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Suppose you measure the position of a quantum particle, and then you measure
its momentum, and then you measure its position again. Chances are that your
second position measurement will be quite different from your first, because the
intervening momentum measurement put the particle into a momentum eigenstate,
spread out widely in space, effectively erasing all memory of the outcome of your
first position measurement. We therefore say that position and momentum are
incompatible observables.

Similarly, in the ABC Laboratory simulation you can easily check that if you
measure A, then measure B, and then measure A again, there’s a good chance that
the second A measurement will give a result that’s different from the first. Thus, A
and B are also incompatible observables.

An example of compatible observables would be momentum and kinetic energy:
measuring one of these quantities will have no effect on subsequent measurements of
the other. In general, two observables are compatible if you can measure one, then
measure the other, then measure the first again, and be guaranteed of getting the
same result in the final measurement that you got in the first one. We’ll later see
that the magnitude of a particle’s angular momentum is compatible with any one
component of its angular momentum, and that both of these are compatible with
energy whenever a particle is subject to a spherically symmetric potential energy
function.

Mathematically, there are two ways to characterize whether observables are
compatible (or incompatible). First, we can ask whether the operators for the two
observables possess a common eigenbasis (that is, a common set of eigenvectors
that form a complete basis). Second, we can ask whether the operators themselves
commute with each other. In summary, the following three statements are all equiv-
alent:

1. A and B are compatible observables.

2. The A and B operators possess a common eigenbasis.

3. The A and B operators commute.

I won’t try to write out a mathematician’s proof of these equivalencies, but it’s not
hard to understand the basic ideas. I’ll first explain why (1) and (2) are equivalent,
then why (2) and (3) are equivalent.

Suppose, first, that A and B are compatible observables, and imagine measuring
A first, then B, and then A again. The first measurement puts the system into one
of the A eigenstates, and the second measurement (of B) must leave the system
in an A eigenstate with the same eigenvalue, so that the final measurement is sure
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to yield the same outcome as the first. But this means that this A eigenstate is
also a B eigenstate. In the simplest cases this final eigenstate will be the same
one that the initial measurement of A put the system into. There’s a complication,
though, if the value of A obtained is degenerate, so that more than one linearly
independent eigenvector of A has this eigenvalue. Then if B lacks this degeneracy,
the B measurement will usually change the state to a different vector in the subspace
of A-degenerate eigenstates. In any case, however, we can find some set of basis
vectors that are eigenvectors of both A and B.

Conversely, if A and B have the same eigenvectors then measuring A puts the
system into an eigenstate of both, so a subsequent measurement of B doesn’t change
this state and therefore doesn’t affect a subsequent measurement of A. Degeneracy
again complicates this picture somewhat, but doesn’t alter the conclusion that the
two observables must be compatible.

Once we know that A and B have a common eigenbasis, we can see that they
must commute by applying them in succession to an arbitrary vector ψ that is
expanded in terms of this common eigenbasis. If the basis vectors are {αn} and the
expansion coefficients are {cn}, then

ABψ = AB
∑
n

cnαn =
∑
n

cnABαn =
∑
n

cnanbnαn, (1)

where an and bn are the associated eigenvalues of A and B, respectively. But
applying A and B to ψ in the other order (that is, BAψ) would give exactly the
same expression, and therefore A and B commute.

Conversely, if we assume that A and B commute, then we can prove that if α
is an eigenvector of A with eigenvalue a, then Bα is also an eigenvector of A with
the same eigenvalue:

A(Bα) = B(Aα) = B(aα) = a(Bα). (2)

If the eigenvalue a is nondegenerate, then this means that Bα must be proportional
to α itself, so α is also an eigenvector of B. In the degenerate case the vector Bα
could lie along some different direction in the subspace of degenerate eigenvectors
of A, but there must always be a set of basis vectors in this subspace that are also
eigenvectors of B.1

The uncertainty principle

When two observables are incompatible, we might still wonder how much a measure-
ment of one of them interferes with measuring the other. After all, in the classical
limit there is no such thing as incompatibility: measurements don’t affect the state
of the system at all.

1For a proof of this statement, see F. Mandl, Quantum Mechanics (Wiley, Chichester, 1992),
Section 3.1.
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To quantify the degree of incompatibility, however, it’s useful to rephrase the
question. Instead of considering a succession of measurements (A then B then A
again), let’s ask whether we can find at least some states for which A and B are
both approximately well defined. More precisely, imagine preparing a large number
of identical systems in the same state, then measuring A for half of these systems
and B for the other half. Each set of measurements will have some average value,
〈A〉 or 〈B〉, and will also have some amount of spread about the average, which we
can characterize by the standard deviation, σA or σB. We say that a quantity is
approximately well defined if its standard deviation is small.

In general, there is no limit on how small we can make σA or σB: either could
be zero, if the state in question is an eigenstate of that observable. And if A and
B are compatible, then we can find simultaneous eigenstates for which both σA and
σB are zero. But when A and B are incompatible, there is generally a limit on how
small we can simultaneously make σA and σB. Specifically, one can prove that the
product σAσB must obey the inequality

σAσB ≥
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣ . (3)

This is the most general version of the famous uncertainty principle. It says that
there is no state for which the product of standard deviations is larger than the
right-hand side. Notice that the right-hand-side involves the average value of the
commutator of the operators A and B; for compatible observables, of course, this
commutator would be zero so there would be no constraint on σAσB.

The proof of the generalized uncertainty principle is rather technical, so I’ll
simply refer you to Griffiths (Section 3.5).

For the special case of position and momentum (in one dimension), the commu-
tator is simply ih̄ so the generalized uncertainty principle reduces to

σxσp ≥
h̄

2
. (4)

This is the original uncertainty principle that we all know and love. For macroscopic
objects, of course, the value of h̄ is so small that the uncertainty principle puts
no practical constraint on precision with which position and momentum can be
simultaneously well defined.
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