7. Numerical Solutions of the TISE
Copyright (©2015-2016, Daniel V. Schroeder

Besides the infinite square well, there aren’t many potentials V' (z) for which you
can find the energies and eigenfunctions exactly, using pencil and paper. Nowadays,
however, that’s hardly a handicap because we have powerful computer systems that
can solve the TISE numerically for virtually any V(z). In this lesson I'll describe
two different approaches to computer-assisted numerical solutions.

The shooting method

For any given V(z) and energy F, the TISE is an explicit second-order differential
equation that tells you the curvature of the function ¢ (x) at any point if you already
know the value of ¥ (x) at that point:

iy _ _2m

i = (E-V@)ba). (1

If you also know the derivative of i(z) at that same point, then you can use it
and the calculated curvature to find the approximate value of ¢ and its derivative
a little to one side, say at x 4+ dx. The smaller the step dx, the more accurate the
approximation. Repeating the process, you can construct the entire function ¢ (z).
Plotting an accurate graph of the entire function ¢ (z) might require a thousand
calculation steps or more, but today’s computers can carry out a billion calculations
per second. The point is that a unique solution ¥ (x) exists, and isn’t hard to find,
for any given V' (z), E, and boundary conditions consisting of 1) and di/dz at an
arbitrary point.

To illustrate the method, let me pick a specific V(x): the finite square well,
defined as
Vi) = {0 for —a/2 < x < a/2, @)

Vo elsewhere.

This is the same potential as for the infinite square well, with oo replaced by Vj; I've
shifted the well to center it at x = 0 because the resulting symmetry will slightly
simplify the computer code and the description of the solutions. (This is actually
an example that can be solved exactly, aside from the need to numerically solve a
transcendental equation to match the wavefunction at the well boundary. But here
I'll use it to illustrate the much more general method of numerically solving the
TISE.)

Before typing a physics equation into a computer, you should almost always
rewrite it in a system of units that is “natural” to the problem being solved. Doing
so will free you from working with numbers that are awkwardly large or small, and
from having to supply numerical values for parameters that turn out to be irrelevant

to the mathematics. For example, in this problem the natural unit of distance is a,
the width of the well, so I'll set @ = 1 in my computer code. I will also set m/h2 =1;
this combination has dimensions of (energy)~!(distance) ™2, so setting it equal to 1
determines our unit of energy: all energies will now be measured in units of 2 /ma?.

Note that after making these choices, we do not have the freedom to also set V; =
1. In other words, different Vj values (in these units) represent different problems
to solve, and we’ll have to choose a specific Vy before solving the problem on a
computer. And what would be some interesting [, values to choose? Well, recall
that for an infinite square well, the energy eigenvalues are h’?n?/8ma?. Plugging
in h = 27h and setting h%/ma® = 1, this becomes (72/2)n? ~ 5n?, so the lowest
energies in our units would be roughly 5, 20, 45, 80, and so on. The most interesting
Vb values should be in this range; values much less than 5 would tend not to trap
the particle at all, while values much more than 100 start looking similar to infinity
(at least for the low-energy states). I'll use Vy = 50.

Without further ado, here is some Mathematica code for solving the TISE for a
finite square well, using the units just described, with V{ = 50:

vix_] := If[Abs([x] < 0.5, 0, 50];

energy = b;

xMax = 1.5;

solution = NDSolve[{psi’’[x]==-2(energy-v[x])psilx],

psil[-xMax]==0, psi’[-xMax]==0.001}, psi, {x, -xMax, xMax}];
Plot[psilx] /. solution, {x, -xMax, xMax}]

First I define the potential energy function v[x_] (using lower case to avoid conflicts
with built-in Mathematica functions, which always start with capital letters). Then
I set my energy constant to an arbitrary initial guess (roughly equal to the ground
state energy of an infinite well), and define a constant for the range of x values,
-xMax to xMax, that T’ll ask the computer to look at. The actual work is done
by Mathematica’s NDSolve function, to which I must first provide a list (in curly
braces) of the differential equation(s) and the boundary condition(s). Note that all
these equations are defined using double == signs, and that derivatives are denoted
by primes (’). I'm supplying boundary conditions at the extreme left end of my
interval (-xMax), where I'm hoping the wavefunction will have died out to practically
zero—but to get a nontrivial result I must provide a nonzero initial slope, which
I’'m arbitrarily taking to be 0.001. After this list of equations, I supply the name
of the function to solve for and a list consisting of the independent variable and
its beginning and ending points. The result from NDSolve is stored in the variable
solution as what Mathematica calls an interpolating function; the last line of code
plots a graph of this function.

If you execute the code above (or its equivalent in some other software environ-
ment), you'll get a plot of a function that rises gradually from left to right, peaks a
little to the left of x = 0, then falls gradually and crosses the x axis a little to the

left of the edge of the well at x = 0.5. The function then becomes negative, but soon
reaches z = 0.5 where it begins curving away from the horizontal axis, blowing up
exponentially in the negative direction. This is not a normalizable wavefunction,
and it teaches us a lesson: You can solve the TISE for any energy E, but not all
energy values allow solutions that are normalizable.

The procedure, then, is to rerun the code with different E values until you
get a solution that “lies down flat” to the right of the potential energy well. It’s
essentially a trial-and-error process, but with a little practice you can zero-in on
an energy value that works, to several significant figures, in about 20 trials. Here
is a plot showing three trials, one with the energy too low, one with the energy
too high, and one with the energy just right to give the one-bump (ground-state)
wavefunction:

E = 3.40
| | | B =3.41357
-1.5 =10 -0.5 0.5 1.0 1.5
E =343

In the same way, I found the next three excited-state energies and wavefunctions:

‘ 05 10 15 ‘ k A V\

-15 -10 -0.5 -1.5 -10 -0.5 1.0 15 -15 -10

Ey =13.4757 E3 =29.4523 B, =48. 1435\A \/
Notice that all of these solutions are sinusoidal inside the well and exponential
outside it. (Because the exponential fall-off is so gradual with the last of these
wavefunctions, I increased xMax to 4.0 to get a consistent result—though I still cut
off the plot at +1.5.) Notice also that the energies are all significantly less than
the corresponding infinite square well energies, (72/2)n? ~ 4.93,19.74,44.41, 78.96;
that’s because the finite well lets part of the wavefunction “spill out” beyond the
edges, allowing the wavelength inside to be longer for the same number of bumps.

There are no further normalizable solutions with £ < 50. For E > 50, the solutions
are sinusoidal even outside the well, like the solutions for a free particle. Thus,

this particular potential well admits exactly four bound-state solutions to the time-
independent Schrodinger equation.

I haven’t labeled the vertical axes on any of these graphs, because the vertical
scales are determined by my arbitrary choice of diy/dx = 0.001 at the extreme left
edge. To obtain normalized wavefunctions, we would have to compute [|¢|?dz in
each case, and divide v by the square root of the result.

There’s one more thing to notice about the four solutions pictured above: Each of
them is either an even or odd function of . This will be true whenever the potential
function V() is an even function, so for all such potentials there’s actually a better
choice of boundary conditions: Instead of starting far out along the —x axis, start
at z = 0 and either set ¢» = 1 and diy/dx = 0 to obtain the even functions, or
set ¥ = 0 and dip/dz = 1 to obtain the odd functions. (In both cases, the “1” is
arbitrary; any other nonzero value will do.) Then both “tails” of the wavefunction
will “wag” as you vary the energy, lying down flat when the energy is tuned to an
eigenvalue. These boundary conditions avoid the awkwardness that arises when the
starting point isn’t far enough to the left. In this example I used the more awkward
boundary conditions because this method works even when V(z) isn’t symmetric.

The algorithm that I’ve just described, in which we start at a point with a known
boundary condition and adjust the energy until the other boundary condition is met,
is called the shooting method, because it is reminiscent of shooting a projectile and
tuning its launch speed (or angle) to hit a fixed target. The shooting method is
extremely accurate and computationally efficient, though it can be a bit tedious,
finicky, and difficult to automate.

Matrix diagonalization

Now let me describe a totally different numerical method for solving the TISE.
This method tends to be more computationally intensive and less accurate than the
shooting method, but it can often be useful nevertheless, for a variety of reasons.
It is also extremely elegant and instructive.

Again, our goal is to solve the time-independent Schrodinger equation,

Hy = Ev, (3)

for the unknown eigenfunctions 1 and their corresponding eigenvalues E. The basic
idea is to write 1 as a linear combination of some collection of orthonormal basis
functions, 1,:

b= Z Cn¥n, (4)
n=1

so that the goal is now to find the unknown coefficients ¢,,. The basis functions
Yy, are not the solutions to the Schrédinger equation that we seek (if they were,
the problem would already be solved!). They should instead be some collection of
relatively simple functions that form an orthonormal basis. Here I will take the

¥ to be the sine functions that are energy eigenfunctions for an infinite square
well that’s wide enough to contain (to a good approximation—we hope!) all of the
eigenfunctions 1 that we care about:

U (z) = \/ESiﬂ(T) for 0 < z < b, (5)

where b is the width of the (hypothetical) infinite well. (When I apply this method
to the finite square well example in a moment, I will take b to be several times larger
than a, and I'll shift the finite well so it’s centered at b/2.)

Still working in general, we now insert the expansion for 1) (equation 4) into the
TISE (equation 3), and move H and E inside the sums to obtain

n=1 n=1

We can get rid of the sum on the right by using Fourier’s trick: multiply on the
left by %, (for some arbitrary index m) and integrate over x:

/OO ¢;§ch¢ndx:/

—00 — —

o)

U Y Ecpthy da. (7)
o0 n=1

Now, on the right-hand side, we can move the integral inside the sum, and factor
Ec,, out of the integral; the integral then gives simply 0,5, because the ,, functions
are orthonormal, and therefore the only term that contributes to the sum is the one
with n = m. The left-hand side isn’t so simple, but we can at least move the integral
inside the sum and factor the ¢, out of the integral. Thus we obtain

Z </°° vy Hipy d:c> cn, = Eepy,. (8)
n=1 -0

The quantity inside the big parentheses is called the mn matriz element of the
Hamiltonian operator,

H,,, = “matrix element” = / Y (x) Hip () dx, 9)

and it’s something that a computer can calculate straightforwardly. With this
abbreviation, the TISE becomes

> Hunen = Eep, (10)
n=1

which has the precise form of the eigenvalue equation for the matriz whose elements
are Hp,,:

Hy Hip -+ cl cl

Hyy Hip - 2|l =E|c]. (11)

Therefore the energy eigenvalues F are the eigenvalues of the H matrix, and the
eigenfunctions ¢ (z) can be built from the basis functions 1, (x) using the elements
of the corresponding eigenvectors. This form of the TISE is useful because many
mathematical computing environments include routines that can quickly find the
eigenvalues and eigenvectors of reasonably large matrices. Of course, you first have
to calculate all the matrix elements using equation 9, and that’s often the most
time-consuming part of the process.

Calculating the matrix elements is somewhat simplified if we break the Hamil-
tonian operator into two pieces:

H = Hy+ AV(x). (12)

Here Hj is the Hamiltonian whose eigenfunctions are ¢, (z), and AV (z) is whatever
is left of our actual Hamiltonian. For our infinite-square-well basis, Hy is just the
kinetic energy operator, AV (x) is simply the V(x) for our actual potential energy
function, and the integrals will run only from 0 to b because the basis functions are
zero elsewhere. Thus, the matrix elements are

b b
Hy = /0 5 () Hohn(z) dee + /0 (@) V (@) () da

b
By + /0 0 (2)V (@)in(@) da, (13)

where in the first term I’ve used the fact that 1, is an eigenfunction of Hy with
eigenvalue F,, and the fact that the 1, functions are orthonormal. Written out as
a matrix, the first term would be simply a diagonal matrix whose entries are the
eigenvalues of the infinite square well, 7212 /2b% in natural units.

Now let me apply this method to the same example used above: a finite square
well of width @ = 1 and depth Vp = 50 (in natural units). I’ll center the finite well
inside the infinite well:

Vi(z)
o0 p——
Vo
PR AN
0 T I
0 b/2 b o

Here is some Mathematica code to find the energy eigenvalues E and the corre-
sponding eigenvectors (cy, ¢, . ..) for this system:

b = 4;

vix_] := If[Abs[x - b/2] < 0.5, 0, 50];

nMax = 50;

basis[n_, x_] := Sqrt[2/b]*Sin[n Pi x/b];

vMatrix = Table[NIntegrate[basis[n, x]*v[x]*basis[m, x],

{x, 0, b}], {n, 1, nMax}, {m, 1, nMax}];

hOMatrix = DiagonalMatrix[Table[n~2 Pi~“2/(2xb"2), {n, 1, nMax}]];

{eValues, eVectors} = Eigensystem[hOMatrix + vMatrix];

eValues

In the first line I set b = 4, making the infinite well and its sine-wave basis functions
four times as wide as the finite well of width a = 1 that we want to study. Then
I define the potential energy function for the finite well, and next I set a cutoff
nMax of 50, which will be the largest n value used throughout the calculations
(and the dimension of the eigenvectors and matrices). The fourth line defines the
sine-wave basis functions, properly normalized. The fifth line carries out 50 x 50
numerical integrals to obtain all the matrix elements of V(z); this line is where
nearly all of the computational time is spent, and takes about a minute to execute
on my laptop computer. With those calculations out of the way, the next line sets
up the diagonal matrix Hy, and finally we add these two matrices together, call
Mathematica’s Eigensystem function to find its eigenvalues and eigenvectors, and
write out the list of eigenvalues. Here is the output:

{811.179, 780.225, 749.343, 719.877, 690.352, 662.866, 634.565, 608.144,
581.992, 555.874, 531.607, 506.755, 483.011, 460.415, 437.107, 415.862,
394.466, 373.352, 354.171, 333.967, 315.485, 297.698, 279.237, 263.283,
246.413, 230.559, 216.365, 200.724, 187.821, 174.449, 161.206, 150.544,
137.827, 128.003, 118.079, 107.628, 100.49, 90.6015, 84.3394, 77.3956,
70.5479, 66.78, 59.9372, 57.9902, 52.9032, 52.0802, 48.1704, 29.4697,
13.4824, 3.41566%}

Mathematica inconveniently sorts the eigenvalues in descending order (and sorts the
eigenvectors to correspond); although we could fix this with some list manipulation
functions, I won’t bother. The eigenvalues that we want are the last four, which
are less than Vy = 50 and therefore correspond to bound states of the finite well.
Moreover, all four of these values agree to three significant figures with the more
accurate values found by the shooting method. The other 46 eigenvalues are artifacts
of the fictitious infinite well; in fact the finite well allows any energy greater than Vj.

We could also print out the components of the eigenvectors, but a picture is
worth a thousand numerals. You can plot the components of any eigenvector using
an instruction like ListPlot[eVectors[[47]], PlotRange -> All], remember-
ing again that the bound states are numbered 47 through 50. With some further
tweaking for aesthetics, this instruction produces the following plot:

0.6¢ {cn} for E = 48.1704
0.4F

0.2}

-0.2}

—0.4r

0.6

To see the actual function of « that corresponds to this eigenvector, we simply build
it out of the basis functions according to equation 4:

Plot [Sum[eVectors[[47,n]]*basis[n,x], {n,1,nMax}], {x,0,b}]

This instruction (again with some tweaking for aesthetics) produces the following
plot:

1,0; A Y(x) for £ = 48.1704
0.5f
‘ : x
1 3
-0.5r
-1.0* U

To the eye, this graph is identical to the one obtained using the shooting method,
except near the end points where it is forced to zero more quickly by the walls of
the fictitious infinite well. (We could avoid this problem by making the infinite well
wider, but then we would also need to increase the maximum n value to incorporate
sufficiently short wavelengths.) Building the other three bound-state wavefunctions
is no more difficult.

Finding the eigenvalues and eigenvectors of a matrix is often called diagonal-
1zation, because the eigenvectors could then be used as a new basis in which the
matrix would be diagonal with entries equal to the eigenvalues. Solving the TISE is
always equivalent to diagonalizing a matrix, and this method is practical whenever
the infinite sums are well approximated by a reasonably small number of terms.

