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Our third and final generalization of quantum mechanics is to particles that have
internal degrees of freedom. The state v of such a particle depends not only on its
location in space, but also on one or more internal variables.

The most familiar type of internal degree of freedom is spin, a particle’s intrinsic
angular momentum. But there are many other examples. Atoms can be internally
excited above their ground states, and molecules can be in various rotational and
vibrational states. Quarks and gluons each have several “color” states, and the
quarks also have various “flavor” states (up, down, strange, charm, top, bottom),
as do the leptons (electron, muon, tau, and three neutrino varieties). Even the
familiar proton and neutron can often be considered as two different states of a
single “nucleon” system.

One common feature of all these types of internal states is that they are dis-
crete, rather than continuous. This means that the “wavefunction” that describes a
particle’s internal state is not a function of a continuous variable like x, but rather
a function of a discrete variable that takes on only certain values. For atomic and
molecular excited states the list of values is still nominally infinite, but in many
cases, including spin, the list is finite, and in the simplest cases there are just two
possible values. For example, the spin state of a “spin-1/2” particle like the electron
(or proton or neutron or any of the quarks or leptons) can be described as a function
of a parameter called mg whose value must be either +1/2 or —1/2.

Still taking the spin state of an electron as an example, we could denote this state
by a symbol like ¥ (my), in analogy to the spatial wavefunction ¢ (x). But because
mg can have only two possible values, we normally don’t put it in parentheses
like a function argument; instead we write ¢ as a two-component column vector
(sometimes called a spinor) whose (complex) components are ¥(1/2) and ¢(—1/2),

respectively:
v= () 2

In this expression I've also introduced the more common notations v for ¢(£1/2).
The interpretations of these components are the natural counterparts to the inter-
pretation of ¢ (x):
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No integration is necessary, because the values of my are discrete. Physically, by
the way, ms equals the z component of the electron’s angular momentum, in units
of h. Often we refer to the electron’s two spinor components simply as “spin up”
and “spin down.”
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Of course the sum of the probabilities for all possible values of mg must equal 1,
so there is a normalization condition:
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where the inner product is defined as the familiar vector dot product, with a complex
conjugation on the first of the two vectors. In matrix notation,
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But I've been ignoring the motion of the electron through space. Its full wave-
function is a function of x, y, z, and ms. But again, instead of writing ¥ (x, y, z, ms),
we express the ms dependence using spinor notation:

o= (i) g

In general, the two components of the spinor can be completely different functions
of z, y, and z. In the simplest cases, though, the wavefunction factors (or separates)
into a single function of space times a space-independent spinor. When it doesn’t
factor, we say that the particle’s spatial motion and its spin are entangled. (Yes,
in principle you can put an electron into a state with its spin-up component in
Albuquerque and its spin-down component in Denver.)

For the more general case in which the internal state of a particle depends on
a parameter that has n possible values, we describe that internal state using an
n-dimensional complex-valued column vector. Some particles have three or more
independent spin states (ms values); gluons come in eight colors; and the number of
vibrational states of a diatomic molecule is nominally infinite (though in practice the
molecule will break apart if the high-n states are active). In all cases, the internal
states live in an n-dimensional vector space, and if we also wish to describe the
particle’s spatial motion, then the overall states live in the vector space of n-tuples
of functions of space.

Sometimes a single particle has two types of internal degrees of freedom—such
as a quark with two independent spin states (+ and —) and three independent
colors (r, g, and b). To describe both the spin and color of a quark we could use a
siz-dimensional column vector, associating the components with r+, r—, g+, g—,
b+, and b—. More often, though, we work with “factored” basis states that keep
spin and color separate, and simply juxtapose the respective column vectors in what
is called a direct product:
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This notation is convenient because inner products and other matrix multiplications
can also be kept within the separate spin and color “spaces”; you just manipulate
the spin and color expressions separately, ignoring each while working with the
other. The down-side is that the only way to write down a state with spin and color
entangled is as a sum of terms that are separately factored.

And the same principles apply when you want to keep track of the internal
states of two (or more) different particles. You can write down non-entangled states
by juxtaposing column vectors for the separate particles, but linear combinations
(that is, entanglements) of these states are also possible, and you need to remember
that you’re really working in the vector space of all direct products and their linear
combinations.

We’ll see some concrete examples of these ideas later in the course, when you’ll
have more time to practice with them. For now, my main goal is to warn you
about what’s coming up, and to give you a general sense of how we can combine
any two separate quantum systems into a larger composite system by working in
an appropriately larger vector space.



