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We investigate the reflection of light from a mirror moving at relativistic speeds and introduce a

general principle to determine the relationship between the incident and reflected angles. This

principle states that the momentum change of each photon is perpendicular to the surface of the

mirror. We carry out sample calculations for various geometries. VC 2012 American Association of Physics

Teachers.

[http://dx.doi.org/10.1119/1.4720389]

I. INTRODUCTION

The study of light reflecting from a surface such as mirror
is usually carried out by applying the appropriate boundary
conditions for the incident and reflected electromagnetic
waves at the reflecting surface.1 The result is the well-known
law of reflection: the angle of incidence is equal to the angle
of reflection. Here, the underlying assumption is that all
measurements are performed in the rest frame of the source,
the reflecting surface, and the detector. However, if the same
phenomenon is studied from the point of view of the lab
frame, where the source, the reflecting surface, and the de-
tector are all set in motion with a uniform velocity, the well-
known law of reflection is no longer valid. In fact, it is well
established that for light reflected from a mirror moving at
relativistic speeds, the angle of reflection is not necessarily
equal to the angle of incidence.2–10 In this paper, we propose
that a basic principle of specular reflection is that the mo-
mentum change for reflecting light must be perpendicular to
the plane of the mirror. This principle applies to stationary
mirrors as well as moving mirrors. Using this principle, the
relationships between incident and reflected angles can read-
ily be determined for any mirror speed and any particular
geometry.

II. MOMENTUM CHANGE UPON REFLECTION

A. A stationary mirror

Consider light reflecting from a stationary mirror as shown
in Fig. 1. We shall analyze this from the quantum viewpoint,
in which we treat light as photons. We assume that for each

reflected photon, the momentum change D~P is perpendicular
to the plane of the mirror and thus lies along the normal line.
We further assume that, for each reflected photon, the incident

momentum ~Pb (momentum before) and the reflected momen-

tum ~Pa (momentum after) are equal in magnitude; energy is
conserved and each reflected photon undergoes elastic scatter-

ing. Because Pa ¼ Pb and D~P ¼ ~Pa � ~Pb, the geometry in
Fig. 1 shows a parallelogram of four equal sides, bisected by

D~P. The two enclosed triangles are therefore identical, show-
ing that the angle of incidence a and the angle of reflection b
are equal in the rest frame. This is normally an assumed “law”
for reflection, but here we have shown that it follows from the
more general principle that the momentum change vector is
perpendicular to the surface of the mirror.

Further, if the momentum change is perpendicular to the
mirror, there is no change in momentum tangent to the

mirror surface. Thus, the tangential component of ~Pa is equal
to the tangential component of ~Pb and there is no reflection-
induced stress in the plane of the mirror (consistent with the
photon undergoing elastic scattering).

B. A moving mirror

If we now consider the same experiment as viewed by an

inertial observer in relative motion to the mirror, D~P0 (meas-
ured in the frame in which the mirror is moving) must again
be perpendicular to the reflecting surface. Why? Because if

D~P0 has a non-zero tangential component that depends on the
speed of the mirror, it would be possible for observers watch-
ing the moving mirror to measure an associated tangential
stress that is not present in the rest frame. Such a scenario
would violate the basic principle of relativity and provides a
qualitative understanding for why the momentum change for
reflected photons must lie along the normal to the mirror.
We will prove this statement mathematically in Sec. III.

III. DERIVATION OF MOMENTUM CHANGE

DIRECTION

Consider a mirror of length m that is at rest in the xy-frame
(Fig. 1), but moving horizontally with a constant speed v as
seen in the x0 y0-frame (Fig. 2). Note that the rest frame
angles a and / are arbitrary so that the derivation holds for
light incident at any angle on a mirror at any orientation with
respect to the horizontal axis. The goal is to show that in the

lab frame, the change of momentum D~P0 is perpendicular to

the plane of the mirror designated by the mirror vector ~M0.

That is, we want to prove that D~P0 � ~M0 ¼ 0.
We begin by transforming the momentum components of

the incident and reflected photons from the xy-frame to the
x0 y0-frame. Applying the Lorentz transformations, we get

P0bx ¼ c Pbx þ
v

c
Pb

� �
¼ cPb sinða� /Þ þ v

c

h i
; (1)

P0by ¼ Pby ¼ Pb cosða� /Þ; (2)

P0ax ¼ c Pax þ
v

c
Pa

� �
¼ cPa sinðbþ /Þ þ v

c

h i
; (3)

P0ay ¼ Pay ¼ �Pa cosðbþ /Þ; (4)

where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
and c is the speed of light. Note

that in the mirror’s rest frame we have Pa ¼ Pb ¼ P, which
allows us to write the momentum vectors in the x0 y0 frame as
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~P0b ¼ cP sinða� /Þ þ v

c

h i
îþ P cosða� /Þ ĵ; (5)

~P0a ¼ cP sinðbþ /Þ þ v

c

h i
î� P cosðbþ /Þ ĵ: (6)

But we already know that b ¼ a in the rest frame, which
allows us to calculate the momentum change in the lab frame
as

D~P0 ¼ Pc sinðaþ /Þ � sinða� /Þ½ � î
� P cosðaþ /Þ þ cosða� /Þ½ � ĵ; (7)

which simplifies to

D~P0 ¼ 2P cos a c sin / î� cos / ĵ
� �

: (8)

Now let us transform the mirror vector ~M0 to get

~M0 ¼ m cos /
c

îþ m sin / ĵ: (9)

Forming the dot product of Eqs. (8) and (9) then gives

D~P0 � ~M0 ¼ 0; (10)

which shows that the momentum change is perpendicular to
surface of the mirror for any incident angle and mirror orien-

tation. Thus, the momentum change for each reflecting pho-
ton lies along the normal to the mirror, independent of
mirror speed.

Figure 2 emphasizes the general relationship between
P0b;P

0
a; a
0, and b0 when D~P0 is directed along the normal line.

Because D~P0 is perpendicular to the mirror, the geometry
leads to the general relationship

sin b0

sin a0
¼ P0b

P0a
: (11)

This equation may be used to employ a geometrical analysis
to obtain the relationship between b0 and a0.

IV. GENERAL RELATIONSHIPS BETWEEN

INCIDENT ANGLES AND REFLECTED ANGLES

In this section, we determine equations for a0 as a function
of a, and b0 as a function of b. We begin by taking the dot
product of the transformed momentum ~P0b given by Eq. (5)
with the transformed mirror vector ~M0 in Eq. (9). Using the
geometry shown in Fig. 2, we find

~P0b � ~M0 ¼ P0bxM0x þ P0byM0y ¼ ~P0b
�� �� ~M0�� �� sin a0: (12)

After substituting for the vector components and their abso-
lute values from Eqs. (5) and (9), we solve for sin a0 to get

sin a0 ¼ sin aþ ðv=cÞ cos /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2½sinða� /Þ þ v=c�2 þ cos2ða� /Þ

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ cos2 /

p : (13)

Using a similar procedure, the functional relationship between b0 and b is obtained by taking the dot product of the trans-
formed momentum ~P0a and the transformed mirror vector ~M0, giving

Fig. 1. Light reflecting from a stationary mirror. ~M ¼ mirror vector,

m¼ length of mirror, ~Pb; ~Pa ¼ photon momenta before and after reflection,

D~P ¼ ~Pa � ~Pb ¼ momentum change vector.

Fig. 2. The experiment shown in Fig. 1 as seen from the x0 y0-frame. ~M0 ¼
mirror vector; m0 ¼ length of mirror; ~P0b; ~P

0
a ¼ photon momenta before and

after reflection; D~P0 ¼ ~P0a � ~P0b ¼ momentum change vector.
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sin b0 ¼ sin bþ ðv=cÞ cos /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2½sinðbþ /Þ þ v=c�2 þ cos2ðbþ /Þ

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ cos2 /

p : (14)

Note that, in the limit of v=c� 1, the ratio of Eq. (13) to
Eq. (14) becomes

sin a0

sin b0
¼ sin aþ ðv=cÞ cos /

sin bþ ðv=cÞ cos /
; (15)

so that a0 ¼ b0, as expected, when v=c� 1.

V. EXAMPLES

In Secs. V A and V B, we consider two specific examples
where the equations assume much simpler forms.

A. Mirror at rest angle of 45�

As an example, let us apply Eqs. (13) and (14) to the spe-
cial case where / ¼ 45� and also a ¼ b ¼ 45� (see Fig. 3).
This case is of special interest because a system of mirrors at
/ ¼ 45� can be employed to analyze a “Square Light Clock”
to derive time dilation and length contraction independ-
ently.11 Also, a 45� mirror leads to a more intuitive under-
standing of why the angles of reflection and incidence are
not equal when the mirror travels at relativistic speeds. Using
these specific angles, Eqs. (13) and (14) reduce to

sin a0 ¼ 1þ v=cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� v2=c2

p ; (16)

sin b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� v2=c2

p : (17)

Taking v=c¼ 0.5, we get a0 ¼ 79� and b0 ¼ 41�. The inter-
esting point to notice is that despite the fact that b0 is no lon-
ger equal to 45� (as in the rest frame), the reflected beam still
remains parallel to the x-axis (see Fig. 4). This property is
employed in the study of the “Square Light Clock” of Ref.
11. We also note that as v! 0, Eqs. (16) and (17) give

sin a0 ¼ sin b0 ¼ 1=
ffiffiffi
2
p

. Thus for the mirror at rest we have
a0 ¼ b0 ¼ 45� as expected. Finally, combining Eqs. (13) and
(14) with Eq. (11), we find for this special case

P0b
P0a
¼ sin b0

sin a0
¼ 1

1þ v=c
: (18)

This shows that b0 is less than a0 and also that P0b is less than
P0a when v=c is greater than zero.

B. Mirror at rest angle of 90�

As another example we consider the case where / ¼ 90�.
Because of its simple geometry, other authors (including
Einstein) have studied this special case.2,3,5,7–10 For
/ ¼ 90�, Eqs. (13) and (14) simplify considerably to give

sin a0 ¼ sin a
c 1� ðv=cÞ cos að Þ ; (19)

sin b0 ¼ sin b
c 1þ ðv=cÞ cos bð Þ : (20)

As in Subsection V A, we now find a functional relationship
between a0 and b0. Although carried out for the specific case
of / ¼ 90�, this derivation can be applied to the general case
as well.

We begin with Eqs. (1)–(4) when / ¼ 90� and calculate
P0bx ¼ ~P0b � î to get

P0bx ¼ ~P0b
�� �� cos a0: (21)

By substituting / ¼ 90� in Eqs. (1) and (5) and simplifying
the relationships for P0bx and P0b, we can solve Eq. (2) for
cos a0 to show that

Fig. 3. Stationary mirror at an angle / ¼ 45� with a ¼ b ¼ 45�.

Fig. 4. The experiment shown in Fig. 3 as seen from the x0 y0-frame when

v=c¼ 0.5. The incident and reflected angles are calculated using Eqs. (16)

and (17). (Note that ~P0a remains horizontal).
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cos a0 ¼ cos a� v=c

1� ðv=cÞ cos a
: (22)

Performing the same calculation for P0bx ¼ ~P0a � î and solving
for cos b0 yields

cos b0 ¼ cos bþ v=c

1þ ðv=cÞ cos b
: (23)

Using the fact that cos a ¼ cos b, we can solve for cos a in
Eq. (22) and substitute this in for cos b in Eq. (23) to get

cos b0 ¼ 1þ v2=c2ð Þ cos a0 þ 2ðv=cÞ
1þ v2=c2ð Þ þ 2ðv=cÞ cos a0

: (24)

This equation, with the mirror moving in the opposite
direction, was derived in Refs. 2, 7, and 8 using different
approaches.

We can obtain a different form for the functional relation-
ship between a0 and b0 by considering the ratio of Eqs. (19)
and (20) to get

sin a0

sin b0
¼ 1þ ðv=cÞ cos b

1� ðv=cÞ cos a
: (25)

Replacing cos a and cos b from Eqs. (22) and (23) results in
Ref. 10

sin a0

1þ ðv=cÞ cos a0
¼ sin b0

1� ðv=cÞ cos b0
: (26)

This equation provides a relationship between the angle of
incidence (a0) and the angle of reflection (b0), both in the lab
frame for the special case of / ¼ 90�. A more general rela-
tionship for these angles is derived in Ref. 7.

VI. CONCLUSIONS AND SUMMARY

In this paper, we have introduced the general principle
that the specular reflection of light from a mirror is such that
the momentum change of the reflected photons is perpendic-
ular to the plane of the mirror. We have shown that this prin-
ciple is valid for all mirrors, moving, or stationary. The
commonly stated law of reflection—the angle of incidence is
equal to the angle of reflection—is valid only for the special
case of reflection from mirrors at rest. A more general rela-

tionship for reflecting photons from all mirrors is instead
given by

sin b0

sin a0
¼ P0b

P0a
: (27)

Because photon momenta are directly proportional to fre-
quency, this equation can also be used to obtain other rela-
tionships, such as Doppler frequency ratios.

We also calculated the moving incident angle (a0) as a
function of the rest incident angle (a), as well as the moving
reflected angle (b0) as a function of the rest reflected angle
(b). In addition, we derived the relationship between b0 and
a0 for two special cases, and demonstrated that this result can
be carried out in general. In all cases, the special and the gen-
eral relationships derived in this paper are in agreement with
the results of others who have used different approaches to
analyze light reflection from moving mirrors.2,3,5,7–10
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