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We’re now ready to generalize quantum mechanics beyond the system of a single,
structureless particle in one dimension. Specifically, we will consider:

e particles moving in multi-dimensional space;
e systems of multiple particles; and
e particles with internal degrees of freedom (such as spin).

In this lesson we’ll consider a single particle moving in two spatial dimensions, with
occasional remarks about the further generalization to three dimensions.

In many ways, the generalization from one to two dimensions is completely
straightforward. The wavefunction 1 is now a complex-valued, square-integrable
function of two variables, x and y, normalized so that

/ de / Zdy (o, y)? = 1. (1)

To compute the probability of finding the particle within some two-dimensional
region, we would integrate |1/|? only over that region.

If a particle is localized, then its wavefunction is nonzero only over a small
range of x and y values. In the idealized limit, such a function becomes a position
eigenfunction, which is nonzero everywhere except at a single point, and can be
expressed as a product of delta functions:

Sz — 20)d(y — yo) = 0P (7 — 7p), (2)

where ¥ = (x,y) and the superscript (2) denotes a two-dimensional delta function.
As in one dimension, however, a position eigenfunction is not normalizable.
An idealized momentum eigenfunction, on the other hand, would have the form

eipzm/heipyy/h _ eip-r/57 (3)

where p'= (pg, py). This function varies only as 7 changes in the p’ direction. Each
wave “crest” or “trough” consists of a straight line, perpendicular to p, so we call
this a linear wave. In three dimensions the crests and troughs would be planes, so
we would call e/ a plane wave.

To visualize a wavefunction in two dimensions, it’s usually easiest to plot the two
dimensions horizontally and vertically, and then represent the wavefunction value
using colors or gray levels. For example, here is a picture of a two-dimensional
Gaussian wavepacket with a rightward (average) momentum, in which the satura-
tion represents the probability density and the hues represent phases as usual:
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The formula for this Gaussian wavepacket would be
Y(w,y) = e TV PN, (4)

where p points to the right and I've neglected an overall normalization constant.

(Visualizing three-dimensional wavefunctions is quite a bit more difficult, but
there’s some cool software at falstad.com that can help.)

In more abstract language, the state “vectors” of the system now live in a
different (larger) vector space than for a one-dimensional system. The normalization
integral (equation 1) is just a special case of the inner product of two wavefunctions,
whose general definition in two dimensions is

vz} = [ T / " dy it (@, y)a(a, ). (5)

In this vector space there are two independent position operators, x and y, which
we can think of as components of a two-dimensional vector position operator 7.
Similarly, there are two momentum operators,

—ih% and — ihaé;, (6)
which we can think of as components of a two-dimensional vector momentum op-
erator, —iAV. The sinusoidal linear waves in equation 3 are eigenfunctions of these
operators, with the expected eigenvalues p, and p,.

To find the Hamiltonian operator for this two-dimensional system, we simply
start with the classical expression for the system’s total energy and substitute op-
erators for the momentum components:
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The differential operator inside the parentheses is often abbreviated V2. With this
Hamiltonian you can now write down either the TISE (Hvy = Ev) or the TDSE
(Ht = ih Ov/0t) for this two-dimensional system.



All of the wavefunction formulas in equations 2, 3, and 4 have the special prop-
erty that they can be factored into a function of x times a function of y:

P(z,y) = Yz (x)y(y) (usually not possible). (8)

Such functions are said to be separable (in rectangular coordinates). However, this
property is the exception rather than the rule. It’s easy to write down wavefunction
formulas, such as e~y /a" and eVt v/ R that are not separable.

One especially easy way to construct non-separable wavefunctions is to combine
two or more separable wavefunctions into a superposition. For example, consider
the superposition of Gaussians

e~ (@0 =(¥=0)? 4 o—(2-b)%~(y=0)* (9)
where z and y are understood to be measured as multiples of some suitable unit.

Each term in this expression is separable, but the entire expression (which is an
equally legitimate wavefunction) is not. The function looks something like this:
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On one hand, this wavefunction is no more strange than a one-dimensional wave-
function that has two separated peaks; loosely speaking, we could say that the
particle is half near one location and half near the other. But please notice the
following further curiosity: Both the z and y coordinates of this particle are inde-
terminate, so that if you measured either of them, you would have a 50/50 chance
of finding it either near a or near b. But if you do measure just one of them, the
result will also tell you something about the other; for example, if you measure =
and find it near b, then you immediately know that y is near a.

When a wavefunction depends on two variables but is not separable, we often
say that the two variables are entangled. As the example above demonstrates, this
means that you might be able to learn something about both variables by measuring
just one of them.

I should point out that sometimes a non-separable wavefunction becomes sep-
arable if you switch to a different coordinate system. For example, the function

PV Hy? /R ig separable in polar coordinates, while the wavefunction of equation 9



can be factored if you rotate the coordinate axes by 45 degrees. Often the relevant
coordinate system is dictated by some other outside condition, so a change of coor-
dinates may or may not be appropriate. And if you make these wavefunctions just
a little more complicated, e.g., by adding a third Gaussian peak to equation 9, then
they can’t be factored in any coordinate system.

Ironically, even though the vast majority of wavefunctions are not separable,
we’ll spend most of our time working with wavefunctions that are separable. This
is because they are mathematically simpler, and also because the separable wave-
functions are complete: any other wavefunction can always be expressed as a linear
superposition of separable wavefunctions (as in equation 9). Just don’t let these
separable wavefunctions give you the false impression that the quantum world is
always so simple. In quantum mechanics you need to keep reminding yourself that
your basis vectors are merely a basis, from which you can build arbitrary linear
combinations to represent the unlimited variety of the world.



