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Our goal for the next few lessons is to solve the time-independent Schrédinger
equation (TISE) for a variety of one-dimensional potential functions V(x). That
is, we want to find the energy levels and corresponding energy eigenfunctions for a
quantum particle subject to a variety of types of forces. Some of these examples
will have important real-world applications, for example, to molecular vibrations or
to electrons in semiconductors.

We’ve already worked out the solutions for the infinite square well, so a logical
next step would be to pick a slightly more complicated V (z)—perhaps a square well
with a finite depth, or the smooth potential of a simple harmonic oscillator—and
work out its solutions. But before we do that, I’d like to step back and ask what
the solutions to the TISE look like in general. We can actually gain quite a bit
of understanding by just looking at the TISE, thinking about it qualitatively, and
drawing a bunch of pictures.

So consider a generic potential energy function V' (z), which might look like this:
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I’ve also drawn a horizontal line, at an arbitrary level, to indicate the total energy F
of a hypothetical particle that’s subject to this potential.

Now if this were a classical particle, we could immediately determine the qual-
itative features of the motion from this diagram. We would first note that the
particle’s kinetic energy,

K=FE—-V(x), (1)

cannot be negative, so any x where F is less than V() is classically forbidden: the
particle simply cannot be there if its total energy is only E. The locations where
E is greater than V (z) are similarly called classically allowed. Within a classically
allowed region, the particle will be moving faster where V(z) is smaller (large K)
and slower where V() is larger (small K). The boundaries between the classically
allowed and forbidden regions are called classical turning points: a particle at one



of these locations must have just come to rest (K = 0), after moving in from the
allowed region and before moving back into the allowed region. Remember that the
force on the particle is minus the slope of the potential energy: F, = —dV/dx.

The distinction between allowed and forbidden regions is also critical in quantum
mechanics, although we’ll see that the word “forbidden” is somewhat of a misnomer.
We're interested in wavefunctions with definite energy, so let’s look at the TISE,
which these functions must obey:
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First note that there are no ¢’s in this equation, so we can always find solutions
that are purely real; I'll take 1 to be real for the rest of this lesson. Now focus on
the factor (£ — V(z)) in the TISE. This factor is positive in an allowed region but
negative in a forbidden region, and this sign change dramatically affects the shape
of the solution ¥ (x). In an allowed region, 1 and its second derivative have opposite
signs, while in a forbidden region, ¢ and its second derivative have the same sign.
The second derivative indicates the curvature of the graph of ¥(x): concave-up
or concave-down. Thus, ¢(z) curves toward the x axis in an allowed region and
away from the x axis in a forbidden region:
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This picture shows the four different possibilities for the signs of ¢ and d?v/dx?.
Not shown are the borderline cases where d?y/dz? = 0 (an “inflection point”),
either at a classical turning point (F = V(x)) or where v crosses the x axis.

Now let’s imagine drawing a sketch of v (z), for some given energy. There’s no
obvious way to get started, so for now I’ll just arbitrarily say that we can start with
some positive ¥ value and some positive slope (di)/dz), at some particular x value
that lies in a classically allowed region (see the figure on the next page). Then, by
the TISE, the graph must be concave-down at this point, so as we move the pencil
to the right we should curve downward through a local maximum and then continue
downward until the graph crosses the x axis, at which point its curvature will have



decreased to zero. Continuing to the right, the graph goes below the z axis but
now begins curving upwards, so it then reaches a local minimum and heads back
up, crossing the x axis again and finishing a complete “cycle.”
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If the potential energy V(z) were constant throughout this range of x values,
then this oscillation cycle would be a perfect sine wave (as you can easily show
from the TISE). In general V(z) will not be constant, so the “wavelength” and
“amplitude” of 1 (z) will vary from place to place. You can use the TISE to figure
out exactly how they vary,! but it’s easier to go back to more basic principles. The
de Broglie relation tells us that wavelength increases as the kinetic energy (p?/2m)
decreases, or as the potential energy increases. That is, the “waves” will be more
spread-out horizontally in locations where V() is larger. And the amplitude (that
is, the vertical size) of the oscillations will be larger in these locations as well, in
agreement with our classical intuition that a particle is more likely to be found in
places where it’s moving more slowly. Looking at the picture above, you can see
that I drew oscillations that grow larger (both horizontally and vertically) from left
to right, so I've assumed that V(z) increases from left to right in the classically
allowed region.

Eventually, however, as we move along in z we’ll usually come to a classical
turning point. There the curvature of the graph goes to zero and on the other side
the curvature changes sign. In my picture above, this happens where ) is positive,
so the curvature changes from concave-down, in the classically allowed region on the
left, to concave-up, in the classically forbidden region on the right. Often (though
not always) the forbidden region extends indefinitely to the right, and in that case
the only consistent behavior for ¢(z) is to die out asymptotically to zero. (The
TISE would also allow % to grow to infinity, but such a wavefunction wouldn’t
be normalizable.) In the special case where V(z) is constant throughout some or
all of the classically forbidden region, you can easily show that ¢ (x) must be an
exponential function of the form e™"*, where x depends on the difference between V'
and E. More specifically, a large value of V — F implies a large «, which makes the
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wavefunction die out more abruptly. And if there is a classically forbidden region
on the left, the wavefunction will die out asymptotically over there as well, taking
the form e™** in the special case where V(z) is constant.

While it is intuitively pleasing that wavefunctions tend to die out exponentially
in classically forbidden regions, you may be wondering how it’s possible for the
wavefunction in these regions to be nonzero at all. How can there be a nonzero
probability of finding a particle in a location where its potential energy is greater
than its total energy? This behavior is one of the many wonders of quantum me-
chanics, and is a consequence of the TISE. And there’s no actual paradox, because
the process of measuring a particle’s position can change its energy, or, more pre-
cisely, put the particle into a state for which its energy isn’t even well defined.

In summary, the solutions to the TISE have the following properties:

e In a classically allowed region, the solutions oscillate. Both the amplitude and
the wavelength of the oscillations will be smaller where E — V(z) is large.

e In a classically forbidden region, the solutions have exponential-like behavior,
dying out as the distance from a classically allowed region increases. The
wavefunction dies out more abruptly where V(x) — E is large.

Here is an example to illustrate all of these properties, using a piecewise-constant
potential function, with four different levels, for simplicity:
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(I should confess that I actually used a computer to draw this wavefunction, just
to make sure it’s accurate. The numerical method that I used is described in the
following lesson.)



Now let’s think more generally about what an entire solution of the TISE should
look like, over the whole range of x. Often, as illustrated in the examples on pages
1 and 4, the classically allowed region is finite so the particle is trapped, with a
classically forbidden region to either side. Then, in the classically allowed region, the
wavefunction must go through some integer number of half-oscillations or “bumps,”
separated by zero-crossings or “nodes.” The number of bumps (or nodes) must be
an integer, so only certain (average) wavelengths are possible, and this implies that
the allowed energies are quantized. The one-bump (zero-node) wavefunction will
have the longest (average) wavelength and therefore the lowest energy; the two-
bump (one-node) wavefunction will have the second-longest (average) wavelength
and therefore the second-lowest energy; and so on. To determine the numerical
values of these energies, of course, requires doing some actual calculations. Given
an energy and the corresponding number of bumps or nodes, however, you should
now be able to sketch a qualitatively accurate graph of the wavefunction without
doing any calculations at all.

On the other hand, if the classically allowed region extends indefinitely to one
side or both, then the wavefunction will go through an infinite number of oscillations,
these oscillations can vary continuously in size, and therefore the energies will not
be quantized. In general, the energies of a quantum particle are quantized when it
is “trapped” but not when it is “free.”



