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It’s finally time to confront the case where eigenvalues are continuous rather than
discrete. Specifically, it’s time to generalize the all-important formula for a super-
position of eigenfunctions,

ψ(x) =

∞∑
n=1

cnψn(x), (1)

where the ψn can be any complete (but discrete) basis set. Typically, the ψn have
been energy eigenfunctions, for a V (x) (like the infinite square well or the harmonic
oscillator) that rises to infinity on both sides, trapping any particle and quantiz-
ing all energies. Realistic potential functions are never infinite, so they allow for
untrapped wavefunctions that have continuously variable energies.

But there’s an even more important example of a complete basis set that’s
continuous: the momentum eigenfunctions, eipx/h̄, where p can be any real number.
These functions are also energy eigenfunctions for a free particle, when V (x) = 0
everywhere. If this collection of basis functions were discrete, we could express any
other function ψ(x) in terms of them by using a sum:

ψ(x) =
∑
p

cp e
ipx/h̄ (wrong). (2)

But because p is continuous, we need to replace the sum by an integral:

ψ(x) =
1√
2πh̄

∫ ∞
−∞

Φ(p) eipx/h̄ dp. (3)

In this formula I’ve also switched from the letter c to the standard symbol Φ, and
factored out a constant from Φ for a reason that I’ll explain in a moment. The
important thing to notice is that instead of a discrete set of coefficients {cn}, we
now have a continuous function, Φ(p), that encodes how much of each basis function
eipx/h̄ is incorporated into the wavefunction ψ(x). This function, Φ(p), has a name:
the momentum-space wavefunction. For every (ordinary) wavefunction ψ(x), there
must be a corresponding momentum-space wavefunction Φ(p).

And how do we find Φ(p) for a given ψ(x)? Again, think about the discrete
case. There, to find a particular cm, we would use Fourier’s trick : multiply by
ψ∗m(x), integrate over x, and exploit the orthonormality of the basis functions to
kill off every term in the sum except the one we want. Let’s try the same trick
here. Multiplying both sides of equation 3 by e−ip

′x/h̄ (where p′ is some arbitrary
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momentum value that in general is different from p) and integrating, we have∫ ∞
−∞

dxψ(x) e−ip
′x/h̄ =

1√
2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dpΦ(p) eipx/h̄ e−ip
′x/h̄

=
1√
2πh̄

∫ ∞
−∞

dpΦ(p)

∫ ∞
−∞

dx ei(p−p
′)x/h̄, (4)

where in the second line I’ve interchanged the order of the integrals and moved
Φ(p) outside the x integral. The x integral is now an inner product of the two basis
functions eipx/h̄ and eip

′x/h̄. If these basis functions were a discrete and orthonormal
set, this inner product would equal a Kronecker delta δpp′ . Here, where the set
of basis functions is continuous, we instead get a Dirac delta function, times a
normalization constant: ∫ ∞

−∞
ei(p−p

′)x/h̄ dx = 2πh̄ δ(p− p′). (5)

This lovely mathematical result may be unfamiliar to you, so think about it a
moment: When p 6= p′, the integrand on the left oscillates and averages to zero,
while the delta function on the right indeed equals zero. On the other hand, when
p = p′, the integrand on the left is 1, so there’s no cancelation and we get infinity—
just as the delta function says. The factor of h̄ on the right-hand side comes from
a change of variables; the more generic version of the formula would be simply∫ ∞

−∞
eikx dx = 2π δ(k). (6)

The factor of 2π is not easy to guess, but I hope you’ll accept it by the time we’re
through.

Plugging the orthonormality relation 5 into equation 4 and using the delta func-
tion to carry out the p integral, we obtain∫ ∞

−∞
dxψ(x) e−ip

′x/h̄ =
1√
2πh̄

∫ ∞
−∞

dpΦ(p) 2πh̄ δ(p− p′) =
√

2πh̄Φ(p′). (7)

We can now rename p′ → p to obtain our desired result,

Φ(p) =
1√
2πh̄

∫ ∞
−∞

ψ(x) e−ipx/h̄ dx. (8)

I hope you recognize equations 3 and 8 as the formulas for a Fourier transform
and inverse Fourier transform, respectively. (The factors of h̄ don’t normally appear
in math courses, but that’s just a matter of using p = h̄k as our variable instead
of k.) Mathematicians can give you a rigorous proof, without using delta functions,
that either of these equations implies the other; that fact is called Plancherel’s
theorem. If nothing else, you should consult such a proof to see where the factor

2



of 2π comes from. But as a physicist, I find it more convenient to think in terms of
“Fourier’s trick,” which projects out the desired “component” of the “vector” ψ(x),
and to invoke the delta-function identity 5 (or 6) at the appropriate point in the
calculation.

For a free particle, the momentum eigenfunctions eipx/h̄ are also energy eigen-
functions, so equation 3 is just the expansion we need in order to slip in wiggle
factors and obtain the wavefunction as a function of time:

ψ(x, t) =
1√
2πh̄

∫ ∞
−∞

Φ(p) eipx/h̄ e−iEt/h̄ dp (free particle). (9)

Here E is a continuous variable that depends on p; if the particle is nonrelativistic,
then E = p2/2m. So for a free particle, you can calculate the time dependence of any
initial wavefunction ψ(x, 0) by first using equation 8 to find the momentum-space
wavefunction and then plugging that into equation 18. Griffiths presents a nice
example of this process in Section 2.4, where the initial wavefunction is rectangular
(constant within a limited interval and zero elsewhere). His rationale for never using
the term “momentum-space wavefunction” until Chapter 3 eludes me.

Unfortunately, carrying out Fourier-transform integrals with pencil and paper is
feasible only for the simplest of wavefunctions. Professionals almost always rely on
computers for this task, and fortunately, many computer software packages include
powerful routines for “fast Fourier transforms” of numerical data. In Mathematica,
the applicable functions are called Fourier and InverseFourier. Learning to use
these functions would take a bit of time, however, so I’ve decided not to incorporate
such calculations into this course (at least for now).

Probabilities and averages

Once you have the momentum-space wavefunction Φ(p), you can use it to calculate
momentum probabilities just as you would use ψ(x) to calculate position probabil-
ities: (

Probability of finding

particle between p1 and p2

)
=

∫ p2

p1

|Φ(p)|2 dp. (10)

Of course, this formula doesn’t make sense unless Φ(p) is properly normalized, so
that the integral from −∞ to ∞ equals 1. But as you might guess, this will always
be the case if you calculate Φ(p) from a ψ(x) that is itself properly normalized.

If all you want to know is the average momentum, you can get it from Φ(p) in
a way that’s exactly analogous to calculating the average position from ψ(x):

〈p〉 =

∫ ∞
−∞

p |Φ(p)|2 dp. (11)

And, naturally, a similar formula works for any function of p. However, if average
values are all you want, then there’s actually no need to calculate Φ(p) at all. For
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example, you can get 〈p〉 directly from ψ(x) by evaluating the integral

〈p〉 =

∫ ∞
−∞

ψ∗(x)
(
−ih̄ d

dx

)
ψ(x) dx. (12)

Notice that the quantity inside the big parentheses is the momentum operator. If
instead it were the position operator (x), then this would just be the familiar formula
for 〈x〉. To derive equation 12, just insert expansion 3 for both ψ and ψ∗ on the
right-hand side, being careful to use a different p variable in each. Then note that
the x integral gives a delta function, which you can use to carry out one of the p
integrals, leaving you with an expression that is precisely identical to the right-hand
side of equation 11.

In fact, you can calculate the average value of any observable quantity using
an expression of the form of equation 12, replacing the momentum operator with
the operator of your choice. For powers of the momentum such as 〈p2〉, the proof
is essentially the same as the proof of equation 12. For operators that involve
both x and p, such as the Hamiltonian operator when V (x) is nonzero, the proof
is analogous but rests on the assumption that the operator has a complete set of
mutually orthogonal eigenfunctions.

The Gaussian wavepacket

We’re now ready to investigate the properties of an extremely important type of
wavefunction: a wavepacket, consisting of a momentum eigenfunction multiplied by
an “envelope” function that’s large in some central region and dies out smoothly to
either side. For mathematical convenience it’s easiest to take the envelope to be a
Gaussian bell curve, so I’ll express the wavepacket as follows:

ψ(x) = Ae−(x/a)2eip0x/h̄. (13)

Here I’m using the symbol p0 for this wavefunction’s nominal momentum value.
The parameter a has units of length and is a rough measure of the width of the
packet. You can express the normalization constant A in terms of a, but often it’s
handier to just write it as A.

What does this wavefunction look like? The answer depends on how a compares
to the oscillation wavelength, h/p0. Here is a plot of ψ(x) in which I’ve chosen
a = 3h/p0 (and p0 > 0):
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But there’s a reason I called p0 the “nominal” momentum value. A wavepacket
is not a momentum eigenfunction but rather a mixture of momentum eigenfunctions
with a whole range of p values. To quantify exactly what mixture it is, we need to
compute the momentum-space wavefunction:

Φ(p) =
1√
2πh̄

∫ ∞
−∞

(
Ae−(x/a)2eip0x/h̄

)
e−ipx/h̄ dx. (14)

(Be sure not to confuse p0, a constant parameter that defines our particular wave-
packet, with p, the variable on which the momentum-space wavefunction depends.)
To carry out the integral, combine the three exponents, complete the square, and
use the basic Gaussian integration formula∫ ∞

−∞
e−αx

2
dx =

√
π

α
. (15)

The result is
Φ(p) = B e−(a(p−p0)/2h̄)2 , (16)

where B is a normalization constant that you can express in terms of a if you
wish. This is a Gaussian function of momentum, centered on p0, with a width in
momentum space of approximately 2h̄/a:
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This result means that if you were to measure the momentum of this Gaussian
wavepacket, the most likely outcome would be p0 but you would be reasonably
likely to obtain any value in the range p0 ± 2h̄/a. Notice that the width of the
momentum-space wavefunction Φ(p) is inversely proportional to the width of the
(position-space) wavefunction ψ(x). So the more we try to localize a particle in
space (by reducing the value of a), the more uncertainty we introduce into its
momentum—and vice-versa. More precisely, by calculating 〈x2〉 and 〈p2〉 for a
Gaussian wavepacket you can show that the product of the standard deviations of
x and p is a fixed constant:

σxσp =
h̄

2
for a Gaussian wavepacket. (17)

This is a special case of the famous Heisenberg uncertainty principle, which says
more generally that there is no wavefunction for which this product of standard
deviations is less than h̄/2.

Now suppose that this Gaussian wavepacket describes a free particle (V = 0) at
time zero. We can then use equation 18 to calculate the wavefunction at any future
time:

ψ(x, t) =
B√
2πh̄

∫ ∞
−∞

e−(a(p−p0)/2h̄)2 eipx/h̄ e−ip
2t/2mh̄ dp, (18)

where I’ve used equation 16 for the momentum-space wavefunction and E = p2/2m
for a nonrelativistic particle. In principle this integral is no more difficult than
the one in equation 14: you can combine the exponents into a single quadratic
function of p, then complete the square and again use the Gaussian integration
formula 15. In practice, though, the algebra gets pretty cumbersome, and the
answer is cumbersome as well, looking superficially like the formula for a Gaussian
but with factors of i in several awkward places that make it hard to interpret. The
formula for the probability density is more straightforward, taking the form

|ψ(x, t)|2 = C(t) exp

[
− (x− p0t/m)2

a2/2 + 2h̄2t2/m2a2

]
, (19)

where C(t) is a time-dependent normalization constant. As a function of x this
is still a Gaussian, with the peak moving to the right at velocity p0/m, just as
we would expect. Moreover, as time passes the width of the wavepacket increases.
This happens because the different momentum “components” of the packet all move
with different velocities, so the faster (shorter wavelength) components get ahead
over time, while the slower (longer wavelength) components fall behind. (You can
use the Barrier Scattering simulation to visualize this.) The rate of spreading is
less if a is large, because then the wavepacket is built from a narrow range of
momentum components that all move at nearly equal speeds. Also note that the
rate of spreading is less for a heavy particle, so we shouldn’t be surprised that the
spreading is negligible for a pitched baseball.
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