Diffusion-Limited Aggregation
Physics 3300, Weber State University, Spring Semester, 2012

In this project you will again use Monte Carlo methods to study a physical
system. The system is extremely simple and you don’t need to know any physics at
all to understand it.

Imagine that a large number of small solid particles are suspended in a fluid,
moving around randomly due to thermal motions (“Brownian motion”). In the
center of the region is a cluster of these particles, all stuck together. Whenever a
new particle touches the cluster, it sticks to it. After the cluster has grown to a
fairly large size, what will be its shape?

Your task is to create a computer simulation to answer this question.

The Algorithm

While you could allow the particles to move around continuously, it’s much simpler
(and pretty accurate for our purposes) to restrict the particles to sites on a square
lattice. Also, for simplicity, please take the space to have only two dimensions
rather than three. Then the basic data structure for this simulation can be a two-
dimensional array of boolean variables: true for each occupied site and false for
each unoccupied site.

An algorithm to carry out the simulation then proceeds as follows. Start with a
single “seed” particle that’s fixed in the middle of the lattice, and let other particles
wander toward it one at a time, forming a single cluster that grows outward from
the seed. Keep track of the maximum “radius” of the cluster (that is, the maximum
distance of any of its particles from the initial seed). Start each new wandering
particle at a random point along a circle that lies just outside this radius. Move the
wandering particle in a two-dimensional random walk, with equal probabilities of
moving up, down, left, or right during each time step. After each move, test whether
the wandering particle’s location is adjacent to an already-occupied site and if it is,
leave the particle there (by setting the lattice value to true at its current location).

Program Design

Call your program DLA.java. It should extend the Canvas class to display the
current state of the lattice, using the background color for unoccupied sites and a
contrasting color for permanently occupied sites. Your paint method will need to
loop through all the lattice sites, drawing only those that are occupied. It should
then use a different color to draw the currently wandering particle (whose coordi-
nates are presumably stored in a couple of integer variables).



Write your paint method first, and test it using temporary “dummy” values for
the boolean lattice variables and the current coordinates of the wandering particle.
For now, draw each lattice site as a square that’s at least a few pixels across, so
you can easily see each square. Plan to reduce the square size (and correspondingly,
increase the size of the simulated space) later.

Once your paint method is tested and working, write a method (call it
addParticle) to add a single wandering particle to the cluster. This method should
implement the algorithm described above, initializing the particle’s location and
then moving it randomly until it finds a permanent home adjacent to an already-
occupied site. To make the simulation run faster, you can test whether the particle
has wandered outside the initial circle and if so, move it back in to the circle (with-
out changing its angle relative to the center). To calculate the angle unambiguously
you'll need the Math.atan?2 function (look it up in the Java API reference, and make
a note in your lab report describing how it works).

Create a separate thread to call the addParticle method repeatedly (until the
cluster grows too large), and use the Thread.sleep method to slow down the sim-
ulation so you can see each move during the particle’s random walk. Implementing
the logic of the algorithm will require some thought and care, and probably some
debugging. Take your time, and keep a record of your successes and failures in your
lab report.

Once the algorithm seems to be working (or perhaps before), you’ll want to add
some buttons to control the simulation. At a minimum, create a “Run/Pause” but-
ton and also a checkbox to disable the sleeping (and thus speed up the simulation).
(If you’ve never made a checkbox before, look it up in the Java API reference and
again make notes in your lab report.) Optionally, you could add a button to clear
the lattice so you can start over without quitting the program.

In general, try to keep a record in your lab report of anything you learn or figure
out that you think would be helpful to someone else who is trying to reproduce what
you did.

Results

Now increase the lattice size to several hundred across, and decrease the plotted size
of each site to a single pixel. Run the simulation and admire the beautiful random
shapes that it creates. Make a printout of one of your DLA clusters, by first making
a screen capture (have someone show you how if you don’t already know) and then
printing from whatever software can open the screen capture file. Be sure to set
the background color to white, to save toner! (You can, of course, use a different
background color for screen viewing.)

How can we accurately describe this cluster’s intricate shape—especially its “den-



sity”? If the particles had arranged themselves along a straight line, we would say
they had made a one-dimensional shape. If the particles had filled the whole space,
we would say the shape was two-dimensional. What we have here is something in
between, and we can characterize it using a non-integer number for the “dimension.”

To calculate this “dimension,” you need to know the number of occupied sites as
a function of the distance from the center. Create an array to hold this information
(with the array’s index representing the distance from the center, in units of the
lattice spacing, rounded to the nearest integer). Add code to your runParticle
method to increment the appropriate element of this array whenever a particle
adheres to the cluster. Then, when the cluster is complete, print out all the elements
of this array to the Terminal window. (You might want to add a button to activate
this data dump.)

Once all this is working and you’ve collected the data for a large cluster, copy
and paste the data into a spreadsheet. (In the instructions that follow, I'll assume
that you're using Excel. I don’t know whether other spreadsheet programs have
the required features and if so, what the appropriate commands are called.) Add
a column to the spreadsheet for the total number of particles within each radius
(calculated appropriately), and make a log-log scatter plot of this quantity as a
function of radius. The data should fall approximately along a straight line. Edit
the data series in the plot to eliminate any values near the ends that don’t lie near
the line (due to edge effects and such). Then use the “Add Trendline” command to
fit the data with a power law function, which should appear as a straight line on
the log-log plot. Be sure to tell it to display the equation.

The exponent of this power-law fit is called the fractal dimension or Hausdorff
dimension of the cluster. Explain carefully, in your lab report, what the exponent
of this power-law fit would be if the cluster were (a) a simple straight line and (b)
a completely filled space. Then explain why your result makes intuitive sense.

Repeat the simulation and analysis a couple of times, to see how consistent the
fractal dimension is from one run to another.

Spend a little time on the Internet reading about fractals and the concept of
fractal dimension. Be sure to browse through the marvelous Wikipedia article titled
List of fractals by Housdorff dimension. Make a few notes on what you learn.
For additional fractal fun, check out Vi Hart’s doodling videos—especially the one
titled Binary Trees (vihart.com/doodling).

Your finished lab report should include a running log of your notes (organized
and legible), a printed image of your most beautiful fractal cluster, and a printout
of your spreadsheet and graph, showing the calculation of your cluster’s fractal
dimension (for one simulation run). In addition, please clean up your source code
for the benefit of human readers and submit it by email (as an attachment).



