorFunction. In general you would specify
the region to fill using a condition on x and y, but we can just fill the entire region
using the trivial condition True. Here, then, is some code to plot a two-dimensional
wavepacket:

wp2d = Exp[-(x^2+y^2)] Exp[I(8x-5y)];

RegionPlot[True, {x, -3, 3}, {y, -3, 3},

PlotPoints -> 100,

BoundaryStyle -> None,

ColorFunction ->

Function[{x, y}, Hue[Arg[wp2d]/(2Pi), 1, Abs[wp2d]]],

ColorFunctionScaling -> False]

As in the example at the end of Section B.3, I’ve set the hue to correspond to the
phase of the function according to Figure A.6. Here I’ve also set the saturation to 1
and the brightness to the function magnitude, so we get black where the function
value is zero or negligible. To map zero to white instead, set the brightness to 1 and
the saturation to the function magnitude. This particular function has a maximum
magnitude of 1, so the brightest parts of the image are as bright as possible. For
other functions you may need to apply a scale factor to optimize the brightness.

An alternative is to make a surface plot of the function magnitude and then
color the surface according to phase:

Plot3D[Abs[wp2d], {x, -3, 3}, {y, -3, 3},

PlotRange -> All,

PlotPoints -> 100,

ColorFunction ->

Function[{x, y}, Hue[Arg[wp2d]/(2Pi), Abs[wp2d], 0.75]],

ColorFunctionScaling -> False,

Lighting -> "Neutral",

Mesh -> None]

In this example I’ve made the areas where the function is negligible light gray, since
neither black nor white looked very attractive to my eyes.

Plotting from lists of values

To plot a function of two variables from a list of sampled values (perhaps numeri-
cally generated), Mathematica provides ListDensityPlot, ListContourPlot, and
ListPlot3D functions. All of them work as you would probably expect, and you
can look them up in the documentation for details.
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Alternatively, you can always use Interpolation to turn a list of values into
an interpolating function, then plot that function as described in the preceding
subsections. This is how you would want to handle a discretely sampled complex-
valued function of two variables.

Problem B.10. Make a density plot, a contour plot, and a surface plot of the function
((x− y)3− 2x+ 3y)2 e−(x2+y2), over a wide enough range of x and y values to show its
full shape. Use nonstandard but appropriate colors for each plot, chosen to suit your
taste.

Problem B.11. Make a density plot of the function (sin r)/r, where r =
√
x2 + y2,

showing r values out to about 20. Use a color function that maps zero to white, with
distinct hues for positive and negative values.

Problem B.12. Use Plot3D to make a combined surface plot of the real and imaginary
parts of the wavepacket defined above as wp2d. That is, show the real and imaginary
parts as separate, intersecting surfaces on the same plot. Be sure to use a large enough
value of PlotPoints to show the functions accurately. Start with the default col-
ors, then switch to two other colors of your choice, adjusting the color parameters as
appropriate.

Problem B.13. Make a phase-as-color density plot of the function sin(πx) sin(2πy) +
i sin(2πx) sin(πy), for x and y values ranging from 0 to 1 (see Figure 4.8). Make several
versions of the plot, mapping zero to either black or white and mapping either the
magnitude or the squared magnitude to the brightness/saturation. Be sure to scale the
function magnitude so its maximum value is mapped to a brightness/saturation of 1.0.
Which version of the plot do you like best?

B.5 Calculus and other math

Mathematica is probably best known for its symbolic manipulation features, includ-
ing the ability to work out otherwise-laborious derivatives and integrals. Even more
useful for physicists, however, are its built-in numerical algorithms for integration,
root finding, optimization, differential equations, and matrix operations.

Derivatives

The function to take a symbolic derivative is called simply D:

psi = (4x^4 - 12x^2 + 3)Exp[-x^2/2];

deriv = D[psi, x]

To take the second derivative you can either just apply the D function twice, or use
this syntax:

deriv2 = D[psi, {x, 2}]

Often the result of such a calculation will be unnecessarily complicated, but Math-
ematica also provides a handy Simplify function:

Simplify[deriv2]
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Integrals

To take antiderivatives you use the Integrate function:

Integrate[Sin[x]^2, x]

You can also do definite integrals, using a syntax similar to that of Plot and Table:

Integrate[Sin[x]^2, {x, 0, Pi}]

Notice that the answer is provided exactly in terms of π. If you’d prefer a numerical
answer in decimal approximation, you can apply the N function:

N[Integrate[Sin[x]^2, {x, 0, Pi}]]

Alternatively, you can just use the NIntegrate function, which does the integral
numerically from the start:

NIntegrate[Exp[-x^2], {x, 0, 1}]

Naturally, the answers provided by NIntegrate are only approximate. By default
it tries to be accurate to several significant digits, and therefore it runs into trouble
and complains if you ask it to evaluate an integral whose answer is exactly zero:

NIntegrate[Sin[x], {x, 0, 2Pi}]

By the way, both Integrate and NIntegrate can handle limits of ±∞:

Integrate[Exp[-x^2], {x, -Infinity, Infinity}]

Sums

Sums use the same syntax as integrals:

Sum[1/2^n, {n, 0, 10}]

The default step size is 1, but you can specify any step size:

Sum[1/2^n, {n, 0, 10, 2}]

And again you can use Infinity as the upper limit:

Sum[1/2^n, {n, 0, Infinity}]
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Root finding and optimization

When you can’t perform algebraic manipulations to solve an equation for the vari-
able it determines, numerical root finding is called for. The most familiar examples
are transcendental equations, for instance, sinx = x/10. This equation has a “triv-
ial” solution at x = 0, but it has other solutions as well, and there’s no formula for
them. However, you can easily plot both sides to see where the solutions are:

Plot[{Sin[x], x/10}, {x, 0, 10}]

As you can see, there are three nontrivial solutions for positive x (and three sym-
metrical solutions for negative x). To find them numerically, use the FindRoot

function:

FindRoot[Sin[x] == x/10, {x, 3}]

Notice the double == sign, indicating that this is an equation to be solved, not an
attempt to assign a name to an expression. The number 3 is the x value where
Mathematica will begin looking for a solution. If you give it a different starting
point it may find a different solution, or none at all:

FindRoot[Sin[x] == x/10, {x, 5}]

Try some different starting points until you have found all three of the positive
solutions to this equation. The lesson here is that you should always (if at all
possible) plot the graph first, rather than blindly looking for solutions with arbitrary
starting points.

A related numerical task is to find the maximum or minimum value of a function.
An important example is the distribution of photon energies radiated by a thermal
(“blackbody”) source:

planckSpectrum = x^3/(Exp[x] - 1);

Plot[planckSpectrum, {x, 0, 12}]

If you try to locate the peak of this curve by setting the derivative of the function
to zero, you get a transcendental equation. Although you could solve that equation
using FindRoot (see Problem B.14), it’s easier to just use FindMaximum:

FindMaximum[planckSpectrum, {x, 3}]

There’s also a FindMinimum function that works in the same way.

In more complicated examples, the equations and functions that you need to
solve or optimize may themselves involve numerical calculations (e.g., NIntegrate).
In these cases you’ll need to provide not one but two suggested starting points:
{x, 2, 4}. Then Mathematica will have some idea of how big a step to take, to one
side or the other, to get closer to the solution. When you provide just one starting
point, Mathematica differentiates the expression(s) to guess a good step size—but
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it can’t take the derivative of an expression that’s defined only numerically. For an
example in which two starting points are needed, see Section 3.4.

The answers returned by FindRoot, FindMaximum, and FindMinimum are wrapped
inside of short lists and replacement rules. To extract the numbers themselves for
further use, you can use double brackets to index into these structures:

FindRoot[Sin[x] == x/10, {x, 3}][[1, 2]]

Here the appended “[[1, 2]]” says to extract the second part of the first part of
the resulting expression. The expression itself is a single-element list, whose first
part is the replacement rule x -> 2.85234. The second part of this expression
is the number 2.85234 itself. Notice that the double-bracket notation can extract
parts from any expression, not just from lists. Here are the instructions to extract
the maximum value and its location from the Planck spectrum example:

FindMaximum[planckSpectrum, {x, 3}][[1]]

FindMaximum[planckSpectrum, {x, 3}][[2, 1, 2]]

(To see the full structure of an expression, for the purpose of extracting the part
you want, you can enclose the expression in FullForm[].)

Ordinary differential equations

One of Mathematica’s most powerful and useful numerical functions is NDSolve,
for numerical solution of differential equations. Here is an example of its use on an
ordinary differential equation:

solution = NDSolve[{f’’[x] == -x*f[x], f[0] == 1, f’[0] == 0},

f, {x, -2, 10}]

The syntax here is a little tricky. The first argument of NDSolve is a list of equations,
specifically the differential equation to solve and its boundary conditions. For a
second-order differential equation, the boundary conditions should specify the value
and the first derivative of the unknown function at the same point (here x = 0).
Notice that all of these equations are written with double == signs, and that the
prime symbol ’ indicates a derivative. The second argument of NDSolve is the name
of the function to solve for, and the third argument is a list of the independent
variable and its minimum and maximum values, as in Plot or Integrate. Notice
that the boundary conditions needn’t be specified at one of the actual boundary
points.

NDSolve returns an interpolating function, awkwardly nested inside a replace-
ment rule and two levels of lists. To extract it for plotting or direct evaluation you
can index into this structure with [[1, 1, 2]], but it’s usually easier to use the
following syntax:

Plot[f[x] /. solution, {x, -2, 10}]
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Vectors and matrices

You can use a Mathematica list to represent a vector with any (finite) number of
components. Addition, subtraction, and scalar multiplication then work automati-
cally:

vecA = {2, 1, -2};

vecB = {-1, 3, -2};

vecA + vecB

2vecA - vecB

To take the dot product of two vectors, use the Dot function or simply put a period
(.) between them:

vecA . vecB

To represent a matrix you use a list of lists, with each inner list representing
one row. The MatrixForm function tells Mathematica to display the nested list as
a matrix in the traditional way:

matrixM = {{1, 0, 2}, {0, -3, 1}, {2, 1, 2}};

MatrixForm[matrixM]

As with vectors, the operations of addition, subtraction, and scalar multiplication
of matrices just work. To carry out matrix multiplication you again use the dot
symbol (or Dot function):

matrixM . vecA

Notice that the vector is treated as a column vector in this example. Alternatively,
you can turn it into a true one-column matrix by enclosing it in another set of curly
braces (to make a one-row matrix) and then taking the transpose:

columnMatrixA = Transpose[{vecA}]

MatrixForm[matrixM . columnMatrixA]

To make a diagonal matrix (with zeros in all the off-diagonal slots), there’s a
nice shortcut:

MatrixForm[DiagonalMatrix[{1, 2, 3}]]

The most important matrix operation in quantum mechanics is to find a matrix’s
eigenvalues and eigenvectors—that is, to find a new basis in which it is diagonal.
The Mathematica function for this operation is Eigensystem (note the lower-case
s where you might expect a capital):
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sxMatrix = {{0, 1, 0}, {1, 0, 1}, {0, 1, 0}}/Sqrt[2];

MatrixForm[sxMatrix]

{eValues, eVectors} = Eigensystem[sxMatrix]

I’ve provided separate names for the lists of eigenvalues and -vectors, which Eigen-

system wraps in a two-element list. It’s easy to check the results:

sxMatrix . eVectors[[1]]

Notice that the eigenvalues and -vectors are sorted in corresponding order, so
eValues[[1]] goes with eVectors[[1]].

For matrices consisting of exact integers or algebraic expressions, Eigensystem
tries to find exact results and does not bother to normalize the eigenvectors. But if
the matrix contains even one element that has a decimal point (to indicate a num-
ber stored in decimal approximation), then Eigensystem will use an approximate
numerical algorithm and return answers in decimal approximation, with normalized
eigenvectors:

Eigensystem[sxMatrix*1.0]

The numerical algorithm used in such cases is remarkably fast, so Eigensystem can
handle numerical matrices with hundreds, or even thousands, of rows and columns.

When we work with a quantum system that’s built from two smaller systems,
we need to take tensor products of matrices, as discussed in Sections 4.4 and 7.4.
Mathematica has a function called TensorProduct, but it doesn’t quite do what
we want (try it out if you like); instead the needed Mathematica function is called
KroneckerProduct:

vec1 = {{a}, {b}};

vec2 = {{c}, {d}, {e}};

MatrixForm[KroneckerProduct[vec1, vec2]]

MatrixForm[KroneckerProduct[vec2, vec1]]

sxMatrix = (1/2) {{0, 1}, {1, 0}};

MatrixForm[KroneckerProduct[sxMatrix, IdentityMatrix[2]]]

MatrixForm[KroneckerProduct[IdentityMatrix[2], sxMatrix]]

Notice that the first matrix in the Kronecker product gets “stretched,” so that each
of its elements can be multiplied by the second matrix in the product.

Problem B.14. Consider the function x3/(ex−1), defined above as planckSpectrum.
(a) Use Mathematica to find the derivative of this function. (b) What do you get when
you try to use Mathematica to find the antiderivative of this function? (c) Find the
exact value of the definite integral of this function from 0 to ∞. (d) Use NIntegrate
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to find what fraction of the total area under the graph of this function lies at x values
greater than 5.0. Check your plot of the function to be sure the answer is reasonable.
(e) Apply FindRoot to the derivative you found in part (a), to verify the location of
the function’s maximum that you found earlier using FindMaximum.

Problem B.15. Use Manipulate, Plot, and Sum to create an interactive plot of the
Fourier series ∑

odd n

(−1)(n−1)/2 sin(nπx)

n2
,

where x ranges from 0 to 1 and the sum goes up to some maximum n value that you
can vary by dragging the slider. What shape does this series converge to? What is the
function’s maximum value in that limit?

Problem B.16. The motion of a simple pendulum is governed by the differential
equation d2θ/dt2 = − sin θ(t). Use NDSolve to solve this equation and produce a plot
of θ(t) over a few cycles. How does the plot change as the amplitude increases toward π?

Problem B.17. Enter the matrices

Sx =
1

2

(
0 1
1 0

)
, Sy =

1

2

(
0 −i
i 0

)
, Sz =

1

2

(
1 0
0 −1

)
into Mathematica, and then compute (and display using MatrixForm) the combinations
SxSy−SySx, SySz −SzSy, and SzSx−SxSz (called commutators; see Section 5.1). In
each case you should find that the commutator of two of the S matrices is proportional
to the third, as stated (with some extra factors of ~) in equation 7.1.

Problem B.18. Use the Table function and the RandomReal function (look it up)
to generate a 10 × 10 matrix of random real numbers in the range −1 to 1. Find
the eigenvalues of this matrix, and note that some of them are complex. Then add
the matrix to its transpose to obtain a matrix that is symmetric (but otherwise still
random). Find the eigenvalues of this matrix, and note that they are all real. Also
calculate the dot products of several of the eigenvectors with each other, and note that
they are orthogonal (to the accuracy one could reasonably expect).

B.6 Loops and simulations

Despite Mathematica’s ability to apply functions to entire lists, there are times
when we need to use it like a more traditional programming language, carrying
out repeated operations sequentially. For this purpose it provides While and For

functions that “loop” through instructions repeatedly, just as the similarly named
structures do in a language like C.

While and For loops

Here is an example showing how to use the While function:

n = 1;

While[n < 1000,

Print[n];

n = 2n]
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I hasten to point out that there are much better ways to use Mathematica to make
a list of the first nine powers of 2. But the point here is just to see how the While

function works. Its first argument is a condition, while its second argument is a
sequence of instructions (just two of them in this case), separated by semicolons.
These instructions are executed repeatedly, as long as the condition holds. Notice
that the symbol n has the value 1024 by the time the loop terminates, but this value
never gets printed. Oh yes: the Print function is a convenient way of displaying
results while the loop is executing.

Alternatively, we can accomplish exactly the same task with a For loop:

For[n = 1, n < 1000, n = 2n,

Print[n]]

This version is more compact but a little harder to get used to. The four arguments
of For are an initialization of the variable that controls the loop, a condition on
that variable (used the same as in While), a statement that modifies the value of
the variable, and finally the statement(s) to execute each time through the loop.
Perhaps a bit confusingly, the variable-modification statement (here n = 2n) ap-
pears before the body of the loop (here Print[n]), but is executed after each loop
iteration (immediately before the condition is again tested).

This use of For is perfectly legitimate, but it’s somewhat traditional to use For

only when the variable-modification statement adds a fixed amount to the variable,
rather than multiplying it as in this case. The most common modification is simply
to add 1. By the way, Mathematica provides the same shortcuts for operating on a
variable as in C: you can say n += 1 or simply n++ in place of n = n + 1.

Building a list

Sometimes the purpose of a loop is to build a list of data for later use (e.g., plotting).
To do this you can initialize the list to contain no elements, then use the AppendTo

function within the body of the loop:

n = 1;

nList = {};

While[n < 1000,

AppendTo[nList, n];

n = 2n];

nList

Again, this is a poor example because you could construct the resulting list more
easily using the Table function. Section 2.2 contains a much better example of
While and AppendTo.

Ongoing animation

To observe what’s happening while a loop executes, you can wrap the Dynamic

function around any code whose output should be continuously updated. The most
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common application is to a plot:

t = 0;

Dynamic[Plot[Sin[x - t], {x, 0, 4Pi}]]

Now whenever the parameter t is changed, the plot will update automatically. If
you change t repeatedly in a loop, you get an animated graphic:

While[t < 50,

t += 0.1;

Pause[0.033]]

The Pause function, whose argument is in seconds, slows down the animation so
we can see it. Here you could even change the condition t < 50 to simply True, in
which case the animation would continue indefinitely, until you interrupt it with the
Abort Evaluation menu command. But once again this example isn’t a good one:
Because the sine function is periodic, you could produce the same animated graphic
more easily using Manipulate. A better example of a dynamically updating plot is
in Section 3.3.

Problem B.19. Mathematica has a built-in Fibonacci function, but pretend it doesn’t.
Use a While or For loop to build a list consisting of the first 20 numbers in the Fi-
bonacci sequence, which begins with 1,1 and continues by adding the last two elements
to obtain the next element. You can reference the last element of a list as list[[-1]]
and the second-to-last element as list[[-2]].

Problem B.20. You can draw simple pictures in Mathematica using the Graphics

function:

Graphics[{Yellow, Disk[{0, 0}, 0.1], Blue, Disk[{1, 0}, 0.05]},

PlotRange -> {{-2, 2}, {-2, 2}}, Frame -> True]

This example draws two filled circles, to represent the sun and a planet. Starting from
this code, animate the image to put the planet into motion, in a circular orbit around
the sun. (If you know how to write a Newtonian orbit simulation, do so and explore
some elliptical orbits.)
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