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The most important example of a spherically symmetric potential energy is the
Coulomb potential,

V (r) =
1

4πε0

q1q2

r
, (1)

between two point charges q1 and q2 separated by a distance r. If one of the two
charges is a heavy atomic nucleus and the other is a much lighter electron, then to
a good approximation we can treat the nucleus as a fixed center of force and apply
quantum mechanics only to the electron’s motion (see Problem 5.1 in Griffiths if
you want to know how accurate this approximation is). In terms of the fundamental
unit of charge,

e = 1.602× 10−19 C, (2)

the electron’s charge is −e and the nuclear charge is Ze, where Z is the number
of protons. For now we’ll consider only the hydrogen atom, with Z = 1, so the
potential energy is

V (r) = − e2

4πε0

1

r
. (3)

Given this potential energy function, we can immediately write down the effec-
tive potential,

Veff(r) =
h̄2l(l + 1)

2mr2
− e2

4πε0

1

r
, (4)

where m is the electron’s mass, and then use this Veff in the (reduced) radial
Schrödinger equation, [

− h̄2

2m

d2

dr2
+ Veff(r)

]
u(r) = Eu(r). (5)

Natural units

It looks like the TISE for the hydrogen atom involves four different constants: e,
ε0, m, and h̄. But they occur in only two different combinations,

e2

4πε0
and

h̄2

m
, (6)

and you can immediately see from equation 4 that these combinations have dimen-
sions of energy times distance and energy times distance squared, respectively. We
can therefore divide the latter by the former to obtain a natural unit of distance,

a0 =
h̄2/m

e2/(4πε0)
= 0.529× 10−10 m, (7)
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called the Bohr radius (after Niels Bohr). And then we can divide e2/(4πε0) by a0

to obtain a natural unit of energy,

Eh =
e2

4πε0a0
=

h̄2

ma2
0

=
( e2

4πε0

)2 m

h̄2 = 27.2 eV, (8)

called the hartree (after Douglas Hartree, who made important early contributions
to theoretical atomic physics).

These natural units are called atomic units, often abbreviated a.u. (not to be
confused with AU for astronomical units!). Actually, the atomic unit system sets
all four of the constants m, h̄, e, and 1/(4πε0) equal to 1. (Sometimes you might
encounter a competing atomic unit system in which some factors of 2 are absorbed
into some of the units so the energy unit comes out half as large, 13.6 eV. That
energy unit is called the rydberg, and you can distinguish the two systems by saying
Hartree atomic units or Rydberg atomic units. In this class we will use only Hartree
atomic units.)

With the understanding that all distances are measured in units of a0 and all
energies are measured in units of Eh, the radial Schrödinger equation becomes[

−1

2

d2

dr2
+
l(l + 1)

2r2
− 1

r

]
u(r) = Eu(r). (9)

Qualitative solutions

Here is a plot of the effective potential, for l = 0, 1, and 2, with the scales on both
axes measured in atomic units:
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As you can see, the attractive Coulomb potential always dominates at large r,
but when l > 0 the repulsive centrifugal term sends Veff to +∞ as r → 0. The
competition between the two terms leads to a local minimum, which you can easily
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show to lie at r = l(l + 1), at which point Veff = −1/(2l(l + 1)) (check this on the
graph!). Any solutions to the Schrödinger equation must have energies at least a
little above this minimum, that is, above −1/4 for l = 1, above −1/12 for l = 2,
and so on. Meanwhile, in order for the electron to be bound to the nucleus (that is,
in order to have a hydrogen atom rather than an ion), its energy must be negative.

With these limits in mind, it’s an instructive exercise to simply guess some en-
ergy levels, draw them on the graph to determine the associated classical turning
points, and then sketch tentative graphs of the one-bump wavefunction, the two-
bump wavefunction, and so on, just as you would do if this were a one-dimensional
problem. There is a separate set of solutions for each l value, and these “wavefunc-
tions” will actually be u(r), which you have to divide by r to obtain R(r). The
widths of the “bumps” will grow as you go outward (away from the minimum of
Veff), and the centrifugal term pushes the wavefunctions farther and farther out as
l increases. It’s not obvious what happens near the origin in the case l = 0, but
it’s reasonable to guess that even then the reduced wavefunction must go to zero as
r → 0, and this guess turns out to be correct.

One other thing that isn’t obvious is how many bound states this system has
for each l value. On one hand the potential wells for l > 0 don’t look especially
deep, so you might guess that there aren’t very many bound states. But on the
other hand, for values of E that are only slightly negative there is a great deal of
horizontal space in which to fit plenty of bumps. It turns out that this second effect
dominates, so the number of bound states is actually infinite for each l value, no
matter how large.

Numerical solutions

The matrix diagonalization method isn’t well suited to the Coulomb potential, be-
cause the wavefunctions extend out to rather large r values, forcing you to use a
wide “box” to enclose them, and for such a wide box you need to use a lot of sine
waves (large nmax) to accurately fit the short-wavelength, small-r portions of the
wavefunctions. You can still get a few of the lowest-energy states, but it’s compu-
tationally inefficient.

The shooting method, on the other hand, works just fine. For this purpose it’s
a little easier to solve the radial equation for d2u/dr2:

d2u

dr2
= −2

(
E − l(l + 1)

2r2
+

1

r

)
u(r). (10)

Because of the r’s in the denominators, you need to start the integration a little
away from the origin, say at rmin = 0.0001. For l = 0 the functions u(r) turn
out to be linear near the origin, so it works well to use the boundary conditions
u(rmin) = rmin and u′(rmin) = 1. For l > 0 the functions u(r) die out more rapidly
near the origin, so it’s best to set u(rmin) = 0 and u′(rmin) = rmin (or any other
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small value). You’ll find that you need to use surprisingly large maximum values
of r.

You probably won’t be surprised to learn that the energy eigenvalues follow a
simple pattern. For l = 0, still using natural units, they are −1/2, −1/8, −1/18,
−1/32, and so on, that is, −1/(2n2), where n = 1, 2, 3, . . . is the number of bumps.
Then an amazing (though perhaps familiar) thing happens for l = 1: The energy
values turn out to be exactly the same, except that the list omits −1/2 and instead
starts at −1/8, so the one-bump l = 1 wavefunction is degenerate with the two-
bump l = 0 wavefunction, while the two-bump l = 1 wavefunction is degenerate
with the three-bump l = 0 wavefunction, and so on. And the list of energies for l = 2
is similarly degenerate with the others, but starting with −1/18. Please recall that
there is no such degeneracy for the other central force problems we’ve explored,
such as the spherical infinite well and the linear (constant-force) potential. The
degeneracy seems like a total coincidence! Of course it’s not a coincidence, but the
reason for it is rather difficult to understand so I won’t go into it here.

Because of this degeneracy, it’s conventional to define the quantum number n
so that the energy formula −1/(2n2) works even for l > 0. In conventional units,

En = − Eh

2n2
= −13.6 eV

n2
. (11)

This definition of n is confusing, because it means (for instance) that the wavefunc-
tion with l = 1 and n = 2 has only one bump (in the r direction). In general, the
number of bumps in u(r) equals n − l. Here is an energy-level diagram with the
values of l and n (but not the number of bumps) labeled:

Of course it’s also important to remember that for any given n and l values, there
are still 2l+1 degenerate states with different values of the quantum number m (also
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called ml when a plain m would be ambiguous). So in the figure on the previous
page, each l = 1 state is actually triply degenerate, each l = 2 state is five-fold
degenerate, and so on.

Analytic solutions

As with the one-dimensional harmonic oscillator, the existence of a simple formula
for the energy eigenvalues is a sure sign that it must be possible to solve the TISE
analytically. For the full analytic solution (via the power-series method) I’ll refer
you to Griffiths, Section 4.2. Here I’ll focus on the general form of the solutions and
the specific formulas for a few of the simplest ones.

One key observation is that in the limit of large r, both V (r) and the centrifugal
term go to zero so the radial equation becomes simply

d2u

dr2
= −2E u(r) =

1

n2
u(r), (12)

where in the last expression I’ve used the formula E = −1/(2n2) that we inferred
from the pattern of the numerical solutions. The solutions to this differential equa-
tion are exponential functions, er/n and e−r/n, but the former isn’t normalizable so
we’re left with the latter.

The (reduced) wavefunctions must also go to zero at r = 0, and most of them
have multiple bumps and nodes. The simplest functions that have these properties
are polynomial functions of r, so it’s reasonable (and correct) to guess that the
general formula for u(r) is a polynomial in r times e−r/n. There can be no constant
terms in these polynomials, because they must go to zero at the origin.

The next thing to notice is that the l = 0 reduced wavefunctions are approxi-
mately linear near the origin (as you can see from the numerical solutions), so in
these cases the polynomial must have a linear r1 term. For the ground state this
term is sufficient, while each additional node requires a term in the polynomial with
the next-higher power of r.

For l = 1 the wavefunctions are concave-up near the origin, so a reasonable
guess is that u(r) begins with an r2 term, again adding a term with the next-higher
power of r for each additional node. For l = 2, the u(r) functions begin with r3,
and so on. This pattern is actually easier to remember for the unreduced radial
wavefunctions, R(r) = u(r)/r, which begin with the power rl.

Of course you can verify this pattern, at least for the one-bump wavefunctions,
by simply plugging the formula into the radial Schrödinger equation and showing
that it works. For the two-bump wavefunctions, you can make up a letter for the
coefficient of the next polynomial term, plug in the formula, and solve for the value
of the coefficient that works. To work out the polynomials for wavefunctions with
more than two bumps is rather tedious, so at that point you’re probably better off
just plowing through the full power-series solution in Griffiths.
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These polynomials have names, by the way: After factoring out the overall
powers of r, the remaining polynomials (suitably normalized) are called associated
Laguerre polynomials. You can work out their coefficients using recursion relations,
or look them up in tables, or invoke them with Mathematica. (Be careful: Grif-
fiths and Mathematica use different normalization conventions for the associated
Laguerre polynomials.) I usually find it easier, though, to simply work from a table
of the radial wavefunctions themselves, and Griffiths conveniently provides one (for
the unreduced functions R(r)) that goes up to n = 4. This table also includes the
normalization coefficients, which are straightforward but tedious to work out.
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