
8. The Simple Harmonic Oscillator

Copyright c©2015–2016, Daniel V. Schroeder

It’s time to study another example of solving the Schrödinger equation for a particu-
lar potential energy function V (x). This example is the simple harmonic oscillator,
for which V (x) is quadratic:
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2mω

2
cx

2, (1)

where ks is some “spring constant” and ωc =
√
ks/m is the classical oscillation

frequency, that is, the angular frequency of oscillation of a classical mass m attached
to a rigid wall by a spring with constant ks.

The quantum harmonic oscillator is important for two reasons.
First, it’s a quantitatively useful model of almost anything small that wiggles,

such as vibrating molecules and acoustic vibrations (“phonons”) in solids. The
simple harmonic oscillator even serves as the basis for modeling the oscillations of
the electromagnetic field and the other fundamental quantum fields of nature.

Second, the simple harmonic oscillator is another example of a one-dimensional
quantum problem that can be solved exactly. Its detailed solutions will give us
further insight into the behavior of quantum systems in general, helping us under-
stand which features of the infinite square well are or aren’t common to all trapped
quantum particles. And although we won’t do it in this class, we could also use the
known harmonic oscillator energy eigenstates as an alternate “basis” for analyzing
other quantum systems, as in the matrix diagonalization method described in the
previous lesson.

Natural units

The full Hamiltonian for the (nonrelativistic) simple harmonic oscillator is

H = − h̄2
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Although this expression contains three constants (h̄, m, and ωc), they appear in
only two different combinations. Without loss of generality we can choose units
in which both of these combinations, h̄2/m and mω2

c , are equal to 1; then the
Hamiltonian becomes simply
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To interpret these units, note that the combination√
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mωc
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= 1 (4)
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has units of distance, while the combination

h̄ωc =

√
(h̄2/m)(mω2

c ) = 1 (5)

has units of energy. All distances and energies will therefore be measured in multi-
ples of these quantities.

Numerical solutions

It’s completely straightforward to solve the time-independent Schrödinger equation,
for the simple harmonic oscillator, using either of the numerical methods described
in the previous lesson.

If you use the shooting method, you can exploit the fact that V (x) is an even
function and therefore assume that the solutions ψ(x) are either even or odd, sup-
plying boundary conditions ψ(0) = 1 and ψ′(0) = 0 for the even solutions and
ψ(0) = 0 and ψ′(0) = 1 for the odd solutions. The wavefunction plots turn out as
described in Lesson 6: oscillating in the classically allowed region, with increasing
wavelength and amplitude as one moves outward, and exponentially decaying in
the classically forbidden regions to either side. Unlike a generic V (x), however, the
harmonic oscillator potential yields an extremely simple set of energy eigenvalues:
1/2, 3/2, 5/2, and so on, in natural units.

If instead you use the matrix diagonalization method, embedding the oscillator
inside an infinite square well, it’s just a matter of centering the oscillator inside the
infinite well and choosing the well width and number of basis functions to yield as
many accurate eigenvalues and eigenfunctions as possible in whatever time you’re
willing to wait for them. Again, the answers for the eigenvalues are simply 1/2, 3/2,
5/2, and so on, and of course you can construct the associated wavefunctions out
of the associated eigenvectors.

The illustration on the following page shows the lowest five energy levels super-
imposed on a graph of the potential energy, with the corresponding wavefunctions
plotted below using the same horizontal scale. Distances and energies are labeled
in natural units. Notice that the energy levels on this quantum ladder are evenly
spaced, unlike the infinite square well for which they get farther apart as you go
up. It’s conventional to number the harmonic oscillator energies and wavefunctions
starting with 0 rather than 1, so the number indicates how many “units” of energy
the system has, relative to the ground state. This convention is a departure from
the one that we use for essentially all other one-dimensional quantum systems.

The natural unit of energy is h̄ωc, so in conventional units, the harmonic oscil-
lator energy levels can be summarized in the formula

En = (n+ 1
2)h̄ωc, for n = 0, 1, 2, . . . . (6)
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Exact solutions

When you solve a problem numerically and get an unexpectedly simple answer,
that’s probably a clue that you could have solved the problem analytically. There are
at least three approaches to analytically solving the TISE for the simple harmonic
oscillator:

1. Guess the answers. Look at the ground-state wavefunction on the previous
page, and notice that it looks an awful lot like a Gaussian, e−ax

2
for some

constant a. Plug this formula into the TISE and you’ll see that it works
as long as a = 1/2 and E = 1/2. One down. For the next solution, a
look at the graph might lead you to the guess the formula xe−ax

2
, and if

you plug this in you’ll find that it works for the same a = 1/2, but with
E = 3/2. That’s two. At this point you might guess (correctly) that all the
solutions are polynomial functions multiplied by the same Gaussian, e−x

2/2.
Each polynomial has only even or odd terms (to give the correct symmetry
for the wavefunctions), and you can find the coefficients by requiring that the
TISE be satisfied in each case. It gets laborious after the first few, but if you
fiddle with the equations long enough you might notice some patterns and
discover some general procedures for finding the coefficients.

2. Power series. This is the most traditional approach, and it’s presented in all
the traditional textbooks (e.g., Griffiths, 2nd ed., pp. 51–56). By this method
you can prove that the allowed energies are n + 1/2 for any nonnegative
integer n, and that all of the associated wavefunctions are e−x

2/2 times an
nth-order polynomial. You end up with “recursion formulas” that let you
calculate the coefficients of the polynomials in a straightforward way, but
again it gets laborious to work out more than a handful of them.

3. Ladder operators. This is by far the most elegant method, although it’s
also the most abstract, and it’s hard to see how anyone would have thought of
it, and it’s still laborious to work out more than a handful of the wavefunction
formulas. We’ll cover this method in detail in a few weeks, as we gear up to use
a similar method to understand angular momentum in quantum mechanics.
Feel free to look ahead if you’re curious!

Whatever the method used to obtain them, the harmonic oscillator energy eigen-
functions are nth-order polynomials multiplied by the Gaussian e−x

2/2. There’s
no general formula for the polynomials themselves—just algorithms for calculating
their coefficients. But they do have a name: they’re called Hermite polynomials,
abbreviated Hn(x), with the normalization convention that the coefficient on xn

(the highest power that appears in Hn) is 2n. Then all the other coefficients turn
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out to be integers; here’s a table of the first few:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

(7)

With the polynomials normalized in this way, there’s still an n-dependent normal-
ization coefficient that’s not especially easy to work out, but at least it has a formula.
The final formula for the normalized energy eigenfunctions is

ψn(x) =
1√

2nn!
√
π
Hn(x) e−x

2/2. (8)

The Hermite polynomials are built into Mathematica as HermiteH[n,x], so you can
easily use that software to work with eigenfunctions up to n = 100 or more.

Like those of the infinite square well (and indeed, any other quantum system),
the harmonic oscillator eigenfunctions are are mutually orthogonal,∫ ∞

−∞
ψm(x)ψn(x) dx = δmn, (9)

and they form a complete basis that you can use to expand any other wavefunction:

ψ(x) =
∞∑
n=0

cnψn(x), (10)

for any wavefunction ψ(x) and some set of complex coefficients {cn}. I’ll omit the
proofs that go with these claims, but you can easily check some special cases.

Once you have the eigenfunctions and eigenvalues, and know that the eigenfunc-
tions form an orthonormal basis, you can do all the usual things with them:

• Integrate |ψn(x)|2 to calculate probabilities of finding the particle in various
locations, when it’s in a particular energy eigenfunction.

• Expand an arbitrary wavefunction in terms of energy eigenfunctions, to predict
the probabilities of finding the particle with various energy values.

• Predict the time dependence of an arbitrary wavefunction, by expanding it in
terms of energy eigenfunctions and inserting wiggle factors. (The Harmonic
Oscillator web app, linked from our course web page, can animate the behavior
of any linear combination of ψ0 through ψ7.)

• Use the harmonic oscillator eigenfunctions as basis vectors for analyzing other
one-dimensional quantum systems.
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