
Physics 2710 (Schroeder) Name
fall 2012

Problem Set 5
(due Wednesday, October 10, 5:00 p.m.)

1. A definite-momentum wavefunction can be expressed by the formula  (x) = A(cos kx+ i sin kx), where
A and k are constants.

(a) How is the constant k related to the particle’s momentum px? (Justify your answer.)

(b) Show that, if a particle has such a wavefunction, you are equally likely to find it at any position x.

(c) Explain why the constant A must be infinitesimal, if this formula is to be valid for all x.

(d) Show that this wavefunction satisfies the di↵erential equation �ih̄(d /dx) = px .

2. (Gillespie, Exercise 7.) The complex function eikx (k real) is defined by eikx ⌘ cos kx + i sin kx. Prove
from this definition that eikx has the following properties:

(a) (eikx)⇤ = e�ikx (b) eik1x · eik2x = ei(k1+k2)x (c) |eikx|2 = 1 (d)
d

dx
eikx = ikeikx

3. You can visualize a complex number by plotting it as a point in a plane, with the real part along the
horizontal axis and the imaginary part along the vertical axis. On a single sheet of graph paper, plot
and label each of the following complex numbers:

(a) 3 (b) 3i (c) 3 + 3i (d) �1.5 + i (e) ei✓, for ✓ = 0, ⇡/4, ⇡/2, ⇡, and 3⇡/2

(f) 2ei✓, for each of the ✓ values in part (e)

4. The formula for a “properly constructed” wavepacket is

 (x) = Aeik0xe�ax2
,

where A, a, and k0 are constants.

(a) Compute and sketch | (x)|2 for this wavefunction.

(b) Show that the constant A must equal (2a/⇡)1/4. (Hint: The probability of finding the particle
somewhere between x = �1 and x =1 must equal 1. Use Mathematica to do the integral, or look it
up in a table, but show exactly how you did it either way.)

(c) The standard deviation �x can be computed as
p

x2 � x2, where the over-bar indicates an
average. The average value of x is just the sum of all values of x, weighted by their probabilities:

x =
Z 1

�1
x | (x)|2 dx,

and similarly for x2. Use these formulas to show that for this wavepacket, �x = 1/(2
p

a).

(d) The Fourier transform of a function  (x) is defined as

e (k) =
1p
2⇡

Z 1

�1
e�ikx  (x) dx.

For extra credit, carry out this integral to show that e (k) = (A/
p

2a) exp[�(k�k0)2/4a] for our properly
constructed wavepacket. Sketch e (k) in any case.

(e) The function e (k) plays the same role for measurements of k that  (x) plays for measurements
of x. That is, the square modulus of this function, integrated over any range of k values, equals the
probability of finding k within that range (if you were to measure k). What is the most likely k value?



(f) Using formulas analogous to those in part (c), show that, for this wavefunction, �k =
p

a. (Hint:
The standard deviation does not depend on k0, so you can simplify the calculation by setting k0 = 0
from the start.)

(g) Compute �px for this wavefunction, and check whether the uncertainty principle is satisfied.

5. Sketch a wavefunction for which the product (�x)(�px) is much greater than h̄/2. Explain how you
would estimate �x and �px for your wavefunction.

6. Make a rough estimate of the minimum energy of a proton confined inside a box of width 10�15 m (the
size of an atomic nucleus).

7. For ultrarelativistic particles such as photons or high-energy electrons, the relation between energy and
momentum is not E = p2/2m but rather E = pc. (This formula is valid for massless particles, and also
for massive particles with E � mc2.)

(a) Find a formula for the allowed energies of an ultrarelativistic particle confined to a one-dimensional
box of length L.

(b) Estimate the minimum energy of an electron confined in a box of width 10�15 m. It was once
thought that atomic nuclei might contain electrons; explain why this would be unlikely.

(c) A nucleon (proton or neutron) can be thought of as a bound state of three quarks that are
approximately massless, held together by a very strong force that confines them inside a box of width
10�15 m. Estimate the minimum energy of three such particles (assuming all three to be in the ground
state), and divide by c2 to obtain an estimate of the nucleon mass.

8. A quantum-mechanical particle in a one-dimensional box is in the n = 2 definite-energy state. As
discussed in class (and in your textbook), this means that its wavefunction oscillates in time according
to the “wiggle factor” e�i!t, where ! = E2/h̄.

(a) Sketch the real and imaginary parts of this wavefunction for the following values of t: 0, ⇡/4!,
⇡/2!, ⇡/!, 3⇡/2!, 2⇡/!.

(b) Show that the probability distribution, | |2, is independent of time, and sketch this function.

9. Not all wavefunctions are definite-energy wavefunctions! However, all wavefunctions can be expressed
as linear superpositions of definite-energy wavefunctions. As a simple example, a particle in a rigid box
could be in the following superposition of the n = 1 and n = 2 definite-energy wavefunctions:

 (x) =
1p
2
⇥
 1(x) +  2(x)

⇤
,

where  1 and  2 are the usual (normalized) definite-energy wavefunctions.

(a) Show that this wavefunction is properly normalized. (Hint: Definite-energy wavefunctions with
distinct energy values are always “orthogonal,” so the cross-terms integrate to zero.)

(b) Sketch this wavefunction.

(c) Sketch the square modulus of this wavefunction.

(d) If a particle has this wavefunction at time zero, we can find its wavefunction at later times by
slipping the appropriate “wiggle factors” into each term:

 (x, t) =
1p
2
⇥
 1(x)e�i!1t +  2(x)e�i!2t

⇤
,

where !n = En/h̄ as usual. Compute the square modulus of this function, and express it in a way that
doesn’t involve i (since it must, after all, be a real-valued function). You should find that the time
dependence does not cancel out: a factor of cos[(!2�!1)t] remains. Sketch (or use a computer to plot)
the function | (x, t)|2 for a few di↵erent times, to show its behavior.


