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According to the second “principle” of quantum mechanics (see Lesson 12), every
observable quantity corresponds to a linear operator that acts in the appropriate
vector space. So, for example, the most important operators for a structureless
particle in one dimension are

x, −ih̄ ∂
∂x
, and − h̄2

2m

∂2

∂x2
+ V (x), (1)

which correspond to position, momentum, and energy, respectively. The eigenvalues
of each such operator are the values that you can obtain when you measure the cor-
responding quantity, and the corresponding eigenvectors are the quantum states for
which the measured quantity has each of those well-defined values. If you measure
the quantity for some other quantum state, the probability of getting any particular
value is the square modulus of the component of the state vector along the direction
of the corresponding eigenvector.

In order for this whole scheme to make sense, these eigenvalues must always be
real numbers. In addition, the corresponding eigenvectors must form a complete,
orthonormal basis (called an eigenbasis) for the vector space, so that any other
normalized vector in the space can be uniquely resolved into components whose
square moduli (the probabilities) add up to 1. It’s now time to investigate some of
the mathematics of the operators that have these essential properties.

Mathematicians say that an operator A is Hermitian if, for all vectors ψ1 and
ψ2,

〈Aψ1, ψ2〉 = 〈ψ1, Aψ2〉. (2)

That is, A can operate on either vector in an inner product with the same effect.
From this definition, it is easy to prove the following two theorems about Her-

mitian operators:

1. The eigenvalues of a Hermitian operator are real.

2. Eigenvectors of a Hermitian operator that have distinct eigenvalues are or-
thogonal to each other.

I suggest that you take a moment right now to try to prove each of these results,
starting from the definition (2). If you get stuck, look in Griffiths (or some other
textbook) for a hint. You do need to assume that the eigenvectors of your operator
are normalizable, which is not the case when the eigenvalues are continuous (as they
are for x and −ih̄ ∂/∂x); Griffiths has a nice discussion of how to handle continuous
eigenvalues.

Moreover, we can also prove a theorem that is almost the converse of the two
theorems above:
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3. If a linear operator has a complete, orthonormal set of eigenvectors and a
corresponding set of real eigenvalues, then it is Hermitian.

This theorem means that any operator that corresponds to an observable quantity
in quantum mechanics must be Hermitian. Here is the proof.

Let’s call the operator A, its normalized eigenvectors αn, and its eigenvalues
an. Now consider the two arbitrary vectors ψ1 and ψ2 that appear in the inner
product in equation 2. Because the set {αn} is complete, we can expand each of
these vectors in the αn basis:

ψ1 =
∑
n

cnαn, ψ2 =
∑
n

dnαn, (3)

for some sets of complex coefficients {cn} and {dn}. So let’s insert these expansions
into the left-hand side of equation 2:

〈Aψ1, ψ2〉 =
〈
A
∑
n

cnαn,
∑
m

dmαm

〉
. (4)

(Notice how I’ve used a different index, m, in the second sum, so I won’t confuse
it with the index in the first sum.) Because A is linear, we can move it inside the
first sum. And because the inner product obeys the algebraic rules that one would
expect of a “complex dot-product,” we can move both of the sums, as well as the
coefficients, outside of the inner product, picking up a ∗ on cn, to obtain

〈Aψ1, ψ2〉 =
∑
n

∑
m

c∗ndm〈Aαn, αm〉. (5)

But αn is an eigenvector of A with real eigenvalue an, and the eigenvectors are
orthonormal, so this becomes

〈Aψ1, ψ2〉 =
∑
n

∑
m

c∗ndman〈αn, αm〉 =
∑
n

∑
m

c∗ndmanδmn =
∑
n

c∗ndnan. (6)

Through a completely analogous set of manipulations, you can show that the right-
hand side of equation 2 reduces to exactly the same expression, and this completes
the proof that A is Hermitian.

Although only Hermitian operators can correspond to observable quantities in
quantum mechanics, we do sometimes work with non-Hermitian operators. It’s then
useful to define the adjoint, A†, of an operator A to be the operator that has the
same effect on the left side of an inner product that A has on the right:

〈A†ψ1, ψ2〉 = 〈ψ1, Aψ2〉, (7)

for any two vectors ψ1 and ψ2. A Hermitian operator, then, is its own adjoint. A
unitary operator is one whose adjoint is the same as its inverse: U † = U−1, where
U−1U is the identity operator.
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Often, in quantum mechanics, we will want to discuss two or more operators at
the same time. For example, if two Hermitian operators A and B correspond to
two observable quantities for a particular system, we might want to know whether
these two quantities can be simultaneously well defined. As we shall later see,
this question turns out to be closely related to the question of whether A and B
commute, that is, whether their order matters when they operate, successively, on
a vector:

ABψ ≡ A(Bψ)
?
= B(Aψ) ≡ BAψ. (8)

If ABψ = BAψ for all ψ, then we say that operators A and B commute. And
whether they commute or not, we define their commutator, denoted [A,B], as the
difference

[A,B] = AB −BA, (9)

where it is understood that both sides need to give the same result when acting on
an arbitrary vector ψ. So if A and B commute, then their commutator is zero.

Matrix representations

We already saw back in Lesson 7 how to express the Hamiltonian operator in matrix
form, to facilitate numerical solutions of the time-independent Schrödinger equation.
But the same idea works for any equation involving an operator. Consider the
generic equation

Aψ1 = ψ2, (10)

in which an operator A acts on one vector and turns it into another. We can use
any discrete set of orthonormal basis vectors {αn} (not necessarily the eigenvectors
of A) to expand both vectors as in equation 3, to obtain∑

n

cnAαn =
∑
n

dnαn. (11)

Now use Fourier’s trick: take the inner product, from the left, of both sides of this
equation with some other basis vector αm, and use the fact that the basis vectors
are orthonormal:∑

n

cn〈αm, Aαn〉 =
∑
n

dn〈αm, αn〉 =
∑
n

dnδmn = dm. (12)

The inner product inside the sum on the left-hand side is called the mn matrix
element of A,

Amn = 〈αm, Aαn〉, (13)

and our original equation can now be written in matrix form:A11 A12 · · ·
A21 A22 · · ·

...
...

. . .


c1c2

...

 =

d1d2
...

 . (14)
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In summary, we can express the original equation, Aψ1 = ψ2, in matrix form by
simply interpreting ψ1 and ψ2 as column vectors of components, and interpreting
A as a matrix whose elements are the inner products of equation 13.

Representing operator equations with matrices in this way has the advantage of
being concrete and vivid. For spin and other internal degrees of freedom for which
the dimension of the vector space is finite and small, we normally express everything
in matrix form from the start. But even when the dimension of the vector space
is infinite, it’s often useful to think of state vectors as columns of components, and
to think of operators as matrices. Moreover, as we saw in Lesson 7, you can often
get accurate results by keeping only a finite (and manageable) number of rows and
columns.

From equation 13 you can prove the following further properties of operator-
matrices:

• The adjoint matrix A† is the conjugate transpose, AT∗.

• A Hermitian matrix is its own conjugate transpose, so its real part is sym-
metric and its imaginary part is antisymmetric.

• The matrix for a Hermitian operator in its own eigenbasis is diagonal, with
entries equal to its eigenvalues.

I suggest that you now spend a few minutes trying to prove each of these statements.
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