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On a scale of 0 to 10 in difficulty, the infinite square well is a 1. The one-dimensional
harmonic oscillator is a 3. The hydrogen atom is an 8. And the helium atom is
a 99.

But let’s take a crack at it anyway, and see how far we can get.
I’ll attack the problem by starting with the known solutions for the hydrogen

atom, then introducing three changes, one at a time:

1. Increase the nuclear charge from e to 2e.

2. Introduce a second electron that’s also attracted to the nucleus, but neglect
the repulsive force between the two electrons.

3. Finally, try to calculate the effects of the electron-electron repulsion.

Increasing the nuclear charge

For a single electron in the vicinity of a nucleus containing Z protons, the potential
energy function becomes

V (r) = − Ze
2

4πε0

1

r
. (1)

Everything else in the Schrödinger equation is the same as for hydrogen, so there’s
no need to solve it from scratch; we can simply modify the hydrogen solutions by
slipping in a factor of Z wherever e2 appears. So the Bohr radius,

a0 =
4πε0h̄

2

e2m
= 0.529× 10−10 m, (2)

gets divided by Z, meaning that all the wavefunctions get pulled in closer to the
nucleus by a factor of Z. Meanwhile the hydrogen energy levels,

En = −1

2

( e2

4πε0

)2m
h̄2

1

n2
= −13.6 eV

n2
, (3)

get multiplied by a factor of Z2, meaning that all the levels become much more
negative as Z increases.

We could simply modify our natural unit system to absorb these factors of Z,
but nobody does that. We will continue to use atomic units, with distances in units
of a0 and energies in units of Eh = 27.2 eV. In the formulas for the wavefunctions,
we’ll need to replace every a0 with a0/Z to transition from hydrogen to a heavier
one-electron ion.

Helium, of course, has Z = 2, so for the He+ ion, with only one electron, the
wavefunctions are half as large as for hydrogen and the energies are four times as
negative.
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Adding a second electron

Now imagine that we start with a He+ ion and bring in a second electron, but
magically turn off the repulsive force between the two electrons. Then each of the
two electrons behaves more or less independently, feeling the same force from the
nucleus and having the same energy levels and definite-energy wavefunctions.

I say “more or less,” because electrons are identical fermions, so even if they
don’t exert any forces on each other, their combined wavefunction still needs to be
antisymmetric under the hypothetical operation of interchanging them with each
other. However, this combined wavefunction also includes their spin states. As
we’ll study in a couple of weeks, the spin state alone, for a system of two spin-1/2
particles, can be either symmetric or antisymmetric. This means that the posi-
tion-dependent part of the wavefunction can be, respectively, either antisymmetric
or symmetric under interchange. The bottom line is that the antisymmetrization
requirement doesn’t affect the number of available spatial wavefunctions.

Moreover, as you’ll see in a moment, all we’re really looking for here is a set of
orthonormal basis functions to use in our subsequent calculations. For this purpose
we don’t even need to use symmetric or antisymmetric wavefunctions; we can simply
multiply a wavefunction for electron 1 by a wavefunction for electron 2. Our basis,
therefore, looks something like this:

ψ100(r1)ψ100(r2), ψ100(r1)ψ200(r2), ψ200(r1)ψ100(r2), ψ100(r1)ψ210(r2), . . . , (4)

where the subscripts are the quantum numbers n, l, and m, respectively. (Remem-
ber that these ψ functions are all “squeezed” by a factor of 2 compared to those
for hydrogen, as discussed above.) Still ignoring the repulsion between the two
electrons, the energies of these wavefunctions are, in atomic units,

En1,n2 = − 2

n21
− 2

n22
= −4, −2.5, −2.5, −2.5, . . . , (5)

where n1 and n2 are the principal quantum numbers associated with r1 and r2,
respectively. Note that, as with hydrogen, the difference in an electron’s energy
between n = 1 and n = 2 is greater than the difference between n = 2 and n =∞;
this means that if both electrons are in excited states, the atom has enough energy
to ionize itself, ejecting one electron while the other drops to the ground state.

Electron-electron repulsion

The Hamiltonian for the hypothetical system I’ve just described, with two electrons
but no repulsion between them, is (in atomic units)

H0 = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
, (6)
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where ∇1 is the ∇ operator with derivatives taken with respect to r1, and similarly
for ∇2. To put in the electrostatic repulsion between the two electrons, we add one
more term to the Hamiltonian:

∆V = +
1

|r2 − r1|
. (7)

This simple-looking addition makes it impossible to find exact formulas for the
eigenfunctions and eigenvalues. My approach, therefore, will be to construct the
Hamiltonian matrix (or at least a significant part of it) in the basis of “unperturbed”
two-particle wavefunctions described above, and then diagonalize this matrix to
obtain the new energy levels and their associated eigenfunctions.

Notice that the basis functions (4) are already eigenfunctions of H0, with the
eigenvalues listed in equation 5. This means that the H0 matrix is diagonal, with
entries equal to the H0 eigenvalues. Our only task, then, is to evaluate the matrix
elements of ∆V , so we can add this matrix onto H0.

A typical matrix element of ∆V looks like this:∫
d3r1

∫
d3r2 ψ

∗
n1l1m1

(r1)ψ
∗
n2l2m2

(r2)
1

|r2 − r1|
ψn3l3m3(r1)ψn4l4m4(r2). (8)

Yep, it’s a six -dimensional integral. Unfortunately, you can’t just type such an
expression into Mathematica and tell it to NIntegrate. We’ll have to do at least
some of the integrals by hand.

I’ll simplify the problem enormously by restricting my attention to the l = 0
matrix elements. These are sufficient to obtain the helium states that have zero
orbital angular momentum, including the ground state. (There are sophisticated
tricks, involving spherical harmonics and angular momentum algebra, for handling
the higher-l states.) Each of the l = 0 wavefunctions consists of a radial wavefunc-
tion, Rnl(r), multiplied by the trivial spherical harmonic Y 0

0 = 1/
√

4π. The only
angular dependence in the integrand is then in ∆V itself, and this we can handle.

Taking r1 to be temporarily fixed, we orient the r2 coordinates with the z2
axis pointing along r1 (see Griffiths, Section 7.2, where there’s a figure). Then the
integrand is independent of φ2, so the φ2 integral gives a trivial factor of 2π, while
(as Griffiths shows) the θ2 integral gives the nontrivial but delightfully simple result∫ π

0

sin θ2
|r2 − r1|

dθ2 =
2

r>
, (9)

where r> is the greater of r1 and r2. (The sin θ2 in the numerator of the integrand
comes from the measure of the integral in spherical coordinates.)

Now let’s do some mental cleanup. We can combine the 2 in the numerator of
equation 9 with the 2π from the φ2 integral to cancel two of the factors of 1/

√
4π

from the spherical harmonics. The θ1 and φ1 integrals give a trivial factor of 4π
to cancel the other two spherical harmonics. The measures of the integrals also
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contain two factors of r1 and two factors of r2, but we can absorb these into the
radial wavefunctions to obtain the reduced radial wavefunctions, unl(r). Our generic
l1 = l2 = 0 matrix element is therefore

∆Vn1n2n3n4 =

∫
dr1

∫
dr2 un10(r1)un20(r2)

1

r>
un30(r1)un40(r2). (10)

We’ve reduced a six-dimensional integral to a two-dimensional integral. What’s
more, this two-dimensional integral can be done either analytically (see Griffiths for
an example) or with NIntegrate.

In class I’ll show you some Mathematica code to evaluate these matrix elements
and then construct a truncated Hamiltonian matrix from just the following basis
states (listing n1 and n2, respectively, for each):

1, 1 1, 2 2, 1 1, 3 3, 1 1, 4 4, 1 (11)

(Notice that at least one of the electrons is always in the ground state, so none
of these states have enough energy to self-ionize.) When we diagonalize this 7 × 7
matrix, we’ll get a reasonably good approximation to the measured energies of the
ground state and the two lowest excited states of helium. To put these results into
context, please look at the energy level diagram in Section 5.2.1 of Griffiths.

This truncated-matrix approach to the helium atom, including the Mathematica
code that I’ll show in class, is based on a recent article by Robert C. Massé and
Thad G. Walker, “Accurate energies of the He atom with undergraduate quantum
mechanics,” Am. J. Phys. 83 (8), 730–732 (2015).
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