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I 'REI.'ACE

I came to write these lectures in the course of participating in the [ntroductory University
Physics Project (IUPP), which was organized in 1987 by the American Ph-vsical Societ-v and the
Amer ican Associat ion of  Physics Teachers under the sponsorship of  the Nat ionar l  Science
Foundation. The ultimate goarl of IUPP is to develop some new models for the introductory,
calculus-based, university physics course. As envisioned by IUPP chairman John ll igden, the
new course models should have a " leaner s tory l ine,"  and should i f  a t  a l l  possib le conta in
something meaningfu l  about  quantum mechanics.  My own involvement  in  tUPP is  as a
membcr of  the work ing group on quanturn mechanics,  which is  ch i l i red by l lugen Merzbacher
and co-chaired by Thomas Moore.

I musl emphusize tlwt lhe set of' lecture,s presente.d here. is rutt patterned after the syllabus
recommended hy the IUPP quctntum mechanics worhin14 !:roup. 

' l 'he approach taken in these
lectures is frankly too abstract and too formal, too long on theory and too short on applications,
for mttst of thc students rvho tuke the introductory carlculus-based physics course. But.sorne of
those students, those with a more mathemartical and philosophical bent, might possibly prolit
f lrom thcse lccturcs. And pcrhaps also some physics tcachcrs might f ind onc or more fleatures of
thesc lectures worth incorporat ing in to thei r  own lectures and rvr i t ings.

Wh-v should a univcrsity student bother to learn quantum mcchanics? F or students intent
on becoming pro less ional  physic is ts ,  the mot ive hars a lways been c lear  and compel l ing:  [ f  -vou
don' t  learn quantum mcchanics,  then you can' t  jo in the c lub.  Obviously ,  a d i f ferent  mot ive
must  impel  s tudents on a broadcr  spectrum, and pcrhaps should impcl  physics majors as wcl l .
The motive that I have tried to implicit ly establish in these lectures is roughly as [ollows.
Nature has been found to behave, on the microscale, in ways thart seem to utterly dely comrnon
sense. Mankind has thus been presented with an immense chtrl lenge: N{akc scnse of Nature on
thc microscar le!  Quantum mcchanics,  wi th in carefu l ly  prescr ibed l imi ts ,  has successfu l ly  met
that  chal lenge.  So the theory of  quantum mechanics represents an in te l lectuar l  achievement  of
t ru ly  hero ic  proport ions,  arnd may r ight ly  be regarded as "a pr inc ipal  jewel  in  the cul tura l
crown of  c iv i l izat ion."  To appreciate the beauty and mystery of  that  cu l tura l  jewel  is  a lone
sufficient reason for any student of an.y university to undcrtake r.r scrious study of quantum
mechanics.

I t  seems that  there are two arpproachcs to tcaching physics in  general  and quantum
rnechanics in parrticular: In the ax,ioma,tic approerch, one first sets forth a minimal number of
assumpt ions or  ax ioms,  and one then r igorously  deduces thei r  var ious consequences.  I ly
contrast, in the organic approach one pays l itt le attention to logical structure, and simply
allows the various ftrcts of the theory to arrange themselves in whatever way seems convenient.
While I have respect for the organic approach, and in fact suspect th.rt physicists of that camp
are more l ike ly  than thei r  opposi tes to make s igni f icant  advances in physics,  I  havc
del ibcratc ly  wr i t tcn these lectures in  the ax iomat ic  vein.  I  bc l ievc that  s tudents wi th an
apt i tude for  mathemat ics and logic . r l  reasoning st rongly prefer  t<t  learn by thc ax iornat ic
approach. ' l 'he "axioms" of querntum mechanics are presented here in the torm of f iue rules; Lhe
first four rulcs are stated in Lecturc 3, and the fifth rule is stated in [,ccture 6. The lang,uulle of
those rules, which provides thc allowed mechanisms of inference, is l,he mathemartical langunge
of  l incar  a lgcbra,  which I  have prcfcrred hcre to cal l  "gencral izcd vcctor  thcnry."  ' l 'h . r t

language is developed, in I think a rather novel way, in Lecture 2. Lecture 2 is therefore a
makc-or-break lccture for  thc whole scr ies.  Al though each of  thc scvcn lectures can bc rear l  in
t lne hour,  l  th ink nrost  wi l l  takc l ruo 50-nr inutc lccturc sessions lo  successfu l ly  det iuer .  Lect t r rcs
5 and 7 are lhe most  chal lenging of  the scr ics,  and could be omit tcd for  a lcss demanding f ivc-
lecture sequence;  however,  u g lance at  the table of  contents wi l l  show that  omiss ion of  Lecturcs
5 and 7 wi l l  cut  out  several  major  topics.
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I feel obliged to forcwarn teachers who are contemplating using these lectures that I have

taken what some might consider to be an unnecessarily doctrinaire position, narmely, that
obseruables for microscale syste ms do not ulways haue ualue,s. [n [act, I make thert premise to be

a pr inc ipal  mot ive for  devis ing quantum mechanics.  A teacher who feels  that  lh is  premise is

unwarranted, or even false, wil l nol l ike these lectures. []ut bcfore such a teacher larys these
pages aside for that reason, I would respectfully entreat a reading of the entertaining article by
N. David Mermin in the April 1985 issue of Physics Today. In that article, Mermin discusscs
the implictrt ions of Bell 's theorem in terms of trn idealized cxperiment thut is equivalent to an

electron-pai r  sp in-corre lat ion exper iment ,  but  which is  happi ly  dcvoid of  the esoter ic  jargon oI
quantum physics.  Mcrmin shows wi th rernarkablc c lar i t .v  th . r t  there is  s imply no way of

exp le r i n i ng  the  resu l t s  o f  h i s  expe r imen t  w i t hou t  do ing  g rea t  v i o l ence  to  one ' s  sense  o f
" reasonableness."  I  th ink that  a defensib le in terpretar t ion of  the speci f ic  conclus ions o[  the
Mermin exper iment  is  th is :  ' lhere is  no way to assign f ixed values ( red or  green) to each

observable (1,  2 and 3)  o[  both par t ic les in  such a way that  the exper imenta l  data can be
quant i ta t ive ly  acounted for ,  hence,  we cannot  general l -v  ascr ibe s imul taneous values,  euen

unh,nown ualues,  to  non-commut ing observables.  This is  onc of  several  non-common-sensical
features of quantum mccharnics that, have bccn exposed by.Iohn []cll 's work in 1964, and more
rccent ly  conf i rmcd exper imcnta l ly  by Ala in Aspect  and coworkers.  I  bel ieve i t  is  wrong not  to
bc up-front with studcnts about such issucs" I belicve it is wrong to pretend to students, on the
prctcxt  of  "doing physics rather  than phi losophy,"  that  a l though quantum mechanics may seem

strangc and unusual  there is  noth ing about  i t  that  should d is turb our  v iew of  Real i ty .  Indeed,  I

fee I th.rt the strong claim which quanlum mcchanics hars to prolound cultural significatnce
stems largely lrom the fact that i l  hus raised serious and as yet unanswered questions about

Rculity. We nccd not necessarily rnuke a philosophical study of such issucs in a physics course,
arnd we do not do that in these lectures, but we should not deny the existence of these issues. As

evidence in these lectures for the "fact" thut ohservablcs for microscale systems do not alwarys
have values,  I  havc invoked thc doublc-s l i t  exper iment .  Thc cv idencc provided by that

exper iment  is  s t rong,  but  not  unassai lnble.  Evidence of  a more compel l ing nature would have

been providcd by an elcctron-pair spin-corrclation experimcnt, but unfortunatel-v et sattisfactory
quantum analys is  of  such an exper iment  l ics beyond the reach of  thcse lectures"  ' Ihe double-s l i t

exper iment  on the o[her  harnd cunbe analyzed wi th in the f ramework of  thcse lcctures,  arnd in
fact it provides us with a thcmatic bridge from Lecture I to l,ecture 7.

As to the t reatment  g ivcn in  thcsc lectures of  the quantum theory i tse l f ,  I  havc indccd

organized and presented the ingredients of the theory in a very different way than is usually
done. Ilut the basic view of quantum mechanics taken in these lectures is quite orthodox, arnd is

fu l ly  in  l ine wi th what  one wi l l  f ind in  such standard textbooks as l ) i rac,  l l less iah and
Merzbache r "  I  have  t r i cd  t o  p rescn t  i n  t hese  l cc tu res  a  h igh l y  s imp l i f i ed  and  hcnce
unconventional rendering of conventional quantum theory.

I would l ike to th:rnk John ll igdcn and Ougen Merzbacher for their encouragement in
preparing these lectures. I am happy to acknowledge the benelits of conversations with other
physic is ts  who par t ic ipated in  the 1988 IUPP conferences at  l larvey Mudd Col lege and
Car lc ton Col lege,  cspecia l ly  those in the quantum mechanics work ing group.  And I  want  to
thank Ron [)crr, [ lead of thc Rcscarrch Dcpartmcnt of thc Naval Wcapons Center, for allowing
me to perrticip.rte in IUPP and develop these lectures within the frermework of the Cen[er's
lndependent Rcsearch [)rogram"

China l , i lkc,  Cal  i f lornra
May,  1989

I ) .  "1.  Gi l lcspic
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LECTURF]  I .  INTROI)UCTION AND MOTIVATION

)l . l  
' fhe F'undamental  Problem of Mechanics

The subject of "mechanics" deals with a system and its observable properties or obse.ruables. If A is
an observable of a given system, then we can at any time "make a measurement of A on the system,"
and thereby obtain a result A, an ordinary number that we call the ualue of A. For example, the
position (an observable A) of a ball (the system being considered) is measured, with the numerical
result 4.'l (= !, the measured ualue of the observable A).

In the "classical"  mechanics of Isaac Newton, there is no need to dist inguish between an
observable A and its value A: The values of the observables of a system arc represented by ordinarry
mathematical variables, and the centrarl program of mechanics is to hnd (e.g., by using F=md Lhe
time dependence of those "observarble variables." This program is very successful on the macroscale,
the scale of systems that we are familiar with from our everyday experience (such as thc moon;
airplarnes, tennis balls and dust particles). But the clerssical program runs into serious difficulties on
the microscale,Lhe scale of individual atoms and molecules. As a prelude to describing the microscale
difficulties of clarssicarl mechanics, and how "quantum" mechanics ultimately avoids those difficulties,
let's begin by rephrasing the goal of mechanics in a more cautious "operational" way:

,THE F'UNDAMENTAL PROBT.EM OF MECTIANICS (FPOM):
- At time zero we measure some observable A on the system, and obtain the result A.
-  Then we let  the system evolve on i ts own unt i l  some t ime I  ( t>0).
- n t ,, we measure some observable B on the system.
o Knowing A, A, t and B, what can we predict qbout the result B of the second measurement?

)1.2 The Failure of Classical Mechanics on the Microscale
In the classical approarch to the FPOM, we know that in some circumstances we celn predict B

exactly, while in other circumstanccs we can predict R only probahilistically. b'or example, consider a
simple harmonic oscillator of mass rn and spring constant lc. Classically, it executes sinusoidal
motion with frequency Zn(hl m)l/2 and some amplitude a. Suppose the first-measured observable A is
"total energy," and the second measured observable B is "position." Since the energy value A will be
related to the oscillation amplitude aby A= ha2/2, then after the A-measurement we will know thart
the amplitude of thc oscillator motion is a-I2A/hlll2. But that's all we will know. So we can't make a
unique prediction for the result Il of any subsequent position measurement. We can, however, make
some probabilistic predictions: We know that B must lie somcwhere between +I2A/hlttz'moreover,
since the particle spends more time near the turning points LIZAIhlttz, where it moves slowly, than
near 0, where it moves quickly, then we should expect B-values near *l2A/hlrtz to be more likely
than lJ-values near 0" [n fact, if we reason carefully from the classical equations of motion for a
harmonic oscillator (we won't go through the details here), we can derive the "probability densiby"
curve for the B-values shown in Fig. l-1. The shaded area in that ligure is ecluul to the probahility
that the result Il will l ie between B1 and I}2" (The curve is the reciprocal of the oscillator's speed at
position B, multiplied by a constant thart makes the total area under the curve unity.t

Wel l ,  what do we f ind experimental ly? We get excel lent quant i tat ive agrcement with this
classical prediction for particle s of "tangible" mass. But if we could do the experiment with a particle
of uery smal l  nlass, such as an atom, wc would see markcd dcviart ions from this predict ion: I )cpcnding
upon the energy result A, we would {ind that it is irnpossible Lo geL:;ome position vtrlues B between
t[2Athlttz, and po.s.si6le to get position values I] with ltl l>1ZAtny2. IWhen rn is very smull wc wor.rld
also not ice that the energy values A obtained in l ,he l ' i rst  measurement are always integer mult iplcs
of a number proportional Lo &/ m)l/2, another fcarture that is not predicted by clrrssical mech:lnics. I

We conc lude f rom th is  and s imi la r  exper iments  tha t ,  a t  the  very  l cas t ,  the  va lues  o f  the
observables of a microscale system arc not interrelated by the farmiliar clarssical lormulas that work so
well ltrr mucroscale syste ms. tsut in fact, the fiailurc of classical mcchunics on thc microscalc runs
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I
ftIQA|h) - B2lr/2

I l -va lues

_(2A/h \ r /2  81  82  0 (2A/hlr /2

I , ' tG.  1-1.  The c lass ical  predict ion for  the resul t  B of  a posi t ion measr l rement  that  is
performed on a harmonic oscil lator with total energy A and spring consttrnt A. ' l 'he

shaded area is equal to the probabil ity that the result of such a measurement wil l
fa l l  between the posi t ion values B1 and 82.

much deeper than this: Other experiments indicate that it is pointless, even selfcttntrctdictory, to sa,v

that  microscale system observables a lways "have values."  Of  those exper iments,  perhaps the easiest
to both describe and analyze is the so-callecl douhle-slit experiment.

ln  the double-s l i t  exper iment ,  schemat ized in F ig .  l  -2 ,  a ve ry  smir l l  par t ic le  -  lc t 's  sa- \ '  arn e lcct ron

for  def in i teness -  is  f i red wi th hor izonta l  rnomentunr  p1y at  a ver t ica l  screen 51 (assume thut  no
g rav i t y f l o r cesope ra te ) .  Sc reenS l i sopa rque to thee lec t ronexcep t f i o r t r voho r i zon ta l s l i t sa t J - -1 ' l and
y=y2. To actuarlly "see the effects that we shall dcscribe, thesc trvo slits must be uerv nurrolo and uer,v

close together, so this is indeed a "microscale" expcrimcnt. []e-vond 51 is a second vcrtic:r. l screen 52,

th is  one coated l ike a te lev is ion screen wi th a substance th i . r t  cmi ts  i t  spot  of  l ight  whcrevcr  i t  is  s t ruck

incident
electron

-...-.---.t>

(momentum pg)

s l i t  y1
z2

s l i t  y2

screen S1 screen 52

FIG. l -2.  Schemat ic  d iagram of  the doublc-s l i t  cxpcr iment ,  showing the h i t  probtrb i l i ty
pat terns wi th both s l i ts  open (curvc C12) and wiLh only onc s l i t  open (curves C1 and C2).
' the length scale on screen 51 has been grcat ly  maeni f ied in  th is  drarv ing;  compared to the
"mtrcroscopic"  sct r le  of  scrccn 52,  the two s l i ts  in  screen S1 are "microscopic"  in  both thei r
s ize and thei r  separat ion.
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by an electron. The coating allows us to record the point z where the electron hits 52. (We measure
vertical position along Sr by y, and vertical position along 52 by z. Note that in Fig. l-2 the y-scale is
great ly magnif ied relat ive to the e-scale.)  I f  we repeat this experiment many t imes, we can
empirically determine Lhe probability that the impact point of the electron on screen 52 will be at, any
point z- Curve C12 shows schematically the hit probability (or hit frequency) pattern that is actually
observed when slits y1 and yz are both open. Now it so happens that this curve looks exactly like thl
interference intensity pattern we would get if we were transmitting through the two slits, instead of
particles, waues of sound or light with wavelength

h = 2nh/po.
Here, pg is the measured initial momentum of the electrons, and i, called "h-bar", is a
physical constant introduced by Max Planck with the numerical value

h =  1 .054. . .  X  l0 -34  jou le .sec .

( l - l )

universal

(r-2)
So the shape ofcurve C12 strongly suggests that an electron is a waue:yet the fact that the curve C12
is inferred from the statistics of one-at-a-time, point-like scintil lations of equal intensity .rggurit
equally strongly that an electron is a particle. This curious behavior is not peculiar to electrons
alone, but is observed for virtually all elementary constituents of matter and energy (such as protons,
photons, etc.). Nature seems to exhibit on the microscale a waue-particte duality that is simply noi
understandable in purely classical terms.

Curve C1 in Fig. l-2 shows schematically the hit probability pattern thtrt is observed when only
slit y1 is open. The curve C2 obtained when only slit y2 is open is virtually indistinguishable from
curve C1, because the slit separation distance on screen 51 is miniscule on the length scale of screen
52. Notice that there are some points on screen 52, such as 21, that are more likely to be hit when both
slits are open than when only one slit is open; that's not surprising. But what is surprising is the fact
that there are other points on screen 52, such as 22, that are les.s likely to be hit when both slits are
open than when only one slit is open; i.e., by closing one slit we make it more lihely that point z2 will
be hit on any one electron {-rring! Now, it is obvious that any electron arriving at screenls2 can only
have come by way of the two slits y1 and y2 in screen 51. And it is equally obvious that when only sl{t
y1 is open, any electron arriving at 52 can only have come through that slit, and hence must have had
at screen 51 the y-position value y1" When 6olh slits are open, common sense would seem to require
that any electron arriving at 52 must have come either wholly through slit y1 or wholly through slit
y2. But if that were true, then closing one slit could not possibly increase the Iikelihood that an
electron will reach point 22, as we observe that it does. So we must conclude that "common sense" is
wrong: any electron that reaches screen 52 with both slits open did not go through either slit y1 or slit
y2, but instead somehow made use of both slits! It follows that, for such an electron, the observable 'y-
position at 51" cannot meaningfully be said to have "had a value."

This linding is just one example of the astonishing conclusion that physicists have been forced to
by many carefully done experiments: Obseruables for microscale systems do not always *haue ualues""
Therefore, we cannot address the Fundamental Problem of Mechanics on the microscale with the
usual "common sense" classical approach, because that approach always starts from the assumption
that system observables do always have values. (For example, we can't analyze the double-slit
experiment by trying to figure out how the position value o[ the electron changes with time, because a
"position value of the electron" does not always erisl during that experiment.) Although classical
mechanics works quite well for macroscale systems, it seems that a radically different app.oach to
microscale mechanics must be devised.

)1.3 The Aim and Plan of These Lectures
'f he "replacement theory" for classical mechanics on bhe microscale is called quantum mechanics.

Quantum mechanics was developed during the first quarter of the Twentieth Century by Werner
l le isenberg, Erwin Schrr idinger,  Niels Bohr,  Max Born, Paul I ) i rac, John von Neumann, and a
number of others. We shall not delve into the history of quantum mechanics in these lectures, but we
should note that the decision of early Twentieth Century physicists to abandon classical mechanics on
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the microscale was at the time both daring and traumatic. The theory that ult imately emerged from
the heroic cfforts of those physicists, Lhe standard theory of quantum mechanics . . .

- takes a radically different approach than classical mechanics;
-  is  "non- intu i t ive"  f rom t  hc v iewpoint  of  ord inary cxper ience;
-  g ives correct  resul ts  on the microscale;
- reduccs to classical mechanics on the macroscale;
-  is  controvers ia l ,  even among physic is ts ;
-  is  one of  the most  ingenious and s igni f icant  in te l lcctual  achievements in  the h is tory of  mankind.

There is  no way that  we can cover  quantum mcchanics complete ly  in  seven lecturcs.  Wc wi l l  have
to leave a lo tout ,  and great ly  s impl i fy  the rcst .  ' the l imi tcd goal  of  these lectures wi l l  ru t lhe to show
you how to solve lo ts  of  quarntum mechanics problerns,  but  rathcr  to  g ive you an accurate appreciat ion
of the "essence" of quantum theory" Witl"r some effort on your part, you should acquire from these
lectures an honest sense of the slrange kind of reasoning we have to use in order to successlully
describe physical phcnornena on the microscale.

Wc shal l  f i rs t  have to learn somc new mathemat ics -  ca lculus a lonc is  not  enough lor  quantum
mechanics.  We' l l  get  a br ie f  s tar t  on that  task in . iust  a moment by developing some facts ab<lut
comp lex  numbers .  We ' l l  nccc l  t hose  fac t s  i n  ou r  second  l ec tu re ,  whe re  we  w i l l  dcvc lop  the
mathemartical theory of generalized ue.ctors. 'fhe theory of gcnerarlizcd vcctors providcs the b.rsic
"mathematical language" of quantum mechanics, and we wil l harve to achieve somc fluency in that
language i f  we are to guin any rcal  ins ight  in to quantum theory.  The bad ncws is  ther t  thc theory of
generalized vecl,ors is very abstract; the good news is that it is in many ways less dif{icult to leurn
than calculus, and we won't havc to usc it he rc to make any terribly complicated carlculations.

In our third lecturc wc shall use the language of generalized vectors to lay out the first four rules
(or  arx ioms or  laws) of  quarntum thcory.  ' lhosc four  ru lcs wi l l  enablc us to see how, at  least  in
pr inc ip le,  quantum theory f i rames i ts  answer to the I "POM for  l=0 (an A-measurement  fo l lowed
immediate.Iy by a B-mearsurcment). Those rules thus lrlrm the f<lundartion of "quantum statics,"'where
there is  no considerar t ion g iven to the passagc of  t imc.  [ icmarkably,  u l l  the non- intu i t ivc "woirdncss"

of  quantum theory can be exposcd in the contcxt  o[c luantum stat ics.  In  our  four th and f i f th  lectures
we shal l  cont inue our  d iscussion of  quantum stat ics b-v pursuing sorne other  important  resul ts .

ln  our  s ix th lecture we shal l  s tatc  the f i f th  ru le of  quantum theory,  and we shal l  see how i t  n l lows
us to f ina l ly  f rame an answer to the I "POM tor  uny t -0.  At  that  s tage,  we' l l  have a l l  the basic
ingredients fog "quantum dynamics,"  and an essent ia l ly  complcte quantum theory.  Our sevcnth and
f inal  lecture wi l lconsider  the speci f ic  problem of  a f ree par t ic le  in  one d imension,  and wi l l  prov ide us
at larst with a vicw of how quantum mechanics accounts for thc sccmingly unerccounti.tblc rcsults of
the double-s l  i t  cxper i  ment .

Note: For an abbrevii-rtcd five-lecture sequence that is less mathematically dernanding of the
student, Lhe fifth and, seuenth lectures may be omitted.

)1.4 Complex Numbers

You have probably alreatdy encountered complcx numbers. t lere we are going to rcview a few
basic facts about thcm that wc sharll necd for our development of quantum mcchanics.

A compler number is a numbe r of the form

c  =  q ,  *  i h ,  ( l - 3 )

where i=V-1,  and o and 6 arc ord inary real  numbcrs.  We cal l  a  the " rcal  par t "  of  c ,  and 6 thc
" imaginary par t "  o[c ,  and wc wr i te

o = l t c { c } , 6 = l m { c } .

I f 6 = 0 w e s a y t h a t c i s p u r e r e a l , w h i l e i f a = 0 w e s e r y t h . r t c i s p u r e i m a g i n a r y .  A n d i f c a n c l b a r c h o l h
zcro, wc write c=0. It is important lo understand that, thc tcrms "rcal" and "imaginary" arc uscd
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here in a strictly technical sense; you should nol grant them their usual connotations of "genuine"
and "artil icial."

The key feature of complex numbers is that they can be added and multiplied by using the
ordinary rules of algebra, but supple.mented by the rule that i2 = - l.

)Ererc ise  I -1 .  l f  c r=a t *  i61  lnd  c2=aZ*  i62 ,  show tha t
c1* c2 = (ot *  ai l  + i (h+ bz),
c rc2  =  (apz-  b f t2 \  +  i (a1h2*  bp , i l .

The compler conjugate of c in (l-3) is defined to be the eomplex number
c * = a - i b .

oExercise 1-2. Show that c is pure real if and only if c* = c. Also prove that
(c*)* = c,
c*c* = 2Re{c},
(c1  *c2)*  =  c t * *c2* ,
(c1c2)* = cl*c2*'

The square of c, namely

c2  =  cc  =  (a2-bz)  +  i (2ab l ,
is obviously a complex number. [Iowever, the square modulus of c, which we define to be

lcl2 = 6c* = c*c= q} + b2,

( l -4a)

t l -4b)

( l - 5 )

(  l -6a)
( l -6b)
(1 -6c)
( l -6d)

(1 -7a)

( l -7b)

is evidently a. non-negatiue real nu,mber, which vanishes if and only if c = 0.

oExercise I -3. Carry out the algebra leading to equations ( I -7). Also prove, using the results of
Exercise l-2, that

l"r"zl - l"rll"zl,
lc1+c2l 2= lc1l2 + lc2lz * 2Re{c1c2*}.

Finally, for any real number u we deline
s i u : c o s u * i s i n u .

One rationale for denoting the complex number on the right side of (t-9) by the erponential symhol on
the left is this: If a is any real constant and r any real variable, then

(d/dr)siox = (d/dr)[cosax * isinorl = -esincr * iacosar = io[isinar * cosorl,
(ddr)eior -  iqsiax, ( l -10)

which is precisely what we would get if i were an ordinary real number.

oExercise 1-4. Using bhe definition (l-9), prove that
e io  -  l ,
(e iu l *  -  cosz  - i s inu  -  e - iu ,

le ia lz  -  t ,
(s iuxgiu; -  gi(rr*u).

> Before the next lecture, you should do Exercises l-l through l-4. You should become lairly
familiar with these facts about complex numbers before tackling the mathcmatics of generalized
vectors, which is what we will do in the next, lecture.

(  1 -8a)
( l -8b)

(  l -9 )

( l - l  1 a )

( l - l  l b )

( 1 - 1  l c )

(  r -1  l d )
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LECTURE 2. THE MATHEMATICS OF GENER ALTZED VECTORS

;2. 1 Vectors, Scalars, Components, Basis Bxpansions
You have learned that there are some quantities in physics, such as mass, temperature ancl

density,  that have only "magnitude," and are cal led scalars; other quant i t ies, such as posit ion,
velocity and force, have both "magnitude" and "direction," and are called uectors. [,et's review some
things you presumably already know about vectors"

[See Fig. 2-11 We catn picture a uector v as an errow, whose length is the rnagnitude of the vector,
and whose sense (from its ttril to its head) is the direction of the vector. If we translate the arrow, i.e.,
move it without changing its length or direction, we don't charnge the vector. We can multiply any
vector v by any real number r, ctrlled a scalar, to get a new vector, written rv or vr, which has a
magnitude that is lrl times the magnitude of v and a direction that is the same or opposite the
direction of v accordingly as r is positive or negativc. Two vectors v1 and v2 can be added to form a
new vector, vl +v2, by translating them so that the tail ofv2 lies on the head ofvl and then drawing
the sum vector from the tail of v1 to the head of v2. And v2 * v1 is the same vector as v1 * v2.

also vector v
vector v

(  -  1 . 2 5 )  v

v l

-t\", ry"t*",ffi
FIG" 2-1. Vectors, scaltrr multiplication and vector addition.

[See Fig. 2-21 Any vector with length I is called a unit uector. The component of any vector v
relative to a unib vector e is the perpendicularly projected length of v onto e, a scalar that we denote
by e'v. If the head-to-head angle between v and e is 0, then e.v is equal to the magnitude of v times
cosO; thus, e'v is positive or negative accordingly as g is less than or greater Lhan n/2. lf 0= rc12, Lhen
e'v = 0, and we say that e and v are orthogonal. The e-component of rv is r times thc e-component of
v; the e-component of v1 + v2 is the sum of the e-components of v1 and v2.

[See F'ig. 2-31 In two dimensions, any two orthogonal unit vectors e1 and e2 lorm a 6csl.s, and any
vector v can be "expanded" in that basis according to the rule

v = el  (er.v) f  e2 (e2.v),

wherein the scalar mult ip ly ing the unit  vector e, is just the er-component of v.  Simi lar ly in three
dimensions, any thrce mutual ly orthogonal uni t  vcclors el ,  e2 and e3 const i tutc a basis,  and any
vector v can be expanded in that basis according to

v  =  e l  (e1 .v )  +  e2(e2.v )  f  e3(e3 .v ) .

( 0 . 5 )  v
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--">

unit vector, e
( length = 1)

- 
" 'o 

*'

(a scalar)

€ ' ( r v )  =7  s . y  e . ( v1  +v2 )=e .v1  *e . v2

F'lC.2-2. Unit vectors and components relative thereto.

(e3.v)

e2 (e2.v)

e1  (e1 "v )

v = el  (er"v) *  ez (ez"v)

v = el  (er.v) + ez (ez.v) *  e3 (e3.v)

FIG"2-3. Bases and expansions therein.

The aforementioned facts about vectors should not really be new to you. l,low, besides ueclor.s, you
have no doubt also encountered in your studies malhemuticians; they too are both atmusing and
useful. One of the amusing and useful things about mathematicians is their penchant for doing
mathematics without relying on pictures, as we just did in our discussion of vectors. Let's sec how ar
mathematician might try to "formalizc" the forcgoing vector notions, and lay out a mathematicat
theory of vectors without ever refering to directed line segments. lNote to students ol'l inear algebra:
The defrnitions and postulates that follow will be u bit different from what you've learned. Wc're
going to take as direct and elementary an r.rpproach as our later nceds will allow. I

We dcfine a uector space to be a collection of objects v, called nectors, such that the following things
[(a) through (d) l  are true:

(a) "Sc.rlar multiplication" is defined: [f v is any vcctor in the space and r is any real number, also
cal led ascalar,  then rv (  =vr),  cal led the product ofrand v, is also a vector in the space.

e.(rv) = r  e.v

er  (er"v)

e2@2.v)
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(b) "Vector addition" is defined: If v1 and v2 are any two vectors in the space, then v1 * v2, called
the sum of v1 and v2, is also a vector in the space. And v2 * v1 is the same vector as vl -r v2.

Comment: From (a) and (b) we see thart, flor any two vectors v1 and v2 in the space and any two scalars
11 and 12, the linear combination rtvt * r2v2 is a well-defined vector in the space.

(c) There exists in the space unit uectors, relative to which all vectors in the space have
components. The component of the vector v relative bo the unit vector e, called the e-component of
v, is written e"v, and has the following properties:

(c1) e-v is a scalar.
(c2) e.(rrvr * r2v2) = rt(e.vt) + r2{re.v).
(c3) e'e -  l .
(c4) e.e' = €'.e, for any two unit vectors e and e'.

Cornment: (cl) stt that the e-component ol'any vector v is a real number. (c2) says that the e-
component of any linear combination vector is the same linear combination of the e-components. (c3),
says that the e-component of itself is unity, and thus serves to define a unit vector. And (c4) says that
for any two unit vectors e and e', the e-component of e' is equal to the e'-component of e.

(d) If the vector space is N-dimensional, then there exists at least one set of N unit vectors {er, ez,
. . . ,  eN) cal led a 6osis such that

(d1) e; 'e2 = 0 whenever j*h.

(d2) For any vector v in the space,

v = el (et.v) * ezbz.v| + ... + elrg(e1,'.v).
Comrnent: (dl) stipulates that the unit vectors composing a basis be mutually orthogonal. (d2) says
that any vector v can be written as a linear combination of the basis vectors, and that the scerlar
coefficient of e, in this e-6osis expansion of v is just ey.v, the eJ-component of v. Eq. (2-1) also suggests
something that is quite valid about how we actually specify vectors in practice:. We generally specify
a vector v by giving its components relative to some "known" basis, which in turn need nol be further
specified. The point is that we can't really specify a length and direction lor v unless we say "length
relat ive to what" and "direct ion relat ive to what,"  and a 6osis is the "what."  So the actual
specification of a vector in N dimensions ultimately comes down to specifying N ordinary numbers -
the components of v relative to some particular basis.

Now at this point, if you're not a mathematician, you're probably thinking that all this formalism
may be okay, but pictures are better: One picture is worth a thousand mathematicians! In fact, you
probably suspect that even though the mathematician didn't d,raw picLures, he/she was thinhing
pictures! But notice something: The mathematician's formal vectors are a little more general than
our picture vectors: the dimensionality l/ of the mathematician's vector space can be any positiue
integer, whereas we can draw picture vectors only for lV<3. Thus, the mathematician has come up
with a significant generalization of the vector concept, one that we will in fact make use of in our
subsequentdiscussions. Howevern when we speakof "generalized" vectors in what follows, we shall
mean something rnore than arbitrary dimensionality. For generalized uectors, the scalars are compler
numbers instead. of real numbers. And then it's "goodbye pictures," even in two dimensions. [.'or
generalized vectors, we have no choice but to use the abstract, formal approach of the mathematician.
Fortunately, though, we can lay out the theory of generalized uectors by repeating q,lmost uerbqtim the
formal theory of ordinary uectors. Here is how it goes: IFrom now on we shall use the word "vector" to
mcan "generalized vcctor," and not:r dircctcd linc se grne nt. I

We define a uector space Lo be a collection of objects rp, called rJectors, such that the following
things [(A) through (D)l are true:

(A) "Scalar multiplication" is defined: tf g is any vcctor in the sptrce and c is any complex
number, also called a scalar, thcn crp 1=r,trc), called the product of c and g, is also a vector in the
space.

(2-r)
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(B) "Vector addition" is defined: If rp1 and Vz are any two vectors in the space, then rpl * rp2,
called the sum of rp1 and p2, is also a vector in the space. And rpz*g1 is the same vector as

vr+ v2.
Comment: F'rom (A) and (B) we see that, for any two vectors rp1 and 92 in the space and any two
scalars c1 and c2, the linear combinq,tion c{pL* czpz is a well-defined vector in the spacc.

(C) There exists in the space unit uectors, relative to which all vectors in the space have
components. The component of the vector rp relative to the unit vector c, called the t-component of
g, is written (e,rp), and has the following properties:

(C l )  (e , rp )  i sasca la r .
(C2)  (e ,  cgp l *c29f l  =  c1(c , rp1)  +  c2( t ,p ) .
( C 3 )  ( c , c )  =  l .
(C4) (e ,c ' )  = ( t ' ,€)*,  for any two unit  vectors a and s' .

Comment'" (Cl) says that the s-component of any vector rp is a complex number. (C2) says that the c-
componentofanyl inearcombinat ionvecboristhesamelinearcombinat ionofther-components. (C3)
says that the e-component of itself is unity, and thus serves to define a unit vector. And (C4) says that
for any two unit vectors c and e', the c-component of e' is equal to the complex conjug,ate of the c'-
component of e. The conjugation operation here marks an interesting and curious departure from the
theory of ordinary vectors. IBut notice that we couldhave written (c4) in the ordinary vector theory
as e.ef = (e'.e)* without altering anything, since complex conjugation doesn't chernge real numbers. I

(D) If the vector space is N-dimensional, then there exisbs at least one set of N unit vectors {tr, tz,
. . . , e,rr) cal led a basis such that

(Dl)  (e; ,e6) = 0 whenever j*h-

(D2) For any vector 12 in the space,

V = €r(ct ,?) *  t2?2,q\ + . . .  + e1,,(c1s,rp) = Xj" j (c; ,rp).  Q-2)

Cornment: (Dl) stipulates that the unit vectors composing a basis be mutually orth<tgonal. (D2) says
that any vector ? can be written ars a linear combination of the basis vectors, and that the scalar
coeff-rcient of e; in this e-6csi.r expansion o/rp is just (t.,W), the e;-component of g.

In analogy with ordinary vectors, we can schematically represent the expansion (2-2) in two
dimensions by the diagram in Fig. 2-4; however, we must bear in mind that this is nol an actual

t2 ( e2,qt)

t l c t  ( c 1 , t / )

FIG" 24. Schematic representation of the exparnsion (2-2) for N =2.

representation of the situartion. The reason, of course, is that the components (cj,g) arre genererlly
complex numbers. But, if we can't draw an accuratc picture of rp, how can we specify thal vector? .Just
as with an ordinary vector v in (2-l), wc can specify a 5;eneralizcd vector g by giving its componcnts,
( r r ,g) ,  ( t2 , tp\ , . . .  ,  (cN,r / ) ,  rc lat ive to some par t icu lar  basis ;  thc only  d i f ference is  that  thesc N
componcnts arc now complcx numbcrs instcad of rcal numbers.

In our  la tcr  work wi th general izcd vectors we shal l  have occasion to use two theorems.  Onc is  the

9
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Component Expansion Theorem: If rp is any vector, e' is any unit vector, and {c;} is any basis, then
the e'-component of rp can be "expanded in the basis {c;}" according to the formu"la

( t '  ,pt  = ErG's1(tr , t t t l , (2-3)
where the sum runs over the dimensionality of the space . IMnemonic: Sum over the "inside" e ;'s. I
Proof:  ( t '  ,p) = G',2i  eikr,p)) Iexpanding g in the {c;}-basis according to Q-Z)I

= (d ,2i c, t.) t ki,W)= c., is some scalar I
= Elci(e ' ,q) t invoking the fundamentar lcomponent property (C2)l
= I iGr,u;)  ({  ,q\  :  X, (c ' ,cy) (q,ut l .

lt 's easier, in fact recommended,thatyou remember this important proof in the ftoo-slep form:
(t' ,rp) = (e',Ei erGl,vi - ErG' ,er) Gi,ut\.

The other theorem we shall need later on is the

Generalized PythagoreanTheorem: If c'is any unit vector and {c;} is any basis, then the sum of
the square moduli of all the {c;}-components of s' is one; i.e.,

X;l(c;,e')12 = 1. (2-41

aUxercise 2-1" Prove the generalized Pythagorean theorem. IHint: First apply the component
expansion theorem with rp replaced by e'. Then make use of properties (C3) and (C4). I

The name of this second theorem comes from the fact that it gcneralizes the following familiar result:
For any two-dimensional real unit vector e', as shown in Fig. 2-5,

(e1'e')2 * (s2's ' )2 -  12.
But notice in (2-4) that we sum, not the squares of the components of e', but their .squcre moduli.

{
I

(ez.e')

I
I

l l a

J- (e1"e' l  * l

FIC.2-5. A two-dimensional unit vector e '  and a hasis  {e1,e2} .

)2.2 Operators, Linearity, Eigenvectors and liigenvalues, Eigen bases

In calculus you learned that a funct ion f  t ransforms a number r  into a new number, f l r ) .
Similarly, an operator O transforms a vector g into a new vector, written 0g. In the piciu.e
terminology of ordinary vectors, we can loosely think of 0 as generally "stretching" and "roltrting"
the vector g into a new vector 0g.

Ifthe action ofO on a particular vector @ is a pure "stretch" by a scalar factor o,
oQ = orb, (2 .5 )

then we say that @ is an e.ige.nuecror of o, and o is the correspondi ng eige.nualue.

o0xercise 2'2.  l f  O is the rule "mult iply the given vector by the scalar (3+i4),"  f ind al l  the
eigcnvectors and eigenvalues of O.
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oExercise2-3. lf O is the rule "add to the given vector the vector (i2)P," wherep is some vector,
show thatp is an eigenvector of0, and find the corresponding eigenvalue.

In quantum mechanics, we will only have to deal with operators O that have the following two
special properties:

(a) O is lineq,r. This means that, for any two vectors 91 and q2andany two scalars c1 and c2,
0(c1rp1 I  czrpi l  = crOqr I  c2Op2. (2-6)

(b) O has an eigenbasis. This means thut there is some basis {@1, Qz, ...}, each vector of which is
an eigenvector of O. We shall denote the eigenvalue corresponding to eigenvector tpi by or. We
cal l  the basis {@1, ,bz, . . .1 the eigenbasis of 0,  and the scalars {or,  o2,. . .  }  the eigenuulue sei  of  O.
Thus we have

(Qi'Q) = t forallJ'

@i"bi = 0 for all j*h'

V = EL Qt (Qj,rp) flor any vector rp,

as with any basis, but additionally,

Orbj = o;@; for allT'
To deftne an operator O, we must specify how it produces, for any given vector g, the vector Orp.

Of the many ways in which we might do that, one especially simple way invokes the eigenbasis and
eigenvalue set of 0. To show that a knowledge of the eigenbasis and eigenvalue set of O sufhces to
determine Og for any given rp - and hence suffices to define O - we reason as follows:

1 1

OW = OE.lQi(Q1,rp)
= Eroqi(qr,,p)
= 2roiQlkbj,w)

Op = EiQ.1told7,dl.

[expand rp in the eigenbasis of 0]

linvoke the linearity of Ol

Iinvoke the eigenvector conditionl

(2-7a)

(2-7b)

Q-7cl

(2-7d)

(2-8a)

(2-8b)

Equation (2-8a) tells us that the @7-component of vector Orp is or(@;,rp); i.e.,
(Qi,Oql = or(Qi,tp).

Thus, given the @7-component of any vector ?, we can obtain the @;-component of vector Op by simply
multiplying the former by the corresponding eigenvalue oi, as illustratcd in Fig. 2-6.

orp

FIG.2-6. il lustrating schematically how to construct vector Og for any given
vector g by using thc cigenbasis {@1, Qz, . . .1and eigenvalue set {ot ,  o2,. . .  }  of  O.

oExercise 2-4. Derive equation (2-8b) directly by first substituting (2-7c) on the left (first change
the summation index to ft), and then applying (2-6), Q-7d), iCZ), (2-7b) and (2-7a), in that order.

oAQn,vl
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)2.3 Summary

The table below summarizes generalized vector theory as we shall require it for our development
of quantum mechanics. Before the next lecture, you should do three things: First, make ,r.u ynu
understand everything in the summary table. Second, work Exercises 2-1 through 2-4; if you tu.,
master them, then you'll be able to handle all the mathematics in the remaining lectures" i-inally,
read again Sec. l"l to remind yourself of the FPOM; in the next lecture, we'll use the theory of
generalized vectors to show how quantum mechanics proposes to answer the FPOM for l=0.

TABLE SUMMARIZING GENERALIZED VECTOR THEORY

name

A uector'.

A scalq.r:

A Iinear combinartion:

The component of q
relative to the
unil uector e:

Key (e,  c1g1

properties

thereof:

I  A 6asis  {c1,  e2,  . . .  } :

v
3 Component  expansion thm.:  (c

3 Pythagorean theorem:

An operator:

Linearity of O:

2The eigenbasis {tpi}
and, eigenualue set {orl

of  O:

3 Effect of 0 on any V:

i tem

v

c

ctlpt + cZV)2

( t , q )

*  czrp i l  =  c1 (e, rp1)  + czG,Vz)

(c,c)  = I

(e,e ' )  = (e ' ,c)*

Gi , t )  = I  fora l lT

Gr,ti l  = 0 for all j- lc

= Ersj (er,g) for all g

' , tp) = 2.,{ t ' , t1 Gi,W)

Xy l(c;,c')12 = 1

o

{ Q r , Q 2 , . . . } i s a b a s i s
Ot,  o2,. . .  are SCalarS
AQj = olQi for alli

Qti,Og) = oikpi,tpl

comment

A "very abstratct" arrow.

Any compler number.

A vector in the space.

A scalar,
i.e., a camplex number.

The "c-component of ?."

Used again and argain.
Defines ar unit vector c.

The curious conjugation.

Unit vectors,
mutually orthogonal.

The "{c;fexpansion of V."

Sum over "inside" cy's.

Forany unit  vector c ' .

Transforms g into Og.

Used again and ar.gain.

See above.

I .e. ,  complex numbers.
The eigenvector condition,

O(c1q1 * czyzl  = crOqr * c2Og2

Sce F' ig.2-6.

Notes:
I A.ty vector g in N dimensional space cun be specified by N complex numbers, namely, the N
components of y,k1,q),Gz,V),  " . . , (e61,rp),  relart ive to some basis {c1, sz, . . .  ,  rN}.
2 n ny linear opcrator O defincd on an N dimensional vcctor spacc can be specified by spccifying
i ts  c igenbas is  {d t ,  Q2, . . .  , rp , r , ' }  and e igenva lue  se t  {o1 ,  o2 , . . .  ,o ru | .
3 A "theorcm," derivablc from the preccding definitions and properties.
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LECTURE 3 .  QUANTUM MECHANICS:  STATICS I

;3. I States and Observables, Vectors and Operators

In our  f i rs t  lecture,  we said that  "mechanics"  deals wi th systems and thei r  observables.  I f  A is  an
obseruable (say, position) of a certain system (say, a ball), then we can at any time measure A on the
system and get a result A (say, 4.7), which we call Lhe ualue of A. (So, the measured value of the ball 's
position is 4.?.) We also noted that the chief concern of mechanics is to.answer the following general
kind of question (the FPOM): If we measure an observable A on a system with result A, and then a
time I later measure observable B on the system, what can we predict about the result R of the second
measurement?

The answer to this question proffered by classical mechqnics is generally framed in terms of the
system's "classical state." F'or example, suppose our system is a simple particle of mass nr that movcs
on the r-axis in a potential cncrgy field V(r) [or equivalently, in a force field l '(r) = -V'(xll. Classic.rl
mechanics defines the stq.te of this system at t ime J to be the pair of variables [x(t),p(t)I, the particle's
position and momentum at t ime l. This definit ion of starte is motivated by two considerations: F irst, u
knowledge of the particle's instantaneous state [rft),pft)l allows us to calculate the instantaneous
values of  a l l  o ther  meaningfu l  observables,  such as the par t ic le 's  ve loc i ty  p( t \ /m,  or  i ts  energy
p2(t l lzm+V(x( t ) ) .  And second,  a knowledge of  the par t ic le 's  in i t ia l  s tate [ r (0) ,p(0) l  prov ides precisely
the information needed (two integration constants) to uniquely solve Newton's equation F= ma,

md2xldtz -  _v, ( r ) ,  (3- t )

for  the par t ic le 's  s tate [ r ( f ) ,p( t )=mdx(t l /d l l  a t  any t ime l )0.  In  general ,  then,  the answer to the
I . 'POM from the c lass ical  v icwpoint  h inges on how wel l  we can know the systcm's state,  which
classical mechanics deftnes to be the valucs of some fixcd set of key observarblcs.

We notcd in our first lccture that this classical approach to the I"POM works vcry wcll for
macroscale systems, but not tor microscale systems. We explained that the [ailure of classical
mechanics on the microscale is quite prof<rund, and arises basically from the f.rct that observables of
microscale systems (such as the "position" of an electron) cannot always be said to "have values." And
we don't mean by this th.rt sometimes we are just ignorant of an observable's'value; we mean that
sometimes wc wil l involve ourselves in 'a contradiction if we even assume lhe existence of such a value.
(Recar l l  our  d iscussion of  the double-s l i t  exper iment . )  The replacement  for  c lass ical  mechanics on lhe
microscale is called quantum mechanics, and is the subject of this and the following four lectures.

In essence, the""standard theory" of quantum mechanics takes the following tack. It proposes to
retain the classical idear that a physical systcm always has a dehnite state, but to reject Lhe classical
de f tn i t i ono f " s ta te "as the ins tan taneousva lueso fsomef i xedse to f keyobse rvab les "  Fo rexamp le ,
quantum mechanics would go along with classical mechanics in saying that a microscarle particle on
the r-axis is always in a well-defined state, but quantum mechanics would not define that sttrte to be
the instantaneous values of  the par t ic le 's  posi l ion and momentum; indeed, iLcot t ldn '1,  because those
values won't always exist. And how does quantum mechanics propose Lo separate the notions of
"s tate"  and 

' -observable"? By doing something very un- intu i t ive,  something so very out landish that
the only rationalc we can give for it is simply the lact that i l  ult imately worhst Quantum mcchanics
turns to the abstract, mathematical theory of generalized vector spaces and says, let's represent,s/nle.s
by ueclors, and, obseruables by operators. More precisely, quantum mechanics starts by laying down
the followingtwo rules (or axioms or postulates):

> Rule l: Corresponding to arny isolatcd physical system there is a gcneralizcd vcctor spacc.'[ 'hc
unit uectors in this space "represent" the possible physical stqtes of the system. The particul;rr
unit vcctor rcprescnting the systcm state at t ime I is written rlt l , and is c.rl lcd Lhc stule uector ot
thc system at t ime l; we say that the systern is "in t he state tPr" at t ime t.

) Rule 2: Flach systcm obseruahle A is "rcprcscnted" by a l inear operator A that has an eigenhasis

{or, oz, ... } in the system's generalized vcctor space, and t real cigenvalue sct {4 1 , A2, ... }; that is,
thc l inear opcrator A rcpresenl,ing thc observable A is such that
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AoJ =  Ap1 U- - I ,Z , . . .  )  (3 -2)

where the eigenvectors {o1, o2,. . . }  form a basis in the system's general ized vector space, and
whcre the eigenvalues {A1, Az, . . . l ;are al l  retr l  numbers.

Now at this point, you must be uery patient, because these rules don't just look etbstrerct, they look
pointless! What does it mean to say that the vector tPr '"represents" the system's sttrte, or the operator
A "represents" the observable A? How should we go about finding either that vector or that operator?
Why should we even want Lo? In truth, Rules I and 2 are just getting things set up for Ru les 3 and 4,
which we'll write down in a minute, and which will answer most of those very reasonable questions.
lJut before we go on to those next rules, let 's c lar i fy someimpl icat ions of Rules I  and 2 that wi l l  turn
out later to be important.

First, Rule I implies that every unit vector in the system's generalized vector'spacc corresponds to
a possible physical state of the s-vstcm, and conversely, every possible physical statc of the systcm
corresponds to some unit vector in thc system's generalized vcctor space. ('lhc correspondence
between physical states and unit vectors is not quite one-to one, but we're not going to worry about
that technicality here") ln writing the system's state vector at time I as tltl, Rule I obviously suggests
thaL the stute uector euolues with time, i.e., for two different times I and l', rll and tll ' will usually be
two different unit vectors in the space. The time-dependence of the state vector Ws is described by
Rule 5, but we won't  get to Rule 5 unt i l  our Lecture 6. In this and the next two lectures, we' l l  be
concerned solely with whert can be said erbout the system at a single instant I - i.e., with the "static"

features of quantum mcchanics.

Rule 2 simi lar ly impl ies that there is an essent ial ly one-to-one correspondence between physic.r l
observables on thc one hand, and lincar operators with an eigenbasis and real eigenvalue set on the
other. Of course, we miry not know, or e ven care, how Lo measure all those observables. I n fact, it is
the high cal l ing of the physicist  ars a "diviner of Narture" to ident i fy the physical l -v relevant
observables of a system, and to mathematically construct their associated operators. Notice that, in
the process of construct ing opcra[or A, the physicist  wi l l  a lso construct,  ei ther expl ic i t ly or impl ic i t ly,
the associated basis {cr l ,  o2, . ."  } ,  and hence the ent ire general ized vector space of the system. Cle.rr ly,
this is not a trivial t.rsk! In Lecture 5 we'll see how to construct the operators X and I) that correspond
t < l t h e p o s i t i o n a n d m o m e n t u m o f a p a r t i c l e o n t h e r - a x i s .  B u t m o s t l y i n t h e s e l e c t u r e s , w e ' l l j u s t b e
talking about what you can do with observable operators once you'have them.

Notice that neither the general observable operator A, nor its cigenbasis or eigenvalucs, de pend
upon time. In the formulation of quantum mechanics that we arc considering here, only the system's
state vector evolves with time.

Since the A-eigenvectors {o1, o'2,... 1arre a basis in the system's state space, it follows th.rt the
system's instantaneous state vector V1 can always be "expanded in the A-eigenbasis" as

W1 = Xror(or,Wl),  (3-3)

where (oy,W1), the or-component of W1, is just some complex number. We'll see later thatt such
expansions of the state vector in the eigenbasis of observable operators play an important role in
quarntum theory. Also important wi l l  bc the fact that,  s ince V6 is a unit  vector,  thcn by the
(generalized) Pythagorean theorem the sum of the square moduli of its {orlcomponents must cqual
unity:

Xrl(o;,w,;lz = 1. (3-4)

We're not  speci fy ing the summat ion l imi ts  in  (3-3)  and (3-4) ,  because the d imensional i ty  of  thc
general ized vcctor  space is  not  the same for  a l i  systems.  Some systems requi re only  a two

dimensiontrl vector space, but most systems (even a simplc parrticle on the r-axis) call for an in{inite

dimensional vector space.

I f  the observable A is  thc f i rs t -mcasurcd obscrvable in  our  s tatemcnt  of  thc FPOM, thcn by l lu lc  2

thc sccond-measurcd obscrvable B wi l l  be s imi lar ly  rcprescntcd by some l incar  opcrator  t l  wi th

e i g e n b a s i s l . f i r , A 2 , . . . } a n d r e a l c i g c n v a l u e s c t { 1 1 1 , 1 1 2 , . . . } .  A n d j u s t a s w i t h E q s . ( 3 - 3 ) a n d ( 3 - 4 ) , r v c
can always cxpi.rnd thc systcm's state vcctor tPl in the B-eigenbasis according to
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t { t = E n F p ( p p , V 1 ) ,

where the components of W; relative to the B-eigenbasis are complex numbers satisfying
lpl{Pp,v,11z = 1-

If the A-eigenbasis components of W1 happen to be known, then we can calculate from them the B-
eigenbasis components of W1 by using the component expansion theorem Isee Eq. (2-3t]

1 5

$ p,V ) = Ei (B p,oi\(or,Vr).
Here, the coefficient (pp,o) is of course the p2-component of the vector o; in the expansion

aj = Ep0t(pp,o).

oExe rc i se3 -1 .  Eq . (3 -6 )  i s theexpans iono f theA-e igenvec to ro r i n theB-e igenbas i s .  Wr i t edown
the expansion of the B-eigenvector ppin the A-eigenbasis.

oExercise 3-2. Prove the following two relations between the p2-component of vector o, and the or-
component ofvectorp2:

(3-5)

(3-6)

(3-7a)

(3-7b)

(pp,o) = (oi,Fk\*,

l(pe,o)1z = l(a,,f il12.
oExercise 3-3. What is the formula for calculating the A-eigenbasis components of W; from the Il-
eigenbasis components of tF/ How are the coefficients in this formula related to lhe coefficients
in formula (3-5)?

) 3.2 Results and Effects of Measurements
Now that we have "set the stage" with Rules I and 2, let's "raise the curtain and start the play:"

Let's address the crucial question of what happens when we measure ar given obscrvable A on a
system in a known state W;. The answer to that question comes in two parts. The first part, which
we'll call Rule 3, deals with predicting the result of a measurement.

> Rule 3: If observable A is measured on a system in state tP;, then the rno.sf thut can be predicted
about the result  of  that measurement is this:  The probabi l i ty th 'at  the result  wi l l  be the
eigenvalue A; is equal to the square modulus of the or-component of tlrl, namely l(or,W,)lz.

Rule 3 implies that even though the sterte of the system is completely specified, in that the state
vector W1 is known, we can neverthelcss make only probabillslic predictions about measurement
results. This is in sharp contrast to the situartion in classical mechanics, where the (classical) state
uniquely determines the result of any observable measurement. Ilut in quantum mechanics, all we
can say prospectively about a measurement of A on the system in starte W1 is that the probability that
the result  wi l l  be A1 is l (o1,Wr)12, the prob.rbi l i ty that the result  wi l l  be 42 is l (o2,tPr)12, etc.

The addit ion law for probabi l i t ies impl ies that we can calculate the probabi l i ty that an A-
measurement on state W; wi l l  y ield any of the e igenvalues of A -  i .e. ,  ei ther A1 or zt2 or 43 . . .  -  by
simply adding up al l  the individuerl  probabi l i t ies. Thus,

Prob{A1 or 42 or. . .  i  = l (o1,\ t rr) |2 + l (az,Wr)|2 + . . .  = I j l (oJ,Wr)12.

But F)q. (3-4) tel ls us that the sum on the r ight is one, which in probabi l i ty theory means "absolute
cer ta in ty . "  Thus ,amcasuremcnto f  A iscer tq in  toy ic ld  someoneof  thec igcnva lucsof  A .  [no lhcr
words, the eigenvalues {A1 , Az, ... } introduced in Rule 2 are the only values that any measurement of
A can cver yield. Now, depending upon the observablc, eigenvarlue scts can be either discretely
d is t r ibu ted  ( l i ke  the  in teger  numbers)  o r  con t inuou.s ly  d is t r ibu ted  ( l i ke  the  rea l  numbers) .
I l istor ical ly,  the lact that many observables on the microscule (such as the energy of an electron
inside an atom) turn out to have discrele or "quant ized" values, is what led to thc namc "quantum"
mechanics. (Of course, you can see ar lready that the di f ference between classical  and quantum
mcchanics runs much deeper that qu.rntized measurcmcnt results.) [n our work here we are going to
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pretend, insofar as possible, LhaL all observable eigenvalue sets are discretely distributed, because
that's the easiest case to treat mathematically.

We have seen how Rule 3 illuminates the significance of the eigenualues of the operator A
corresponding to the observable A: those eigenvalues are just the al lowed results o[ an A-
measurement. Rule 3 also sheds some light on the significance of the eigenuector.s of A as well: It says
that if we expand the system's state vector W1 in the A-eigenbasis, as in Eq. (3-3), then the square
modulus of the coefhcient of  eigenvector cry is the probabi l i ty of  measuring the corresponding
eigenvalue Ar. And this in turn implies another interesting fact:

If the system's state vector V1 coincides with the eigenvector oa, then an
A-measurement on the system is certq.in to yield the eigenvalue A6.

To prove this statement, we simply observc from llule 3 that an A-mcarsurement on the system in the
starte W1=q6 wi l l  y ield eigenvalue A, with prob.rbi l i ty l (or,rP1)12=l(or,oa)|2. This probabi l i ty is zeroi f
j * , owing to the orthogonality of different eigenbasis vectors, and one if j = 17, owing to the fact that
o6 is a unit vector. So we sec that Rule 3 implics th.rt the eigcnbasis vectors of A de{ine thc possible
states of the system for which an A-measurement will harve a uniquely predictable result (numely the
corresponding eigenvalue of A).

F'urther insight into thc signi f icance of the cigenbtrsis vcctors of A is provided by Rule 4. This
rule deals wiLh the effect of a meqsurement on the stqte.

> Rule 4: [ f  a measurement of A does yield eigenvalue Ar,  then immediately after Lhat
measurement thc systcm's statc vector wi l l  coincide with the corresponding eigenvector o1,
regardless of what the state vector was just beflore the measurement.

Rule 4 impl ics that whcn wc measure A on a system, the system's state vector immedi.r tely
'Jumps" to one of the eigenbasis vectors of A, namely to that eigenbasis vector corresponding to the
measurcd cigcnvaluc. ' fh is is anothcr dramatic deparrture from classical  mccharnics, where a
measurement (of the ideal kind we're considering here) has no effect on the state. Notice that in
quantum mechanics a measurement result  tel ls us much more about the state of the system
immediately after the measurement than immediately befiore: If the measurement result is Ar, then
immcdiately after the measuremcnt we know that the state vector of the system is or; however, all we
can inferabout the state immediately before the measurement is that its or-component was not zero
(otherwise, we couldn't have got the result Ar).

aExercise 3-4. Suppose our system's generalized vector space is two dimensiontrl, so that the
eigenbarsis of A consists of the two orthogonal unit vectors o1 and o2.

l r r 4

(a) I f  Vt=oz, as indicated schemert ical ly in (ar)  above, calcular l ,c the probabi l i ty th.r t  an A-
nlcasurement wi l l  y ield the var luc A1. I) i t to for the valuc A2. What wi l l  the sterte vector of thc
system be immediately after an A-mctrsurcmcnt?
(b) l f  rV-f i /z)or *(  t /3/21o2, as indicated schcmatical ly in (b) above, calculate the probabi l i ty
that an A-measurement wi l l  y ield the var lue A1. I) i t to for the value 42. Por each outcomc,
describe the state vector immediately after the measurement.

q2

-T-
I

t/stz

I
I

(b )(a)
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) 3.3 Answer to the F-I'OM for t= 0
With Rules 1 through 4, you have now seen the most bizarre features of quantum mechanics; you

have arrived at the "radical core" of the theory! Also with these lour rules, you are now in a position
to see how quantum mechanics proposes to answer the FPOM for d=0, i .e. ,  for no appreciable t ime
lapse between the A-measuremcnt and the subsequent B-measurement. We reason as follows:

- When A is measured on the system, the result must (by Rules 2 and 3) be some A-eigenvalue;
let's call the measured eigenvalue A1.
- So immediately after the A-measurement, the system will (by Rule 4) be in the state oj. And
since I - 0, the system will stil/ be in state o, for the B-measurement.
-  Measuring B on the state c;  wi l l  (by Rule 3) yield any B-eigenvalue 86 with probabi l i ty
ltp6,o)12.
) Therefore, quantum theory's answcr to the F'POM in the /= 0 case is:

Prob{B=86,  g iven thatA=A,  and r=0}  = l$n,o)12.  (h=7,2,  " . . \
Notice that all we need to know to answer the FPOM for I = 0 are:

- the eigenvalues ofA and B, and
- the components ofthe A eigenvectors relative to the B eigenbasis.

Notice also, from Bq. (3-7b), lhat ppand ay in (3-8) can be interchanged.

As a simple application of the result (3-8), suppose that A and B are the same obseruable (c.rll it A).
Then (3-8) implies that the probability that the second A-mcasurement will give the result Ap when
the Frrst A-measurement gave the result A; is

r(op'o,)r2 =i ;trf=l l:il::::,::',?il;::;*"".' 
r<'>r h*il

Thus, the sccond A-measurement is certain to give the same result 4, as thc first A-mcasuremcnt.
More generally, the results obtained in two rapid, successiue meqsure.ments of any obseruable,will
always agree with eoch other. So quantum mechanics is not totally crazyt But noticc that this
consistency of immeditrte remeasurement results depends strongly on the "measurement jump" of the
state vector postulated.by Rule 4: After the {irst A-measurement, with whatever result A;, the starte
vector rn a.sf coincide with the corresponding eigenvector o; in order for ltule 3 to guarantee the result
A; on the second A-meersurement.

oExercise.S-5. Suppose A and B are observables of a system with a two-dimensional state space,
and suppose the B-eigenbasis vectors arc given in tcrms of the A-eigenbasis vectors by

fr = i(l/3)U2qr+(213)U2o2 and p2 - (213)U2or+ i(1/3)u2o2.
(a) By inspecting the above formulas, identify the components (or,fa) for allT and ft. Then usc Eq.
(3-7a) to deduce (pp,o) for allT and lr. Using the latter numbers and t)q. (3-6), write down o1 and
o2 in terms of p1 and p2. Check your answer by solving the above two equations simullaneously
for o1 and c2.
(b) In the FPOM, suppose the A-mcasurement yields the result 42. What is the probability that
the immediately subsequent B-measurement wi l l  y ield the result  R1? The result  82?
(c) Suppose the B-meersurement gives the result Ii2, and then trn immediarte remeasurement of A
is made. What is the probarbility that the result of this second A-measurement will give the sarme
value"A.r as obtained in the first measuremcnt?

1 7

(3 -8)
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14.1 Recapitulation

Let's review our story so far.

Classical  mechanics founders on the microscale,  essent ia l ly  because i t  t r ies to ident i fy  the

endur ing " 's tate"  of  a physical  system wi th the not-so-endur ing values of  cer ta in observables of  the

system. Quantum mechanics attempts to salvage things by separating the notions of "state" and
'"observable" using the mathematical theory of generalized vectors. Specifically, quarntum mechanics

postu lates,  in  i ts  Rules I  and 2,  that  to  every physical  systcm there corresponds an abstract

generalized vector space, in which the system's stute.s are represented by certain uectors and the

system's obseruables are represented by certain operators. The vcctors representing system's states

are all unil vectors. The operators representing system's observables trre all l inear with eigenhases

and real eigenvaluc sets. And just how are we supposed to find the operartors that represent specific

system observables, and that in fact defrne through their eigenbases the system's abstract vector

space? Th.rt is something that quantum theory leaves to the wit and rviles of the ph.vsicist, who thus

i i  g iven the chal lenging task of  hooking up the ru les of  quantum mechanics to the real  wor ld.

But we c4n't expect to form a meaningful physical theory by doing nothing more than erssociating

states with vectors and observables with operators" Whal t ies all these concepts together is the notion

of  measurement"  Rules 3 and 4 descr ibe what  happens when we make a measurentetr t  o f  i tn

observable A on a system whose state vector is W1. Those rules say, f irstly, that the outcome of such a

measurement  must  be one of  the real  e igenvalues iA1,  A2,  . . .  )  o f  the operator  A arssociated wi th

observable A.  But  which e igenvalue? Quantum theory says thab usual ly  we can' t  be sure,  and that

the 6est  we can do is  th is :  Expand the state vector  Ws in the e igenbasis to l ,  crz ,  . . .  l  o f  A,

tUr = X"r oy (oy,Vr), (-t- l )

and observe the complex component (or,tUr) of W1 along the eigenbasis vector oJ; the square modulus of

thart component, namely l(ar,W1)12, is numerically cqual to the probahil ity thart an A-measurement on

the system in the starte tPl wil l give the eigenvalue A, corresponding to eigenvector or- And while we

cern ' t  a lways be sure of  the resul t  o f  an A-measurement ,  we can be sure of  th is :  I f  the resul t  i .s  the

particular eigenvector Ar, then the state vector oI the sy'stcm immediately after the measurement wil l

coincide with the corresponding eigenbasis vector crr. In other words, a measurement of A causes the

system's state vector to ' jump" to one of the eigenvectors of the observable's operittor A, namely to

that eigenvector corresponding to the eigenvalue found in the measurement. 
' l 'his measurement

jump, l ike the measurement  resul t  i tse l f ,  is  inherent ly  random and uncontro l lab le,  and does not  seem

to be explainable in terms of any underlying deLerministic mechanism.

That, in brief, is the gist of quantum mechanics as embodied by our Rules I through 4- At the end

of our last lecture, we sh<lwed how these four rules allow us to flrame an answer to the I"POM for the

"static" case r=0. Let's review that answer in the conbext of a simple hypothetical system whose

generalized vector sptrce is two-dimensionarl. Let's i lssume that we have defined the operators A and

b for observables A and B by specifying their respective eigenbases, {or,oz} and {p1,p2}, and their

co r respond ing  rea l  e i genva lue  se ts ,  {A1 ,A2 }  and  {B r ,Bz i "  The  e igenbases  de f i ne  i n  t u rn  t he

generalized vector space of the system. To help us visualize that abstract space, and in particular the

relation between the two eigenbases, we'l l use the pictorial representation in Fig. 4-la. We can think

of the components of the various vectors relative to each other as"projections,'" just as we do lbr

ord inary vectors,  prouided we keep in mind the caveat  i l lust rated in  F ig.  4- lb :  Al though the drawing

implies that the component of, say, vector p1 relative to vector o1 is equal to the component of o1

relative to p1 , those two components are in fact complex conjugates of each other; i.e., (o 1 ,p1) = (p1 ,cr 1 )*.

Now,  t he  l =0  ve rs ion  o [  t he  FPOM con temp la tes  a  measu remen t  o f  obse rvab le  A  fo l l owcd

immediate ly  hy a measurement  o[observable B.  We know that  the A-measuremcnt  must  y ie ld onc of

the two c igenvalues A1 or  42.  [ f  the resul t  is  A1,  then regardless of  what  the st i r te  vector  of  the

system was just  hefore the A-measurement ,  i t  wi l l  co inc ide wi th o1 immediate ly  uf ' ter  Lhl rL

measurement; hence, the system will be in the startc o1 for the B-measurement, So to predict thc
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FIG" 4-1. Generalized two-dimensional vector space for a hypothetical system, showing in (a)
the eigenbases io1,o2) and, {fi,p21of two observable operators A and B, and reminding us in
(b) of the inherent limitation of this kind of pictorial representation of generalized vectors.

FIG.4-2" Showing the complex components needed to answer the I'I 'OM for f =0, (a) when the
result of the A-measurement is A1, and (b) when lhe result of the A-mearsurement is A2.

result of the B-measurement, we {irst calculate the complex components (fr,crt) and (p2,o1) of c1
relative to the B-eigenbasis lsee F ig. 4-2a1" We then assert that the B-measurement will yield the
rcsult  B1 with probabi l i ty l ( / l r ,or)12, and thc result  I l2 with prob.rbi l i ty l1Jz,o)|2.  On the othcr hand, i f
the A-measurement had given the result 42, then we would know that the system's state vector just
belore the B-measurement would be o2. [n that case, we would calculate the complex components
(p1,o) and (p2,o) of o2 relartive to the ll-eigenbasis lsee Fig. 4-2b1, and then trssert that the B-
meirsurement will yield the result Il1 with probarbility l(jt,oill2, and the result Il2 with probability
lQz,oz\|z. That, in brief, is quantum theory's answer to the F POM in the "static" case.

Now let 's pursue some other impl icat ions of the f i rst  four rules of quantum mechanics.

1 9

( a )

(b )
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14.2 Compatitrle and Incompatitrle Observables

F irst we're going to discuss a notion, or if you will a definition, that is very revealing of lhe non-
classical character of quantum mechanics. Two obscrvables A and B are said to be compatible if and
only if, in a rapid sequence of three measurements - of A then of B then of A again - the results of
the f i rst  and third measurements wi l l  a lways agree with each other.  But i f ,  in those three
measurements, it might happen that the first and third measurements will nol agree, then A and B
are said tobe incompatible.

In classical  mechanics this def ini t ion is rather useless, because there cl l  observables are
compatible: The intervening B-measurement, being "ideal," has no effect on the state of the system,
and hence no effect on the value of observable A. But in quantum mechanics, it is etrsy to see how two
observables might very well be incompatible. For example, consider a system with a two-dimensional
state space, and suppose that the eigenbases ior,oz) and {p1,82} of the opera.tors lor observtrbles A and
B do nol coincide with each other, as is indicated schematically in Fig. 4-3a. If the first

= plbr pz)

t 'IG" 4-3. il lustrating, for two observables A and B with repective eigenbases {or,oz} and {l}1,[]21,
the conditions of (a) incompatibility, and (b) compatibility.

A-measurement yields eigenvalue A1, then the system's state vector wi l l  jump to state o1. ' fhe

subsequent B-measurement will make the system's state vector jump to either state p1 or state p2.
But in neither of those two states is it guaranteed that an A-measurement will give the result A1 that
was ohtained in the f i rst  measurement.  Of course, we might get the result  A1 on the third
measurement, but that is not a certainty; so by our definition, A and B are incompatible observables.

On the other hand, suppose th.rt the eigenbarses {or,az} and {$1,p21of the A and B operators
coincide with each other, as is indicated schematically in Fig. 4-3b (whether the eigenbasis indices
match or not is immaterierl for our arguments). Now what happens in our A-B-A measurement
sequence? lf the first A-measurement gives the result A 1, then the system will jump to state o1. Since
o1 is also an eigenbasis vector of B's operator, then the B-measurement will simply leaue the system in
that state; thus, the remeasurement of A wi l l  necessari ly y ield the eigenvalue A1 again. Obviously,  a
similar argument will show that if the first meilsurement had given the result 42, then the third
measurement would also have to give the result  42. So A and B in this case are compctt ible
observables"

Our conclusions here represent a general result in quantum mechanics: A necessary and
sufftcient condition for two obseruables to be compatible is that their operators haue a common
eigenbasis. If the operators for A and B do nol have a common eigenbasis, then in a rapid A-B-A
mcasurenlent seque nce the B-measurement always has the potential of "spoiling" the remcasuremenl
of A. But it is very importan[ to understarnd that this spoilage, when it occurs, is nol the result o[
sloppy mcasuring technique, but rather is intrinsic Lo the narturc of the measured observablcs.

(b)( a )

qz= Fz(orp1)
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) 4.3 Interference. The "Value" of an Observable

A fascinating property of incompartible observables is their apparrent tendency to "interfere" with
each other.  The most famous mar"r i festat ion of quantum interfcrence occurs in the double-sl i t
experiment,  which we discussed in our f i rst  leclure. I lowever,  t ,he double-sl i t  experiment is an
example of "dynamic" interference, since it involves in a fundamental wa-v the passage of time: wc
shall consider the double-slit experiment in some detail in Lecture 7. The general phenomenon of
interference can be demonstrated in a static context rather easily by appealing once again to a
hypothetical system with a two-dimensional state space. Suppose A and B are two incompatible
observables for such a system, so that the eigenbases {o1,o2i and {51,p} of their associated operators A
and B do not coincide, as schematized in Fig. 4-4. Suppose further that the system's instantaneous

FIG.4-4. A situation leading to "interference" between the incompatible observables A and B.

s ta tevec torWsdoesnotco inc idewi thanyof thosefoure igenbas isvec tors .  Asweknowqu i tewe l l  by
now, the measurement probabilities for observables A und B on state V1 are as follovi's:

Prob{Meas(a)=A,r i  = l (o; ,W1)12 ( j --1,2) i  Prob{Meas(B)=Ba} = l$p,rUSlz (h=1,2).

Now, if we expand V1 in the A-eigenbasis,

Wr = ql  (o1,V1) * qz (oz,Wr),

then we can write the p1-component of W1 in the form
(pr, t l ' r )  = (0t,o1 (o1,V1) * o2 (o2,r l t ; ))  = ( fr ,or)(o1,tF1) * (p1 ,o2Xo2,t [1),

which of course is just the change-of-basis formula (3-5).  Theref lore, the probabi l i ty that a B-
measurement on state tP1 will yield the result fl1 can be computed as

Prob{Meas(B) = Bri  = l (p1,tP1)12
= l( / i1,o1Xo1,W1) * ( \ t ,oi l ,oz,rV t)12.

Observing that the right side is just the square modulus of the sum of two complex numbers, we need
only invoke the identities ( l -8) to get

Prob{Meas(B) =I l r}  = l (p1,o1)12 l(o1,tP,)12 + l (pyo)lz l{o2,V,; lz
* 2Ret(fr ,o1Xc1,W1Xp1,o2)*(o2,V1)*) (4 -2)

oExercise 4-1. Carry out the algcbra leading to Eq. (4-2).

Notice in Eq. (4-2) that the first two terms on the right are strictly positive (none of the paired unit
vectors are orthogonal), while the third term may be either positive or negative buL not zero.

'lhe third term on thc right side of Hrq" (4-2) is called the "interfercnce" term. 'l 'hat name is partly
tr holdover from a wary of trying to interpret l ',q. Q-2) thart wars popular in the early days of quantum
rncchanics. In this (unrecommended) vicw, one rcgards A and B as' joint  random variarbles" -  i .e. ,  ls
variables that can simullaneously takc values which are predictable only in a probabilistic scnse. I.'or

2 1



22 LECTURE4  QUANTUM MECHANICS:  STAT ICS  l l

such variables the event B=Bl always occurs in conjunct ion with one of the two mutual ly exclusive
events A = At or A = 42, so the laws of probability theory imply that

Prob{B - Br} = Prob{B = Br and A: A r}  + Prob{B = Bl and A= Azl. (4-3)
One now tries to view Eq. @-2) as an instance of F)q. (4-3). The difficulty is that there is no consistent
way of doing that. ln particular, the most plausiblc association, of the {irst two terms on thc right side
of Eq. (4-2) with the corresponding t,wo terms on the right side of Eq. (4-3), leaves one quite unable to
account for the third term on the right side of Flq. (4-2). What some people did was to stil l regard those
associations as meaningful, and then regard the "interference" term as a manifestati<ln of the overarll
quantum mystery.

Without denying the presence of a "quantum mystery," let's recommend another way to resolve
the discrepancy posed by Eqs. (4-2) and (4-3). In the circumstarnce illustrated in F'ig.4-4, where the
state vector is such that it is absolutely impossible to predict with certainty what value will be
obtained in an A-measurement, does it really make any sense to speak of A as "having ar value"? Let's
answer this question in the negative; in other words, lct's adopt the following position:

An obseruq,ble A can be said to *haue q. uqlue" if and only if the system's state uector guarantees a
unique result of measuring A.

Therefore, if tltl is a linear combination of two or more eigenbasis vectors of operator A, then
okrservable Acq,nnot be said to have a value. [n that circumstance, it is the acl of measuring A that
deuelops an A-value; the measurement does this by causing the system's state vecl,or to jump to one of
the A-eigenbasis vectors, so that then A will have a value. But an A-value does not exist prior to the
A-measurement. Now, in our interference problem, since it is obviously not possible for V1 to
simultaneously coincide with an eigenvector of both A and B, then it is not possible for A and B to
simultaneoasly have values; hence, it is not possible to regard A and B as joint random variables, and
Eq. G-3) does not upply. With Eq. (4-3) thus eliminated, therc is no discrepancy. C)r, if you prcfer, we
have replaced the "interference" mystery with the rnystery that there are perfectly legitimate system
observables that sometimes huue values and sometimes do not have values.

But then, the latter mystery was precisely the conclusion lhat we seemecl L<>be forcecl to by the
results of the double-slit experiment. Referring to Fig. l-2, we concluded that the results of that
experiment implied that any electron reaching screen 52 with 6ol[ slits yt and yz open could not
plausibly be said to have come through one slit erclusiue of the other; therefore, such an electron could
notbe said to have had ay-posibion value when it passed screcn S1. In light of such experimental
evidence, it does not seem terribly unreasonable to disalloru the underlying premise of Eq" (4-3) that
incompatible observables will always simultaneously have values.

Before the next lecture you should review this and the preceding lecture, and work all the
exercises therein (the five exercises in Lecture 3 and one in the present l,ecture 4). We will use the
remaining time here to answer any questions you might have about our development so far.
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)5.1 The Position and Momentum Operators. Wave F-unctions
In this lecture we're going to discuss two speciftc physical observables, the position X and the

momentum P of a particle thab is constrained to move in one physical dimension - say along the r-
axis. Our first task is to produce the operators X and P that physicists, in their role as "diviners of
Nature," have decreed shal l  represent those two observables. There are several  equivalent
procedures for defining the operators X and P. Our procedure here will be to simply specify their
eigenbases and eigenvalue sets; that this will completely define those operators lollows from the
genera l resu l to fExerc ise2-5 [seea lsoF ig .2 -61 .  Inourdef in i t ion ,youwi l lno t ice tha t thee igenva lue
sets of X and P are taken to be continuously distributed. While that seems very reasonable, it will
make for some mathematical complications further on - which is why we have thus flar been
"pretending" that all observable eigenvalue sets were discretely distributed.

.  DEFINITION OF X AND P:
- The eigenvalue set of X is the set {r} of all real numbers r, and the eigenvalue set of P is the
set {p} of all real numbers p.
- The X-eigenbasis vector 6. that corresponds to the eigenvalue r (X6'.=a[r), and the P-
eigenbasis vector @o that corresponds to the eigenvalue p (PQp= pQr), are such thab the
component of @, relative to 6, is the complex number

(6r,0i - 7 g-irp/k = r [cos(rplh) -i sin(xp/h)|, (5-la)

where i is Planck's constant in Eq. (1-2), and r is a real constant whose value will not concern
us here. [In a more advanced quantum mechanics course, you'd learn that r= (znh)-l/2.1

Notice that we have cleverly specified the two eigenbases {6'.} and {{lp} bV giving their components.
relutiue to eq,ch other; indeed, it follows from Bqs. (5- la) and ( l - 1 1b) that the component of 6'. relative
to @o must be given by

(Qp,6r) = (6r,Qp\* = rer ixp/h: r lcoskp/h)* is in(rpl i )1.
Eqs. (5-1) make ib rather plain that the eigenbases {6r i  and {@r} do not coincidc with each other;  thus,
we can expect X and P to be incompatible observables. We will explore thart issue in more deteril .r
little later.

In al lowing the eigenvalue sets of X and P to be cont inuously distr ibuted, we have evident ly
created a generalized vector space that has as many dimensions as there are real numbers; because,
for each real number r there is a distinct basis vcctor dr, and similarly, for each real number p there is
a distinct basis vector ry'o. This "heavy" kind of infinite-dimensionality gives rise to some thorny
mathematical complications, the most bizarre of which is this: Although the position and momentum
eigenbasis vectors are mulually orthogonal in the usual sense that

(6;,6; ,)  = 0 i f  x*r '  and (Qp,Qp')  = 0 i f  p*p' , (5-2a)

it turns out that the "self-components" of those eigenbasis vectors, instead of being unity, are infinite:
(6',6') = - and (Qp,Qi = -. (5 -2b)

But we hasten to add that all other unit vectors in the space are assumed lo have self-components of
one -  i .e . ,  (e ,e )  =  l .

Somewhat more reasonably, the expansion formulas for the state vector tP1 in the position ancl
momentum eigenbases, instead of being discrete sums as in llq. (3-3), are taken L<>be continuorr.s sums
- i .g. ,  integrals:

(5 -  I  b )

. r , = j - o ( a . r u )
L  -  J  J .  t

j = L

-) ,u, = 
I- ,ou"rur,rr,ro*, 

.u, = 
i- ,,rorr,,,ru,ror. 

(b-3)
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Similarly, the Pythagorean formula (4-3) takes the "continuous-sum" forms

)  l t o , , w , ) 1 2 =  1  [ " ; , 0 - , , u , , 1 2 d x =  [ ,  [ -  1 , 4 . , * . , 1 ' d p = t .
= , '  J '  t '  J  _ - '  r '  t '  J  _ . , '  

'  p '  t ' ' 6-4)

(5-6a)

(5 -6b )

(5 -8a)

(5-8b)

And the change-of-basis formula (3-5) takes the continuous-sum forms
*  

r c t  t s )

(ph,qt)= 
L,Ou,o-xor,w,)  

+ (Qr,w,)= 
J _*r f  r ,o,rrd, ,w,)d.r ,  

(dr ,wr)= 
. l_,  

(6x,q)r)kbr) ,v,)dp. (5-5)

Apart f.o- ti,ere mathematical technicalities, a noteworthy modilication is made in our Rule 3,
for predicting the result of a measuremcnt: F'or position and momentum measurements, Rule 3 is to be
inte rp re te d as fo llo w s:

l(6'.,Vr;;z6r = probability that an X-measurement, made on the particle in the
state W;, wi l l  y ield some value between r and r *  dr,

lkbp,V t\12 dp = probability that a P-measurement, made on the particle in the
state W1, will yield some value between p and p * dp.

With these rules, Eqs. (5-4) tell us bhat the result of an X- or P-measurement on the particle in any
state W6 must be some real number between - - and a o, just as we should expect.

Of all the foregoing statements, only parts (a) and (b) of our definition of the operators X and P
contain real ly new information; al l  the other formulas are just restatements in "cont inuous"
eigenvalue language of things we've said before in "discrete" eigenvalue language.

The dr-component of the state vector rU1, namely (dr,W1), is evidently a complex number that
depends on the two parameters r and t; hence, it is a complex function of r and l. As such, it is often
written in the alternate functional form

(6r ,Wr)  = Vx(x, t ) , (5-7a)

and called Lhe position waue function of the system. If we know the position wave function Fx(r,/) for
all values of its argument r, then we obviously know all the components of the state vector relative to
a basis, namely the X-eigenbasis {6r}; thus, knowing the position wave lunction is tantamount to
knowing the "state" of the particle. Similarly, the rlrr-component o[ tltl, (@u,tPr), is a complex function
of p and I that is often written

Qtp,V) = Vp(p,t\, (5-7b)

and called the momentum waue function of the system. If we know the momentum wave function
Vte@,t) for all values of its argument p, then we obviously know all the componcnts of the statc vector
relative to the P-eigenbasis {dr}, so knowing the momentum wave function is c/.so tantamount to
knowing the "state" of the parlicle. Wave functions are a convenient and frequently used way of
representing the state ofer particle.

Since Eqs. (5-4) through (5-6) all involve the 6r- and @r-components of the state vector, we can
rewrite all of those equations in terms of the wave fiunctioni. Le.t's do that now. l3eginning with Eq"
(5-6), we see that the square moduli of the position and momentum wave funcbions harve the special
significance that

l t t tsak,t)12 dr = probabi l i ty th.r t  an X-measurement,  made on the part ic le in the
state V1, will yield some value between r and -r * dr,

l ' lte(p,t1lz 4p = probability that a P-measurcment, made on the particle in the
state W1, wi l l  y ield some valuc bctween p and p*dp.
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And Dqs. (5-4) tel l  us that these square modul i  also sat isfy

2 5

[ *  * l r *o , r l zd r  
=  t and  

l *  _ l r r , ro , r l 2dp  
=  1 . (5-9 )

(5 -10a )

( 5 - l 0 b )

Fig" 5-t shows schematic plots of the square moduli of the position and momentum wave functions.
Eqs. (5-8) imply that the shaded areas in those figures are respectivcly equal to the probarbilities for
X- and P-measurements on the particle in the state W1 to yield results in the indicated intervals. And
F)qs. (5-9) imply that the totarl area under each curve is one.

xl x,z pr p2

p'IG.5-1. Schematic plots of the square moduli of the position and momentum wave functions.
The shaded areas equal the probabil it ies for X- and P-measurements on the particle in the state
W1 to give results in the indicated intervals. The total area under each curve is unity.

And frnally, ib follows frorn the change-of-basis formulas (5-5) and our lundamental Eqs. (5-l) th.rt
either of the two wave functions can be calculated from the other through the formulas

v ,,@,t) = . 
I 
j, 

"'' 
Plh v *{x,t\ dx,

v*k , t )  =  , l : " . - i 'dh wr{p, t )dp.

oExercise 5- l .  Derive F)qs. (5-10).

Now let us deduce some of the interesting physical consequences of this rather heavy formalism.

> 5.2 The Wave-Particle Duality

In developing the consequences of our definition of thc position and momentum operators, we
don't want to confuse the particle that is our system with the particle attribute of bcing "localized at
some point." So let's suppose that our system particle in an electron on the r-axis. Then the foregoing
tonsiderations cnable us to make the following deductions:

D e d u c t i o n l .  I f t h e e l e c t r o n h a s a p o s i t i o n r ' , t h e n i t s p o s i t i o n w a v c f u n c t i < > n . P s q ( r , t ) i s z e r o f o r a l l
r  except x= x '  ,  wherc i t  has an inf ini te spike.

Proof'. If the electron has:r position r', then by definition its state vector tU1 coincides with the X-
eigenbasis vector 6'r'. ' l 'he p<lsition wuve fiunction is therefore

lr4y(x,t)12 lVp(p , t )12
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Vxk,t) = (6r,tltr) = (6.r,6;'),

which Lry Eqs. (5-2) is zero i f  r=r 'and inl in i te i f  r=r ' ,  precisely as claimed. Not ice that this
result is consistent with the probability interpretation of the square modulus of Wy(x,t) in (5-8a),
since it implies that a position measurement on an electron with position r' cannot yield any
value other than r ' .

Deduction2. If the electron has a momentum p', then its momentum wave function Vp(p,t) is zero
for all p except p= p' , where it has an infinite- spike.

oExercise.5-2. Prove Deduction 2. IHint: Repeat the proof of Deduction 1, except interchange the
roles of position and momentum.l

Deduct ion 3. I f  the electron has a momentum p, then in some sense i t  also has a posit ion
wauelength

Lx = Zrchlp' (5-l l)
Proof: If lhe electron has a momentum p, then its state vector tP1 coincides with the P-eigenbasis
vector @p. tts position wave function is then

VxG,t) = (6r,tUr) = (6r,0p) - ys-ixpth = r[cos(rplhl-isin(:"plh)|.
Now since

cos[(r* 2nh/p)plhl = cosfxp/h*2nl - cos[rplhl,

and similarly for the sine function, it follows that
VxG*Znh/p,t) = wxG,t).

Thus, the position wave function of an electron with momentum p is periodic in r, with period or
wavelength 2rchlp. Since this function completely defines the state of the electron, then the
electron too must, in some obscure sense, "have a wavelength" 2rcNp.
Notice that Deduct ion 3 provides some gl immer of insight into the double-sl i t  experiment

discussed in l,ecture 1, wherein an electron with momentum p6 exhibited an interflerence pattern
characteristic of a wave with wavelength 2nh/ps. We shall give a fuller account of the double slit
experiment in Lecture 7.

aExercise 5-3. Show th.rt if the electron has a position r, then in some sense it also htrs a
momentum wauelength \p=2nh/x. Itl int: Repeat the proof of Deduction 3, except intercharnge
the roles of position and momentum. I

Deduction 4. If the electron has a momentum p, then a position measurement will yield, any ualue
with equal probability; consequently, it makes absolutely no sense to ascribe a position value to an
electron that "has a momentum."

Proof: If the electron has a momentum p, then its state vector V1 coincides with the P-eigenbasis
vector 0p, so its position wave function is

Wx&,t) = (6r,{t) = (6x,0p\ - 7s-ixp/ll.

Then according to Eq. (5-8a), the probability that a position measurement will yield a result
be tweenrandr*dr is

l{txk,t)|z dx = r2le-ixtthlz d,x = r2 d,x.
where we have invoked Eq. (l-llc). Since this probability is independent of r, then we must
conclude that al l  r -values are equal ly l ikely.

Deduction5. If the electron has a position r, then a momentum measurement will yield any ualue
with equal probabilily; consequently, it makes absolutely no sense to ascribe a momentum value to
an electron that "has a position."

oCxercise 54. Prove Deduction 5. Ilint: Modify the proof of Deduction 4.1

We htrd already inferrcd from our fundamental premise (5-1) that position and momentum were
incompatible observables, and DeducLions 4 and 5 evidently conlirm that inference in the strongest
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possible terms. Apparently, when we measure the position of an electron, we force the electron's state
vector into one of the X-eigenbasis vectors 6r; there the electron can be said to have a position vnlue -t
but not a momentum value, and the electron's spatial locq.lization causes us to think of it trs a
"par t i c le . "  t su t i fwethenmeasure themomentumof tha tsameelec t ron .weforce i tss ta tevec tor in to
one of the P-eigenbasis vectors r1u; there the electron cannot be saicl to have a position value. tlut it
c a n b e s a i d t o h a v e a m o m e n t u m v a l u e p , a n d h e n c e a l s o a  s p a t i o l w a u e l e n g t h i r t h / p , s o w e c a r n t h i n k
of the electron as a "wave." That,  in essence, is how quantum mechanics explains, or at  least
accommodates, the wave-particle duality of Nature.

> 5.3 The Heisenberg Uncertainty Principle
We shall conclude our sojourn into quantum statics by saying something about the celebratcd

Heisenberg Uncertainty Principle, which you have no doubt heard of" 'Ihe Heisenberg Unccrtainty
Principle is a purely mathematical  consequence of F)qs" (5-10);  howcvcr,  i ts actual dcr ivat ion would
take more time than we have available here. We shall simply content ourselves with an explanation
of what it says. [Jut before we begin, here is a suggestion: Forget anything you thinh you already
know about the [[cisenberg Uncertainty Principle - just pretend you're hearing about it for the first
time right now.

Suppose we have a particle on the r-axis in some state V1. As we have seen, the components of W1
relative to the X-eigenbasis {dr} are given by the (complex) values of the position wave function
Vy(x,t), while the components of tP1 relative to the P-eigenbasis {r1ru} are given by the (complex)
va luesof  themomcntumwavefunc t ionVp(p , t ) .  Wcharvea lsoseenth t r t the  $quaremodu l io f  those
complex funct ions have special  import  for predict ing the rcsults of posi t ion and momcntum
measurements. Specifically, as illustrated in lrig. 5-1, the area under the l!zxtr,t)12-uersus-r curve
bctween r1 and .rz is numerically equal to the probability that a position measurcment on thc particlc
in state W1 will yield er value be[ween 11 and 12; similarly,the area under thel.!p(p,tll2-versus-p curve
between p1 and p2 is numerically equal to the probability that a momentum measurement on the
part ic le in starte t [1wi l l  y ield a value between p1 and p2. Now, i t  is possible to mathematical ly clef ine
for any lVtxk,t\|2 curve a generic quantity dx that measures the "width" or "sprcard" or "fatness" of
that curve. The magnitude of 41 will therefore characterize the uncertainty we would have to
contend with in trying to predict the result of a position measurement on the particle in state W1. And
the same mathematical delinition gives for anylVp(p,t)12 curve a quantity dp that measures its width,
and hence the amount of uncertainty we would have to contend with in trying to prcdict the result of a
momentum measurement on the particle in state W;. We show in !' ig. 5-2 the particle's position
uncertuinty 4x and momentum uncertainty dp for a hypothetical state V1.

F'lG" 5-2. Sche matic plots of the square moduli of the position and momentum wave lunctions
of a patrticle in some statte V1. The Ileisenberg Uncertarinty Principle says thal the products of
thc (sui tably def ined) widths 4x and 4p can never be smal ler Lh.an h/2.

2 7

lvyG,t)lz lvprp,tl lz
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Now, since the two wave functions 9x(r,t) and V'p(p,l) are related according to F)qs. (5-10), it
should come as no surprise that the quantities dx and Ap are related to each other. In fact, if we starrt
with Eqs. (5-10) and go through a lengthy but purely mathematical argument, it is possible to provc
the following inequal ity:

Ax'Ap > hlz. ( 5 - 1 2 )

This is the [Ieisenberg Uncertainty Principle, at least as it applies to the position and momentum of a
particle. [t implies that, for ony state V1, there is a fundamental limit on the simultaneous smallness
o f t h e t w o u r i c e r t t r i n t i e s d x a n d 4 p :  F o r a g i v e n p o s i t i o n u n c e r t a i n t y d x , t h c n 4 p c a n b e n o s m a r l l e r
Lhanh/2A7a, a lower bound thart erpproaches infinity as dx--+0. Or, for a given momentum uncertainty
dp, then 4x can be no smaller than hl2Ap, a lower bound that arpproaches infinity as dp---t0.

The most difficult thing to understund about the Heisenberg Uncertainty Principle is the precise
physical meanings of the "uncertainties" 4x and dp. Perhaps the best way to clarify those rneanings
is to imagine that we have 100 idcntical electrons, all in the same state t[1. Supposc we make
identical position measurcmcnts on 50 of those clcctrons. If the square modulus of the position wavc
function corresponding to starte W1 looks anything like that shown in l' ig. 5-2, then those electrons
obviously do not have ar position value prior to the position measurement, arnd thc rcsults obtarined in
those 50 measurements wi l l  general ly al l  be di f ferent.  The quant i ty d; ch.rracter izes bhe probable
'"scatter" in those 50 measurement results - i.e., the approximate amount by which any two of those
measurement results will be found to differ from each other. Similarly, if on the other 50 electrons we
make idcntical momen &m mcelsurements, then dp will characterize the scattter in the resulting 50
momentum values" Notice that d; is not a measure of our ignorance of the "true value" of X prior to
an X-measurement; rather, it is a measure of the intrinsic uncertainty as to what X-value will be
"dcvclopcd" in an X-measurement.  The "uncertaint ics" in the Heisenberg Unccrtainty Principle
obviously have a very technical definition thert cannot be tully appreciarted outside of the logic
establishcd by Rules I through 4. That's why thc Hciscnbcrg Uncertainty Principlc, which is an
important and often useful fact of modern science, is so often misrepresentcd outside of physics.

We have alrcady secn thc implications of thc Heisenberg Uncertainty Principle in t,wo limiting
cerses: I f  W1= 6' . ,  so that the elcctron "has a posit ion r ,"  then our l )educt ion I  impl ies that 4x = 0 whi le
D c d u c t i o n 5 i m p l i e s t h a t 4 p - c . , , j u s t a s r e q u i r e d b y ( 5 - 1 2 ) .  A n d a t t h e o t h e r e x t r e m e , i f W t - Q p , s o
that the electron "has a momentum p," then our Deduct ion 2 impl ies that 4p=0 whi le Deduct ion 4
impl ies that dx -  - ,  aguin in consonance with (5-12).

But if (5-12) is true, then how is it that we can euer use classical mechi.lnics, which assumes that
dx and 4p are both .rlways zero? The trnswer is that i. is such a flantastically small nutnber from u
macroscopic point of view that dx and 4p can appear to be macroscopically zero and sdill satisfy ( 5- l2).
I t  is only on the microscale that the Heisenberg Uncertainty Principle makes i tscl f  fel t .  ' fhe

following exercise is intended to demonstrate this point.

.Exercise 5-5. Since momentum and velocity are related by p= rnu, then Ap= mAy, and (5-12) can
be written in the form

Ax.Av > h/2m.
(a) Show that a l-gram particle can have its position certarin to within l0-tt cm arnd its velocity
certain to within l0- l0 cm/sec, arnd yet st i l l  be a very long way from violat ing (5-12).

(b)Suppose an elcctron ( mass =lS-27 grams) is conf ined to an atom (diameter of l0-u cm).
What would be the minimum valuc for the veloci ty unccrtainty 4y? Would i t  bc at al l  mcarningful
to ascribc a'"velocity valuc" to an clcctron that is insidc an atom?

This concludes our discussion of r luanturn stat ics. In thc ncxt lccl ,uro wc wi l l  take a lo<lk at
quantum dynanrics.
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) 6"1 The Hamiltonian Operator and'fime-evolution
In Rules 1 and 2, we attached a time variable / to the state vector Wi but not to the general

observable operator A. The obvious implication is thab the state vector changes with time, while all
observable operators (along with their eigenbasis vectors and eigenvalues) are constant in time. In
order to answer the FPOM for any t>0, it is necessary to specify precisely how tlrl evolves with time.
This is the subject of Rule 5, and leads us into the "dynamics" part of quantum mcchanics.

Rule 5 comes in two parts.  The f i rst  part  introduces an operator cal led the "t lamil tonian
operator,"  and the second part  introduces a closely related operator cal led the "t ime-evolut ion
operator." We'll first state Rule 5 in full, and then elaborate its two parts separately.

> Rule 5:
(a) Every physical system has an observable H called the "total energy." The operator H that
represents this observable is called the system's llomiltonian operalor, and we denote its
eigenbasis by {rln} and ibs associated eigenvalue set by {En}:

Htln = E r r ln .  (n = O,  1,2,  . . . ) ( 6 -  1 )

(b) If the system is in some state Vs at time 0, then provided the system is not disturbed (such as
by being measured), its state vector at time t will be

V1 = UlVs. ( t>o) (6-2)

Here, U1, called lhe time euolution operator, is the linear operator with eigenbasis {r1,,} and
associated eigenvalue set {e - ifntli},

Uren = e- iEnt lh q, ,  = [cos(E 
" t /h \  

-  is in(E,r t lh) l \n ,  (n = 0,  1,2, . . . \ (6-3)
where {r1"} and {E,r} are as defined in part (a), and i is Planck's constant [see Eq. ( l-2)1.

Part (a) of Rule 5 sirnply asserts that every physical system has a [Iamiltonian operator H, which
is the operator that represents the system observable "total energy." But Rule 5 does not tell us how
to find that operator H. As with any observable, it 's up to the physicist to "discover" the Hamiltonian
operator H for each physical system ofinterest. In discovering H the physicist defines, either directly
or indirectly, its eigenbasis ir1,,) and eigenvalue set {8,,}; the former characterizes the generalized
vector space of the system, while the latter characterizes the allowed energy values of the system.
The task of f-rnding H is obviously non-trivial, but not so impossible as it might seem. This is because
various rules-of- thumb have been discovered over the years that give demonstrably correct
Hamiltonians for many physical systems. Those rules-of-thumb have in fact become an important
part of quantum mechanics as an "applied science"" But we're not going to discuss those rules here;
we're just going to describe what can be done once the Hamiltonian operator H is in hand.

Part (b) of Rule 5 says that once we know the system's Hamiltonian operator H, then we can
proceed to determine the time-evolution of the state vector" We do that by first delinin g a new linear
operator U1, called the time-euolutionoperator, as follows: U1 is to have the same eigenbasis {r1,,} as H,
but the eigenvalue corresponding to r1n, instead of being 8,,, is to be e-fnli, where i is Planck's
constant. That this specification procedure completely defines the operator U1 follows from our
discussion of Fig. 2-6. Notice that U1 cannot be regarded as an "observable operator," because its
eigenvalue spectrum is not pure real. Indeed, the role of U1 in our theory is quite different from the
role of H or any other observable opcralor: U; acts on thc time-0 state vcctor tlg and transforms it into
the time-fstate vector W1. Since Rule I requires the system's state vector to always be a unit vector,
then we may expect that the action of U1 on Wg will be a "pure rotation" with no "stretching;" we'll
verify shortly that that is indeed the casc.

Now we're going to use Rule 5 to derive an cxplicit formula for the time-vetrying state vector. Wc
proceed as follows:
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Wl = UrVo
= Ur  [Xn qn  (4 r , ,W6) l

= X' Ure,, (qr,,Wg)

= X' e - dnli rlu (rlu,Vo)
rl'r = Xn rlnle-tEntlh (rln,Vo)1.

tby (6-2) |

Iby expanding tl,o in the H-eigenbasisl

Is ince U1 is a l inear operator l

lby  (6 -3) l

+i
I

vector  evolves wi th l ime
Hami l tonian operator  H.

(6 -4)

Eq. (6-4) shows how, in principle, we can calculnte tP1 from a knowledge of W6, {q"} and {8,,}. Notice
that the coefficient of the vector 4u in this formula is just the product of two complex numbers, namel-v
s-"LErtlh and (qr,,V6), and hence is itself a complex number. [n fact, since (6-4) is just an expansion of
V1 in the eigenbasis {q"}, it follows that the coefficient of r1,, in that formultr is none other than the
rln-component of V6; i.e., Eq. (6-4) tells us that

(11n,Vs) - s - 'LE,rtlh (r1r,,V6). (6 -5)

So to get the r1n-component of rI1, we merely multiply the r1o-component of V9 b-v the complex numbcr
s-"LErtth. F'ig. 6-l i l lustrates this important relationship pictorially.

o E x e r c i s e 6 - 1 .  S h o w t h a t E q s . ( 6 - 4 ) a n d ( 6 - 5 ) . r r e i d e n t i t i e s f o r / = 0 .  l l l i n t :  R e c a l l ( l - 1 l u ) . 1

= UrtPo

I

r ,  l

- - ( q , , , , P g )  + l
I
t

I  e-tE,r t /h (q,r ,V6)

FIG. 6- l  "  Showing , .h"*ot i .ol ly how the state
lrom the perspective of the eigenbasis {q,,i of the

Q n

Notice that the state vector of thc system can change in two different ways: One way is the
smooth, orderly evolut ionary process described by Rule 5 that occurs when the systenr is lef t
undisturbed" The other way is the sudden, random change described by Rule 4 th.rt ()ccurs when the
system is metrsured. Much effort has gone into trying to explain the measurement change of Rule 4 in
terrns of the evolutionary change o[ Rule 5, hut with no real success. Perhaps that's not surprising in
view of the fact that the measurcment change mandated by Rule 4 is rutn-deterministic, while the
evolutionary change describcd by Rulc 5 is quite dcterministic. So we apparontly must accord R,ules 4
and 5 equal status in the theory" Thoughtful physicists stil l worry about whether these five rules are
logically consistent; however, the fact remains that these rules seem to work verv well together in the
laboratory.
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) 6.2 Conserved Quantities. Stationary States
We're now in a position to answer the FPOM for l>0. But f-rrst, let's savor the result (6-4) a bit by

drawing out some of its other interesting consequences.
If we take the square modulus of Eq. (6-5), we get

l(q",Vrlz = le-rErtth(n,,,tlro)12 = le-trntthl2l(rl",.lro)12 = l(q,r,tPs)12, (6-6)

where the two f inal  steps have invoked the ident i t ies (1-8a) and (1-1lc).  Now this result  has two
interesting impl ications.

First, since Rule 3 tells us that l(r1,r,l{r)12 is the probability that an energy measurement on the
system in the state Vl will yield the H-eigenvalue E,r, then Eq. (6-6) implies that

Prob{Meas( H) = E n at time l} is independent of t. (6 -7)

So energy measurenTent probability is always conserued in time" provided of course that the system is
not measured or otherwise disturbed. Notice that this does no, say that the value of the system's
energy is always conserved in time - indeed, such a value will not exist unless V1 happens to
coincide with one of the H-eigenbasis vectors. All that (6-7) says is that the probability for an energy
measurement to yield any particular result is conserved in time.

A second implication of (6-6) follows by summing both sides over all n:

X,, l(rl,r,trrl2 
- Enl(q,.,Vo)12 - t,

where the last equality is due to the fact that W6 is a unit vector. In other words, the fact that V6 is a
unit vector guarantees that W1= UlWg will also be a unit vector, as is required by Rule l. This
confirms our earlier conjecture that the effect of the time-evolution operator U1 on Wg is a "pure
rotation" in the generalized vector space, with no "stretching."

Another interesting consequence of Eq. (6-4) arises when the system's initial state Ws coincides
with some H-eigenvector r1;, so that the system at time 0 has energy E;. According to Eq. (6-4), the
state vector of the system at time I will then be given by

Wr = Xr, \,rle-tEntlh(qr,,r1r)1.
Since (q,r,4;) is zero for ntj and one for n-- j, then the sum here collapses, and we obtain the theorem

WO = 4.r + Vt = eJ e -tEJtJh for all t > 0. (6-8)

This theorem has two important implications: [f W0=ej, and the system remains undisturbed, then:
(a) the system will have energy Erfor aII t>0;:rnd (b) the measurement probabilitiesfor all system
observables will be conserved. We'll leave the proofs of these two facts as an exercise.

.Exercise 6-2.
(a) Prove the lirst assertion above by using theorem (6-8) to show that

Prob{Meas(H\=Eja tany t ime l )0 ,  g iven  Vs=Q;}  =  1 .

3 1

(6-9a)

IHint: Start with Rule 3.1
(b) Prove the second assertion above by using theorem (6-8) to show that, for any observable A,

Prob{Meas( A) = At at time l, given .Io = 4,} is independent of ,. (6-9b)

Itlint: Start with Rule 3, and remember that (e,cA) = c(e,g). I

The time-dependent vector 4i e-tEtun appearing on the right side of theorem (6-8) is called a
stationary state of the system. Obviously, there is one stationary state fior each eigenbasis vector of
the system's Hamiltonian operator" What we have proved here is that if the system starts out in a
stationary state, then the system will remain in that stationarry state with a constant energy value
and constant measurement probabilities for all its observables.



32 LECIUTE  6 ,  QUANTUM MECHANICS:  DYNAMICS I

)  6.3 Answer to the FPOM for Any t>0
Now let us see how quarntum mechanics proposes to answer the Fundamental  Problem of

Mechanics for any l>0" We reason as follows
- When A is measured on the system, the result must (by Rules 2 and 3) be some A-eigenvalue;
let's call the measured eigenvalue A;.
- So immediately after the A-measurement, the system will (by Rule 4) be in the state c;.
- Starting from the state W9=o, at time 0, the state vector will then evolve smoothly until
t ime l ,  when i t  wi l l  be lby (6-a) l the vector

rlr = Xu Qu[e - ,E,rtlh (r1,r,oi)|.
- Then measuring B at time I will (by Rule 3) yield any B-eigenvalue Bp with probability

l(\uV)12 = l(Fa,X,, r1,,[e-rnuh(qu,o)Dlz = lXn (Frr,\n)[e-Ertlh(r1u,o)112.

> Therefore, quantum lheory's answer to the FPOM in the general f case is:

Prob{B = B h at time l, given A = A; at time 0}
=  lXn  ( \ t r , r t )  e - iE t / th (qo ,o ; )12 .  (h=1,2 , . . . )  (6 -10)

Notiee that all we need to know to answer the FPOM for any I > 0 are:
- the eigenvalues of A, B,and H, and
- the components of the A and B eigenvectors relative to the H-eigenbasis.

Let's verify that the general result (6-10) indeed reduces to the static result (3-8) when l=0. Since
eiO - I  by ( l - l  la),  then the r ight s ide of (6-10) becomes

lEn$p,ttn) eio(r1n,o,,)12 = llu (\n,rtu\ (qu,or)1z = l(pp,o)1z,
where in the last step we have invoked the component expansion theorem (2-3). This is precisely the
result  (3-8) for the I  = 0 case.

oCxercise 6-3. In the FPOM, suppose the second-meersured observable B is the salme as the first-
measured observable A. Prove that

Prob{A=Ara t t ime l ,g ivenA=Arar t t ime0 i  =  lX , , l (q , , ,o r )12  e- |E} th lz .  (6 - t l )

Show that this probability is unity if l=0, as required by Rules 3 and 4, but need not be unity for
a n y  l ) 0 .

oExercise 6-4. Use (6-10) to show that an energy measurement at time 0 followed by an energy
measurement at any time l>0 will always give equal results, in agreement with theorem (6-9a).

Rules I through 5 form the logical foundations of the *sta,ndard" theory of quantum mechanics,
and (6-10) is the answer that those rules giue to the Fundamental Problem of Mechanics. All the rest of
quantum mechanics consists of: generalizing those five rules somewhat to accommodate more
complieated situations; finding specific operators to represent specilic system observables, especially
specific Hamiltonian operators for specific systems; and, of course, evaluating (6-10) for specific
problems.

We shall conclude this lecture by sketching a philosophically interesting shift of perspective on
quantum theory, along lines originally suggested by Richard Feynman.
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)6.4 Transition Amplitudes and Virtual Processes
It is possible to look upon our fundamental result (6-10) as giving the probability that the two

consecutive processes "f-passage" and "B-measurement" will jointly carry the system from state o, at
time zero lo state pa at time /. In this view, (6-10) gives the probability that the system will "make a
transition" from state o; to state p6 in bime l, with the tacit understanding that B is actually measured
at time l. In the spirit of this view, here is analternate wuy of arriving at the result (6-10):

) Rule A. Imagine that the or-to-pp transition occurs, in some vaguely defined way, uia the energy
eigenstates {r1n}, and assign to the particular uirtuql process lo;--+r1,r--+pp in time tl the transition
amplitude,

II ,r(a;+\n+ppin t) = UJn,rl,r) s-iE,rt/h (r1,r,or).

[The quantity on the right side is most suggestively read from right-to-left. Notice that this
transition amplitude is simply the product of three complex numbers, and hence is itself just a
complex number; indeed, it is just the summand in (6-10).1

> Rule B. Similarly, associate with the nel process {o;+Fn in time /} a transition amplitude
Il(oi+pu in /), and postulate that this net transition amplitude is equal to the sum of all the
virtual process amplitudes:

[I(or-->ppin f) = Xnfl,.{or-*r1n-+pzin t).

[This net amplitude, being a sum of complex numbers, is then itself a complex number"l

) Rule C. Finally, postulate that the probability of the net process {ot-0n in time f} is equal to the
square modulus of its amplitude:

Prob(or"+p6 in l) = III(or+pu in t)lz.
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(6 -12a)

(6-12b)

(6-l2c)

It is easy to see that if(6-12a) is substituted into (6-12b), and then that is substituted into (6-12c),
we get precisely the result (6-10). The foregoing describes what might'be called a f'virtual process"
formulation of quantum theory. It's relation to the '"conventional" formulation of quantum theory, as
embodied by Rules 1 through 5, can be briefly summarized this way: 'Ihe virtual process formulation
retains Rules 1,2 and 5(a), but replace.s Rules 3,4 and 5(b) with Rules A, B and C.

We know that,  when considering mutual ly exclusive real processes, we must sum their
probabilities toobtain the total process probability. But for the mutually exclusive uirtual processes
contemplated above, the rules are evidently different: We must sum their amplitudes, and then
obtain the total process probability ars the square modulus of that amplitude sum.

But, you might ask, how does Nature really work? Does the system go from state c; to state pp by
way of one, or all, of the states {r1n}? Or does the system's state vector smoothly rotate from state o, to
state W1 and then suddenly jump to state Bp when the B-measurement is made? [n truth, no one really
knows. Moreover, no one has been able to paint a detailed, consistent, plausible picture of either the
mysterious virtual transition process o'frln+Fh, or the equally mysterious measurement jump
process Vt-0n-

So what are we to make of this state of affairs? The answer seems to be this: AII that present day
quantum theory can do is prouide a computational algorithm - namely (6-10) - fo, quantitatiuely
answering the Fundamentql Problem of Mechanics. That algorithm has been amazingly successful in
laboratory applications, not only in describing phenomena that were already known, but also in
predicting phenomena that were subsequently discovered. Ilut no one has been able to undergird that
algorithm with a common-sense "picture of reality" analogous to the one suggested by classical
mechanics for macroscale phenomena. The suspicion among some is thurt microscopic retrlity may not
be "understundable" by minds whose criteria for understarnding have bcen conditioncd so thoroughly
by macroscale experiences. Serious contemplalion of this prospect le:rves most physicists in some
linear combination state of dismay, skepticism, awe and fascination.
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) 7.1 Recapitulation

In our last lecture we introduced l tule 5, orrr  f inal  rule of quantum mechanics. Rule 5 comes in
two parts" Part (a) asserts that every physical system has a "total energy" - an observable that we
represent in the system's generalized vector space by an operator H called the system's Hamiltonian.
We denote the eigenbasis of H by {qr} and the corresponding eigenvalue set by lE,rl

H r l n  =  E u q , , .  ( n = 1 , 2 , . . . 1 Q-r)
Rule 5 does nol tell us how to find Lhe Hamiltonian operator for any given physical system; the
"discovery" of H is up to us. In discovering H, we also discover,  ei ther direct ly or indirect ly,  i ts
eigenbasis {q,,} and eigenvalue set {f),,i. 

' lhe former effectively defines the system's generalized
vector sperce, whi le thc lat tcr determines the systcm's al lowed energy valucs. What nrakes the
[Iamiltonian opcrator more important than any other observablc operator of the systemi is the fact
that H determines the time evolution of the system's state vector. Specifically, patrt (b) of Rule 5 sarys
that, given that the system is in state V6 at time 0, then if we leave the system arlone until time I its
state vector will be

Wr = UrrUo. (r>0) ft-2)
Here, U1, called Lhe time-euolution operator, is the l inear operator with eigenbasis {r1n} and eigenvalue
set {e 

- id"elnl'

U t r l u  =  g - lE , r t t h11 , r .  ( n= I ,2 , . . . )

So specifying H determines U;, and hence the time-evolution of the system's state vector.

If in Eq. (7-2) we expand rI0 in the H-eigenbasis, and then use the fact that U1 is linear and
statisfies tlqs. (7-3), we obtarin

rV r = lJ tX,, q,, (q,,,rPg) = X, U1r1,, (qu,rl '9) = X,, e-|E tJ/h qr, (4,r,!P6),

tPr  = X, ,  \ t . [e- iP:nt lh(q, , ,Vg)1.
This is evidently an explicit formula for the time-evolving starte vector in terms of the l{amiltonian's
eigenbasis and eigenvalue set.

With the result ft-41 iL is straightforward to use ltules I through 4 to lormulate a general answer
to the Fundamental Problem of Mechanics. In the F POM, we measure some observable A at time 0,
note the result, and then let the system evolve to some time I when we measure some ohservable B. To
p r e d i c t t h e r e s u l t o f t h e B - m e a s u r e m e n t , w e r c a s o n a s f o l l o w s :  W h e n w e m e a s u r e A a t t i m e z e r o , w e
will obtain some A-eigenvalue Ay, thereby leaving the system in the corresponding A-eigenstate oy.
The state vector then evolves to time I according to F)q. (7-4) with Wo = ol. At time l, a 8-measurement
will yield any B-eigenvalue 86 with probability

P r o b { B = B k a t t i m e t , g i v e n A = A r a t t i m e  0 l  = l T h , V t t ) 1 2 ,  ( k = 1 , 2 , . . .  )  ( ? - 5 )

whereB6 is the B-eigenbasis vector corresponding to B7r. Substituting Eq. (7-4), with tl,6=o;, inlo
Eq. (7-5), we obtain thc key result of our theory:

Prob{B = B n at time t, given A = A, at time 0}

= f  Xn ( ja, \n) e- i9 ntth (r1u,or)12. (k = 1, 2,  . . .  )  (?-6)

) 7.2 (Optional) The Schriidinger Equations

ll m:ry happen that I,)q. (7-6) is computationally inconvenient. ' l 'his would be lhe carse if the
system's Hami l tonian operator  H is  speci f ied in  somc way other  than by cal l ing out  i ts  e igenbasis and
eigenvalues,  and those then turn out  to  be analyt ica l ly  so compl icated that  the r ight  s ide of  Eq.  (7-6)
becomcs diff icult to evaluate. In such casos, it is uscful to harve an altcrnate way of l inding thc timc-
varying state vcctor from the system's I Iamiltonian opcrator. ' [o that cnd, conside r Lhe time-

(7-3)

(7-41
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deriuq.tiue of the state vector tP1, which we define by the usual rule

*  =  , , -  
w ' * o ] . -  w '  

=  r i m  ( r o r - , w , , . .  +  ( - A r ) - r r p ,  ) .dt [1+o al  ar_o \  t+ Lt t  /

(The last expression shows that the quantity we are taking the limit of is simply a linear combintrtion
of two vectors in our generalized vector space.) Let's see what we get by evaluating this derivative
using the formula (7-4). We herve

dqt tldt = (d/dl) (X,, q,,[e-d,,,/n (qu,tfls)l) tby F)q. (7-a)l

= i;l:, 

"yy:;:""::;::;',lll*,, 

ll;'fi:lJ:il11" " a 'Iinearopera'[ion'
= ( l l ih)DnEr\ne-iEnt lh (r l , . , ,Wo) [s ince - i= l / i l
-  Ol ih) Xu Htln e- iEnt lh (r l , , ,Wo) tby Eq. (?- l ) l

= ( l / i i )H X,,  r1, , [e-r , , /n (q,r ,V0)l  IH is a l inear operator l
= (l/i i)Ht[r lby tiq. (I-a)l

Thus we have derived the differential equation
ihdV/d,t = HtPr. ft-7)

wh ich is tobeso lvedforV lsub jec t to the in i t ia lcond i t ion  Wr=0=W6"  Th isprescr ip t ion for f ind ing
the time-evolving state vector is of course fully equivalent to Eqs. (?-2) and (7-4).

Eq. (7-7) is called the time-dependent Schrddinge.r e.quation, and Eq. (7-l) is called the time-
independent Schrddinger equation It is important that the similarity in the names of those two
equat ions not obscure the fundamental  di f ference between their  roles: The t ime-lgdependent
Schrtidinger equation (7-1) is the eigenvalue-eigenvector equation for the total energy operator H. As
such, it defines the energy eigenbasis {q,,} and eigenvalue set iEn i in those circumstances when H has
been specified in some other way. The time-dependent Schrodinger equation ft-71, on the other hand,
is the fundamental time-cvolution equation for the system's state vector" It's purpose is to determine
tl['1 from V6 in those circumstances in which the computations required by Oq. (7-4) happen to be
inconven ien t tocar ryout .  Not ice tha t i fwedof ind t l lbyso lv ingEq. (7-7) ins teadofbyev . r lua t ing
formula (7-4), then to compute an answer to the F.POM we would want impose the initial condition
V1=s=o7 and use Eq" (7-5) instead of Eq. (?-6).

In practical applications, the Schrtidinger equations are nearly always expresscd in "component
form" relative to the eigenbasis of some convenient observable operator. To derive the A-component
form ofthe time-independent Schr6dinger equation (7-l), we first observe that

H.1,, = H E, o, (o;,nn) = X, Ho; (oy,n,,);

thus, Eq. (7-1) can be written

X, Hcrr(oy,n,r) = E,{ln.

Now taking the op-component of this equation and invoking the linearrity property, we get

X;  (c6 ,Ho; )  (o ; ,nn)  =  E , r (o1r , r1o) .  &=1,2 ,  . . . ;  n=1,2 ,  . . .  )  (? -1 ' )

This is the "A-component form" of the time-independent Schriidinger equation (7-l). In it, the set of
complex numbers {(ot,r ln) for h=1,2,. . .  }  "represents" the vector q '  relat ive to the A-eigenbasis,  and
the  se t  o f  complex  numbers  { (a ; ,Hor )  fo rT-  1 ,2 ,  . . .and  f r=  1 ,2 ,  " . . }  " represents"  the  opera tor  H
relative to the A-eigenbasis. If H is defined by specifying the set of numbers {(crp,Ho;)}, bhen we can
solve Eq. (7-1 ') for the set of numbers {(ou,nnrt and the number En- i"e., for q,, and its associated
eigenvalue. Simi lar manipulat ions appl ied lo the t ime-dependent Schrtrdinger equat ion (?-?) wi l l
show thaf its A-component form is (optional erercise!)

ih d(eh,rV )/dt  = Lt (o2,Hcrr)  (o; , tP1).  &= 1,2, . . .  ) (7  -7 ' , )

This is a set of couplcd, f irst order differcntial equations for thc A-components {(op,tPs)} of the sttrtc
vector  tP1,  and thesc cquat ions can in pr inc ip lc  bc solvcd i f  wc know the set  of  numbers { (o6,Hc;) i .
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) ?.3 The Free Particle

Perhaps the simplest of all dynamical systems is the free particle, a particle of mass rn on which no
forces act. You know the solution to this problem offered by classical mechanics: The particle moves
with constant velocity, say along the r-axis. More precisely, if the particle's initial position and
momentum are r0 arnd pg, so that its initial velocity is pgl m, then its position and momentum at any
later t ime t  wi l l  be

r(l) = ro * p11t/m, p(t) = po" (7 -B )

To see how the free particle is analyzed in quantum mechanics, we first recarll from Lecture 5 that

in quantum mechanics we represent the observables "position" and "momentum" for any particle,

free or otherwise, by two linear operators X and P, which are de{ined as follows: 'f he eigenvalue sets

of both X and P are all the real numbers, and their eigenbases {6'.} .rnd {@,r}, which satisfy

X6, .  =  - t6 ,  ( -oo( . r (o ) ,  [ 'Qp= pQp ( -n1p<*1 ,

are defincd by the prescription
(6b0p,  -  7s - I tP th .  ( - - { r ,P<- )

(7 -91

( 7 - 1 0 )

l lu t  what  about  the observable " tota l  energy"? What  shal l  we take to be the Hami l tonian operator  H

for a lree particle? You wil l recall that in clqssicel mechanics the total energy of a free particle of

momentum p is  g iven by the formula im(plm)2=p2/2m. Wel l ,  the physic is t 's  " l landbook of  Tr ied-

and-True Hami l tonian Recipes"  declares thab the [ {ami l tonian operator  for  the f ree par t ic le  is

H = ( l l2mlPz. ( 7 - l  I  )

Fair  enough,  but  what  do we mean by the "square"  of  the operator  P? We mean s implv th is :  [ f  q ,  i5

any vector, then to find the vector p2rp we first operate on g' with P to get the vector Pq;, atnd rve then

o p e r a t e o n t h a t v e c t o r w i t h P .  S o f o r t h e o p e r a t o r H i n F ) q . ( ? - l l ) , t h e v e c t o r H q r i s

H,p = 0 l2m)P2W = 1 l2m\(P(  I )qr) ) "

With th is  def in i t ion,  we see that  the f ree-par t ic le  I larn i l ton ian is  indeed a wel l -def ined operator :
fur thermore,  th is  def in i t ion impl ies the fo l lowing import i rnt  resul t :

-  For  the f ree par t ic le ,  the e igenbasis of  H is  the mornentum eigenbasis { { r r , } ,  and the

eigenvalue of  H corresponding to the e ig, -enbasis vector  rhpis  p2/2m.

The proof of this assertion goes as follows: F or any momentunt eigenbasis vector 4p we hatve

(  1 l2mlP 2Q p = (  l l2m)( I ' (  I '@p))  = (  l l2ml(P(  pQ f l l  =  (  p/2 m)(PQ i  = (  p/Zm)(  pQ ) .
Thus, for the free particle we indeed have the eigenvalue-eigenvector relation

HQp = lp2/2m)Q,r .  (  -o(p(co) (7 - l2 l

o Exerc ise 7- l  .  Of  the three f ree-par t ic le  observables "posi t ion,"  "momentum" and "energy,"

which pairs are compatible and which are incompatible?

Since for the free particle the vector rfp is an eigenbasis vector of H with eigenvttlue p2l2m, then it

fo l lows f rom Eq.  (6-8)  that

WO --  
Qp + rV t  = Qps- i tp l l2nt t t lh ,  ( r>0) ( 7 - 1 3 )

the latter being a "stationary state" of the system. Therefore, if the free particlc is in state 4p at time
0, then at any later t ime l)0 an energy rneasuremenbon the part ic le would yield the certain value
p2l2m, and a momentum measurement would yield the ccrtain value p; however,  a posit ion
measurement would yield any real number with equal prohability.

a Exercise 7-2. Prove the three assertions in the last sentence by applying Rule 3 to the state
vector t l ,1 in (7-13).

So we see that if we initially measure the momentum of a free parrticle, then the purticle's momcntum
value and energy value will be sharply lixed thereafter; however, the particle cannot lhereafter be
said to have a position value.
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To calculate W; for initial states W9 other than one of the vectors {rhol, *" must resort to formula
(7-4). Making the arppropri:rte substitutions there, namely

4,r+ Qp, En-+ P212*, E,r t  I  dP,
we see that the general formula for the time-varying state vector of the free particle is

*, = 
i 

" 
_r o*-'u'"'"'n {q r,v, ;rdp.

Since we'll be especially interested in position measurements at time l, let's take the d'.-component of
this vector equation. We get

/  f -  2 . , ^ ,
(dx , r r r r )  =  (d , ,  

I  _ . r  r tu - ip ' t l znh  
rdu , rpn) ld r )

| '  . 2 . ^
= 

J _- 
(6 

, ,Q u) 
e-tp 

t tzntn (Q 
o,V ]dn .

Using Eq. (7-10),  and recal l ing that (6r,W, is just the posit ion warve funct ion Vy(x,t) ,  this is

v *(x,t\ = , 
I:_"-;x/h "-ipztr2"'h 

{.q 
r,v o) dp .

(7-r4)

( 7 - 1 5  )

ft-r7)

This X-basis version of Eq. (7-14) is useful for predicting the results of position measurements on the
free particle because, as you will recall from Lecture 5 lsee F)q. (5-8a)1, lVxk1)l2rJx gives the
probability that a position measurement at time I will give a result between r and r * dr.

Let's evaluate Eq. (7-15) for the particular initial state tlto=6'n, which corresponds,to the free.
part ic le having posit ion value a at t ime 0. Eq. (7-15) says that

tPo=6n + Vy(x,t)  = G(x,t ,m,a),  (Z-16)

where for reasons that will become clear shortly we have introduced the [unction

Surpris ingly,  we can evaluate G(x,t ,m,a) up to an unimportant mult ip l icat ive constant without
actually performing any integration! [Iere's how: Remembering that

(Qp,6) = (6n,rf p)* - 7e+iapli,
and also that eiu giu:si(a*u),  we get from Oq. f t -17\,

G(x,t,m,a) = , 
I :-"-rrpth "-rftr2"'h 

{o 0,6 o) dp .

G(x,t,m,a\ = ,r l-  u*o {-f  #^ . YIo,

,  I  im(x-a)2
=  r  e x P l  

% t
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Changing the integration variable from p to

/  t  , ' ' ' /  m ( x - a l t  /  t  \ r / 2
u = \ z ^ h /  l o *  ,  ) '  

d z = ( r ^ t ) d P '
th is becomes

"  I i m k - a ) '
G(x,t ,m,a) -  r"  cxp

|  zh t
|  2 m h  \ t "  f  

-  
- i u 2

\ ,  ) l _ - " ' * c t u '

The n-integral here is evidently just some complex constant; thus we conclude that

G(x,t ,m,a) = "(7)to"*o [ '#1, ( 7 - 1 8 )

wherc c is a complcx constant whosc precise value will not concern us here.

If we now substitute the result (7-18) into (7-16), and then take the square modulus, we conclude:
. Io=6n + lrVxk,t)|z = lslz(a/[). (7 -19)

o Exercise 7-J. Show in detail how Eq" (7-19) follows lrom Eqs. (7-16) and (7-18).

The fact that the right side of Eq. (7-19) is independent of both r and o is the key result here. It means
that if the free particle has the precise position o at time 0, then a position measurement at any
{initely later time will yield any x-value with equal probability. So a free particle, if localized to one
point, will immediately and completely "de-localize" itselfl

tlolding this surprising and peculiar result in abeyance for the moment, let's now consider what
would happen if the intial state were Wo=6t*d-,r. That initial state corresponds to a situation in
which a time-zero measurement of position would produce, with equal probability, either x,=q, or
x= -q. Subst i tut ing this ini t ia l  state into Eq" (7-15) gives

'lt 
,(x,t) = , 

I u-ixdh 
"-ioz""'h 

(o 
odo+d-n) dr

= G(x,t ,m,al  + G(x,t ,m,-a),

where we first expanded the component in the usual way and then invoked our definition (7- l7) of G.
Taking the square modulus of this function gives, using the identity (l-8b),

lrZs4k,t1l2 = | G(x,t,m,a) * G(x,t,m, - d l2
= lG(x,t ,m,a\12 + lcE,t ,m,-dlz * 2ReiG(r, f  ,m,a) G*(x,t ,m,-a)1.

Substituting our result (7-18) for G into this expression and simplifying algebraically, we conclude:.

Wo=6o+d_a + lVxk,t) |z 
-- lc l2(mt$ 2[ l  + cos(2max/ht) | . (7-20)

aErercise 7-4.
(a) Show in detail how Eq. (7-20) follows from the preccding equation and Eq. (7-18). [Hint:
Besides the identities developed at the end of Lecture t, you'll need to recarll the trigonometric

.  ident i ty for cos(u- u)" I
(b) Show that the r-distance between an adjacent maximum and minimum of the function in
Eq. (7-20) is

A(l) = rthtl2ma ( 7 - 2 1 )

I"ig. 7- l shows plots of lhe free-particle position probability density function ltlxk,nlz for the tw<r
in i t i . r l  s ta tes  tPg=4 and tPg=6n*d-n ,  as  g iven in  Eqs .  (? -19)  and (7 -20) .  These quanturn
predictions for the free particle are quite bizurre compared to the classical prediction (?-8). l]ut we
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lVyk,t)12, in units of lc ' lz1*1s'1.
l l t o = 6 o + d - n

i-i
i A $  |  "

F IG.7-1 .  P lo to f  l ! vx ( r , r ) l2 fo r the f reepar t i c le ,g iven the two in i t ia l  s ta tes  t l to=6t  and
Wo=6L * 6 -o. The distance d(t) is as given in Eq. (7-2r).

are now going to show that these seemingly absurd quantum predictions successfully explain the
results of the double-slit experiment that we described back in Lecture 1

) 7.4 Explanation of the Double-Slit Experiment
'fhe set-up of the double-slit experiment is sketched in Fig. 7-2. An electron of mass m and,

horizontal momentum p6 is incident on a vertical scrcen 51, which is opaque exccpt for two narrow
sl i ts .  We measure ver t ica l  d is tance on screen S1 by the var iabley,  and we' l l  take s l i t  I  to  be dty=q
and s l i t  2  to be aLy= -o-  A d is tance L beyond scrcen 51 is . r  second ver t ica l  screen 52,  th is  one coated
with a phosphor that enables us to record the point of impact of any electron. We'l l mcasure vertical
distancc on screen 52 by thc variablc z, with z = 0 on lhe samc lcvel as y = 0.

electron's impact
incident
electron

+
(mass rn,
momentum p9)

y=a (s l i t  l )

screen S1

I" lG.7-2.  Geometry of  the double-s l i t  exper iment .  (See l , ' ig .  l -2 . )

' I he  kcy  t o  unde rs tand ing  the  doub le -s l i t  expe r imen t  i n  t c rms  o f  t hc  dynamics  o [  a  onc -
d inrensionar l  f ree par t ic le  is  th is :  In  quantum mechanics,  just  as in  c lass ical  rnechanics,  the hor izontu l

39
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and uertical components of the motion of a free particle are independent of eqch other. Thus, any
electron that makes it through scrcen S1 retains its horizontatl momentum component p0 until it
strikes screen 52. But the vertical momentum component is drastically effected by screen 51; in fact,
any electron passing through screen 51 with only slit I open is forced into the vertical position startc
do, while any electron passing through screen S1 with both slits open is forced into the vertical
posit ion state 6"*d-o. Since the horizontal  veloci ty in ei ther case is pslm,then the electron rvi l l  in
either case reach screen Sr at a time

t = L l ( p o l m ) = m L l p o (7-22)

after it leaves screen 51. Therefore, screen 52 is essentially measuring, at time t= mLlpg, the vertical
position of an electron that was prepared at time I = 0 in the vertical position state 6o if only slit I was
open, or in the vertical position state 6o*d-., if both slits were open. So in terms of our querntum
model of a free particle confined to the r-axis, the y-axis on screen 51 in F'ig. ?-2 corresponds to the .t-
axis at time J=0, while the z-axis on screen 52 corresponds to the r-axis nt time t= mLlpo.

r = A *

FIG. 7-3. Quantum free-part ic le predict ions for the double-sl i t  experiment,  assuming the sl i t
openings are infinitesimally narrow. Curve D1 is for only slit 1 open, and curve D12 is for both slits
open, both as deduced from Fig. 7-1.

In Fig. 7-3 we show the consequent quantum predictions of Fig. 7-1, as given by lVya{r,t= mLlpsll2,
for the electron hit probability patterns on screen 52, curve D1 is the predicted pattern when only slit
1 is open, and curve D12 is the predicted pattern when both slits are open. Notice from Flqs" (?-21) and
(7-22) that the distance 4* between an adjacent maximum and minimum of curve D12 is predicted by
quantum mechanics to be

r-axis at I
t ime /=  0  I

n h  / m L t  n h L
A * = A ( t = m L l p o )  t - l = - .

2 m a \  p ,  /  2 o p '
(7 -23)

Now let's compare these quantum predictions with the experimental results sketched in Fig. l-2.
We immedialely notice an apparent discrepancy: Whereas the experimental curves C1 and C12 dic olf
in amplitude with increasing distance from the center line, our theoretical curves D1 and D12 have
constant amplitudes" But if we were to repeat our experiment with smqller slit opening.s, we would
actual ly f ind that the curves C1 and C12 would then die off  more slowly. And we would infer that in
thc ideal ized l imitof  zero-width sl i ts,  which we assumed for the sake of mathematical  s inrpl ic i ty in
our quantum calculat ions, curves C1 and C12 would not die off  at  al l .  So, for comparison purposes, we
may ignore the amplitude tail-offs in curves C1 and C12. When we do [hat, the two sets of curves seenr

lVtyk,ml,/ps)lz

( re lat ive uni ts)
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to match rather well. In each case, the two-slit curve oscillates smoothly between about 0 and 4, on a
scale where I is the constant amplitude of the one-slit curve.

A cruciarl test is provided by comparing the wavelengths of the oscillations of the two-slit curves.
Remember in our first lecture, we said that the experimental curve looked like the two-slit intensity
interferencepattern of awq,ue withwavelength . \ -Znhlpg. InFig. T-4we showthecondit iondef ining

Centra l  maximum

First  min imum

screen

FIG" 74. Two-slit diffraction of an ordinary wave, showing the condition for
the location of the hrst minimum in the intensity interference pattern.

the location of the l-rrst minimum in such an interference pattern: d is such that the difference in the
distances to the two sl i ts is ) t /2,  result ing in destruct ive interference at that point.  For the
experimental condition tr ( c, we have by similar triangles that

(L/2)l(2a) = dlL.

Solving for d, and then invoking the aforementioned result \=2nh/po, we get

a = 4 = + ( r ! . \
Lq no r po /  2apo

This agrees exactly with our quantum prediction for d* in Eq. (7-23\t

Our conclusion: Quantum mechanics prouides an accurate descr ipt ion of the double-sl i t
erperiment - an erperiment that defies a plausible description in terms of classical mechq,nics. On
that optimistic note, which is echoed again and again for the other systems on Nature's amazing
microscale, we shall conclude our brief look at the theory of quantum mechanics.

.Exercise 7-5-
(a) Suppose the electron in the double-slit experiment acquires its horizontal momentum po by
being accelerated through a potential difference V, thus acquiring a kinetic energy eV, where e is
the electron's charge" Write the formula for the distance A* in F ig. 7-3 in terms of m, e and V.
(b )  I f  7=10 vo l ts  and L=10 mcters ,  whar t  shou ld  a  bc  in  o rdcr  to  makc  d*= l  m i l l imc tc r?
lAnswer: About 100 angstroms, which is why this experiment is so hard to do. I
(c) With the values of V, L and o as in (b), suppose the electron were a "macroscopic" particle, say
of mass l0-5 grams. Calculale d* lor that case. Would the osci l lat ions in the two-sl i t  curve [e
detectable in this macroscopic case?

4 1

]1
l t

I

screenSr

( i f  t r<o)

* * *


