PHYSICS 2220

Equation Sheet \#2

1. Coulomb's law: $F=k \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \quad k=\frac{1}{4 \pi \varepsilon_{0}}$
2. $\mathbf{F}_{E}=q \mathbf{E} \quad$ For point charge, $E=k \frac{|q|}{r^{2}}$
3. $C=\frac{Q}{\Delta V} \quad C=\frac{\varepsilon_{0} A}{d} \quad \Delta V=E d \quad$ Parallel: $C_{\mathrm{eq}}=C_{1}+C_{2}+\ldots$

Series: $\frac{1}{C_{\text {eq }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \ldots \quad$ or $\quad C_{\text {eq }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$ (2 only)
4. $V=i R \quad P=i V=i^{2} R=\frac{V^{2}}{R} \quad R=\frac{\rho L}{A}$
5. Parallel: $\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \quad R_{\mathrm{eq}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}(2$ only $)$

Series: $R_{\text {eq }}=R_{1}+R_{2}+\ldots$
6. Kirchhoff's rules: 1) current in = current out; 2) sum of voltage rises and drops $=0$ around a closed loop
7. $q=q_{\circ} e^{-t / R C} \quad q=q_{\circ}\left(1-e^{-t / R C}\right) \quad i=i_{\circ} e^{-t / R C} \quad \tau=R C$
8. $U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V \quad u_{e}=\frac{1}{2} \varepsilon_{0} E^{2}$
9. $\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B} \quad\left|\mathbf{F}_{B}\right|=|q||\mathbf{v}||\mathbf{B}| \sin \phi \quad \mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}$
10. $r=\frac{m v}{q B} \quad T=\frac{1}{f}=\frac{2 \pi r}{v}$
11. $\mathbf{F}_{B}=i \mathbf{L} \times \mathbf{B} \quad\left|\mathbf{F}_{B}\right|=i|\mathbf{L}||\mathbf{B}| \sin \phi \quad \tau=N i A B \sin \theta$
12. $k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad \varepsilon_{\circ}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ $e=1.60 \times 10^{-19} \mathrm{C} \quad 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J} \quad c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
13. electron mass $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$ proton mass $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$
14. Circle: $C=2 \pi r \quad A=\pi r^{2}$

