Question 1

On a day when atmospheric pressure is 75.83 cmHg, a pressure gauge on a tank of gas reads a pressure of 258.5 cmHg. What is the absolute pressure (in atmospheres and kPa) of the gas in the tank?

Cm #9

mm #9

kPa) of the gas in the tank?
A) 334.3 cm Hg = 4.399 atm = 445.7 kPa
B) 182.7 cmHg = 2.40 atm = 243.2 kPa
C) 334.3 cmHg = 4.398 atm = 445.6 kPa
D) 258.5 cmHg = 3.40 atm = 345 kPa
$$P = 75.83 + 258.5 = 334.33$$

$$76 = 334.33 \times 1.013 \times 10^{2} \text{ kPa}$$

$$P = \frac{334.33}{76} \times 1.013 \times 10^{2} \text{ kPa}$$

Question 2

A certain mass of an ideal gas occupies a volume of 4.00 m³ at 758 mmHg. Compute its volume at 635 mmHg if the temperature remains unchanged.

- B) 0.298 m³
- C) 1.19 m³
- (D) 4.77 m³

emperature remains unchanged.

$$P_1 \lor_1 = P_2 \lor_2 \rightarrow \bigvee_2 = \frac{P_1 \lor_1}{P_2} = \frac{(758)(4 \text{ m}^3)}{635}$$

$$\boxed{\bigvee_2 = 4.77 \text{ m}^3}$$

A given mass of ideal gas occupies 38 mL at 20° C. If its pressure is held constant, what volume does it occupy at a temperature of 45° C?

- A) 86 mL
- B) 35 mL
- C) 17 mL
- (D) 41 mL
- $\frac{V_{1}}{V_{2}} = \frac{T_{1}}{T_{2}} \implies V_{2} = \frac{V_{1}}{T_{1}} = (38) \frac{245 + 273}{20 + 273}$ $V_{2} = 14 | mL$

Question 4

A tank of ideal gas is sealed off at 20° C and 1.00 atm pressure. What will be the pressure (in kPa and mmHg) in the tank if the gas temperature is decreased to -35° C?

- A) $125 \text{ kPa} = 9.35 \times 10^2 \text{ mmHg}$
- B) 82 kPa = 1.08 mmHg
- C) 1.75 kPa = 13 mmHg D) 82 kPa = 6.2 x 10² mmHg

$$\frac{P_1}{P_2} = \frac{T_1}{T_2} \rightarrow P_2 = \frac{P_1}{T_1} \frac{T_2}{T_1}$$
 at m

$$P_2 = (1.00) \frac{273 - 35}{20 + 273} = 82 \text{ kpu}$$

Question 5

Given 1000mL of helium at 15° C and 763 mmHg, determine its volume at -6° C and 420 mmHa.

- C) 1.97 x 103 mL
- D) 5.08 x 10² mL

Question 6

A 5000-cm3 tank contains an ideal gas (M=40 kg/kmol) at a gauge pressure of 530 kPa and a temperature of 25° C. Assuming atmospheric pressure to be 100 kPa, what mass of gas is in the tank?

as is in the tank?
$$PV = NRT$$

(A)0.051 kg
$$(530 + 100) \times (0 \text{ Pa}) (5000 \times (0 \text{ m}^3) = 17(8.31)(273+25)$$

$$= N = (1.27 \text{ mole} = 1) \text{ m} = (1.27)(0.04)$$

$$= 0.051 \text{ kg}$$

bubble near P= Patm 100 kPa Multiple-Choice Questions of Chapter 13 B) 0.61 kg C) 51 kg D) 5.1 x 104 kg Question 7 An air bubble of volume V0 is released near the bottom of a lake at a depth of 11.0 m. What will be its new volume at the surface? Assume its temperature to be 4.0° C at the release point and 12° C at the surface. The water has a density of 1000 kg/m3, and at- $P_{1} = \frac{75}{76} \times 1.013 \times 10^{5} P_{1} + (1000 \times 9.8 \times 11)$ $P_{2} = \frac{907.8}{76} \times P_{2}$ $P_{3} = \frac{907.8}{100} \times P_{2}$ $P_{4} = P_{2} \vee 2 \rightarrow \vee_{2} = \frac{907.8}{100} \times P_{2}$ mospheric pressure is 75 cmHg/. A) 1.1 Vo B) 2.1 Vo C) 2.0 Vo

Question 8

Find the mass of a neon atom. The atomic mass of neon is 20.2 kg/kmol

A) 3.36 kg

B) 3.36 x 10⁻²³ kg

(C) 3.36 x 10⁻²⁶ kg D) 2.98 x 10⁻²⁷ kg

 $M = \frac{6.0202 \, \text{kg/mol}}{6.02 \, \text{kg}^{23} \, \text{ghas/mbl}} = 3.36 \times 10^{26} \, \text{kg}$

Question 9

At what temperature will the molecules of an ideal gas have twice the rms speed they have at 20° C?

A) $586 \text{ K} = 313^{\circ} \text{ C}$ (approximately)

(B) 1172 K = 899° C (approximately) C) 414 K = 141° C (approximately)

D) 73 K = -200° C (approximately)

 $\int \frac{3kT_{2}}{m} = 2 \int \frac{3kT_{1}}{m} = 2 \int \frac{72^{-4}T_{1}}{m}$

Question 10

An object must have a speed of at least 11.2 km/s to escape from the Earth's gravitational field. At what temperature will urms for H2 molecules equal the escape speed? Repeat for N2 molecules. (MH2=2.0 kg/kmol and MN2=28 kg/kmol.)

(A) $1.0 \times 10^4 \text{ K}$; $1.4 \times 10^5 \text{ K}$

B) 5.0 x 10³ K; 7.0 x 10⁴ K

C) $1.0 \times 10^7 \text{ K}$; $1.4 \times 10^8 \text{ K}$

D) 3.0 x 10⁴ K: 4.2 x 10⁶ K

 $V = 11.2 \times 10^{3} \text{ m/s} = \frac{3 \text{kT}}{2 \times 1.66 \times 10^{27} \text{ lg}}$

For N2, m → 28 × (.66 × (1) 27 kg =)