The Time-Dependent Schrodinger Equation
Physics 3300, Weber State University, Spring Semester, 2012

In this project you will create a simulation to predict the time evolution of a
quantum particle in one dimension. You will do this by directly solving the time-
dependent Schrodinger equation (TDSE). This partial differential equation plays
the same role in quantum mechanics that Newton’s second law plays in classical
mechanics: Given the initial state of the system, you can solve this differential
equation to predict the state at any future time.

Quantum Mechanics

The state of a quantum particle in one dimension is described by its wavefunction,
(z,t). In general, this function is complex, with “real” and “imaginary” parts
(neither of which is any more real or imaginary than the other):

W(x,t) =Ygz, t) +ivr(x,t). (1)
Basically, you can just think of ¢ as a two-component object. The symbol i gives
us a way to keep the two components distinct, and the algebraic rule 2 = —1 lets

us hide some subtle mathematical operations in common-looking notation.

To interpret the wavefunction, we say that the probability of finding the particle
at position z (if, hypothetically, you were to measure its position) is proportional
to the square modulus of the wavefunction:

Probability density = [¢(z,t)|* = % + 2. (2)

Notice that this is the same formula we would use to compute the square magnitude
of a vector in two dimensions.
Given any initial wavefunction ¥ (x,0), we can find the wavefunction at later

times by solving the TDSE:

Loy h? 0?

ih 5 = Hy = [5 52 + V(x)] . (3)
Here H is the Hamiltonian operator or total-energy operator. For a nonrelativistic
particle in one dimension, this operator is given by the expression in brackets, where
the first term gives the kinetic energy (related to the curvature of the wavefunction)
and V' (z) is the potential energy associated with whatever forces are acting on the
particle. Again, this equation plays the same role in quantum mechanics that New-
ton’s second law plays in classical mechanics, governing the change in the system’s
state over time.

Despite its fundamental role in quantum mechanics, the TDSE doesn’t get much
attention in introductory quantum mechanics courses. Instead it gets overshadowed
by the time-independent Schrodinger equation (TISE), whose solutions give the al-
lowed energy levels of a system and the corresponding definite-energy wavefunctions.
In principle, once you know these solutions, you can use them to go back and solve
the TDSE if necessary. But in some situations, it’s actually easier to solve the TDSE
directly. That’s what you'll do in this project.

Discretizing the TDSE

To solve the TDSE on a computer, you’ll need to treat both space and time as
discrete, rather than continuous. The derivatives of ¢ can then be expressed in
terms of the values at neighboring space/time locations. For example,

o Yt +dt) — Yzt —di)

ot 2dt (4)

You can similarly work out 9?1 /02 as in the previous project, expressing it in terms
of Y(x,t), ¥(x + dz,t), and Y (x — dz,t). The TDSE, therefore, allows you to solve
for ¢(z,t + dt) (the future wavefunction here) in terms of the present wavefunction
here and one step to either side, and the past wavefunction here. You can visualize
it all by plotting space horizontally and time vertically:

t+dt QO O O O O O Future
t O O O (O Present
Time t—dt QO O O O O O Past

z—dr <« r+dx

Position ——»

Now that you have the general idea, get a clean sheet of paper and use the discretized
TDSE to work out the explicit formula for ¢)(x, ¢+ dt). Then write each 1 in terms
of its real and imaginary parts, and group the real and imaginary terms to obtain
separate formulas for Yg(z,t + dt) and ¥ (t + dt). To keep the formulas reasonably
simple (here and in your code), use units in which &, m, and dz are all equal to 1.

You code, then, will need to use siz arrays (each with index z) to store the real
and imaginary parts of ¢ at the past, present, and future times. Each step of the
simulation will use your formulas to calculate the “future” vz and 1; from the past
and present ones, then get ready for the next step by copying present to past and
future to present.

Program Design and Testing

Call your program TDSE. java. Extend the Canvas class to plot the wavefunction
with x along the horizontal axis, using a scale of one pixel for each x value. Your
total array size (and Canvas width) should be 800 or more. Make your wavefunction
arrays one element larger than the number of pixels, with the first and last array
elements always held at zero; this is equivalent to putting an infinite potential energy
barrier at each edge of the space.

A good choice for the initial wavefunction is a Gaussian wavepacket,

w(a’;’ O) e 6_((x_x0)/a)2 . eipx7 (5)

where the first factor (called the envelope) localizes the wavefunction within a limited
region (centered on g with a half-width of approximately a), while the second factor
gives it an average momemtum of p (in units where A = 1). Make the width large
enough to enclose several oscillations of the wavefunction, but keep the momentum
small enough so the wavelength of the oscillations is at least several units (pixels).
There’s no need to “normalize” the wavefunction.

Your paint method should plot the real and imaginary parts of the (present)
wavefunction, using different colors, each as a series of connected line segments.
Multiply the wavefunction by an arbitrary scale factor so it looks good when plot-
ted. Once you've written code to do all these things, test it to be sure that both
your initialization code and your paint method are working correctly. Then add
an option to plot the probability density instead of (or in addition to) the real
and imaginary parts of ¥. You may also want to try coloring the area under the
probability density graph using hues that correspond to the phase angle of ¥ in the
complex plane.

You're now ready to write the simulation code that will move the wavefunction
forward in time. Set up a separate thread to handle these calculations, and be
careful typing in the formulas that you wrote out earlier. Create an array to hold
the potential energy values, but keep them all set to zero for now. Use a time step of
0.25 in natural units. To get the simulation started, you’ll also need to initialize the
past wavefunction. You can do this with a nearly identical version of the discretized
TDSE, but with equation (4) replaced by the less accurate first-order approximation

5¢ ~ ?P(iﬁat) B w(%t B dt)
at dt ' (6)

Once you have everything working, you should find that the wavepacket moves to the
right (for positive p), spreads out, and bounces off the edges of the space, producing
intricate interference patterns. Describe some of the details of this behavior in your
lab report.

Before adding potential energy to the system, you should do some tests for
accuracy and stability. Check that the center of the wavepacket really moves at the
expected speed, for two or more different values of the momentum. Add a numerical
readout for the total area under the probability density graph, and check that this
quantity (which represents the total probability of finding the particle somewhere)
is unchanged over time. Finally, experiment with larger time steps and note when
the simulation is stable and unstable.

Barrier Scattering

At this point you could set up any potential energy function you like, and use your
simulation to predict the corresponding wavefunction evolution. Feel free to invent
your own experiments! In addition to any other scenarios, though, you should
explore the scattering of a wavepacket from a barrier, as follows.

Set the potential energy to zero everywhere except inside a narrow region near
the middle of your space, where the potential energy should have some nonzero
constant value. If this value is positive, this region is a “barrier”; if the value is
negative, it’s a “well”. Be sure that your initial wavepacket is entirely to the left of
the barrier (or well). The idea is to aim the wavepacket at the barrier (or well), let
it interact once, and measure the fractions that are reflected and transmitted.

You'll want to create GUI controls that let you adjust the width and “height” of
the barrier, as well as the wavefunction momentum (or kinetic energy, which is p*/2).
Also have the program add up the total area under the probability density graph on
each side of the barrier, and use these to calculate and display the fraction on either
side. A good experimental procedure is to hold the wavefunction energy and barrier
height fixed, then measure the transmitted percentage as a function of barrier width.
Take plenty of data and plot it in a spreadsheet. Try this for several values of the
wavepacket and barrier energies. Note that in classical mechanics, a particle would
always penetrate a barrier whose energy is less than the particle’s, while it would
never penetrate a barrier whose energy is greater. These two cases are qualitatively
different in quantum mechanics as well, but only in extreme circumstances will you
find that the transmission probability is 100% or 0%. Be sure to spend plenty of time
looking for patterns in your data. Feel free to consult a quantum mechanics textbook
if you wish, but remember that your wavepacket’s energy is somewhat fuzzy (due to
the uncertainty principle), unlike the plane-wave states usually treated in textbooks.
Make sure your lab report documents the patterns you've discovered. Do your best
to explain the physical reason for these patterns.

In summary, you should turn in a working TDSE simulation with GUI controls
and data readouts for doing barrier scattering experiments. Your lab report should
document the formulas that the simulation uses, the challenges that you encoun-

tered while writing your code, the results of your diagnostic tests and your barrier
scattering experiments, and anything else you tried along the way.

